定理4.1 \[\lim_{x \to a} f(x) = L \text{ とすると } \lim_{x \to a} b = 1 \text{ なり。} \]

定理4.2 \[\lim_{x \to a} f(x) = C \text{ なならば } f(x) = c \text{ なり。} \]

(1) \(f(x) \) が連続(関数) \(f(x) = x \text{ なり。} \)

(2) \(\lim_{x \to a} f(x) = A \)

(3) \(\lim_{x \to a} c f(x) = c \lim_{x \to a} f(x) \)

\[\lim_{x \to a} \left(f(x) + g(x) \right) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) \]

(4) \(\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \)
補題 4.3 \(g : D \rightarrow \mathbb{R}^2, \quad g \text{は} D \text{に

\[\text{定義域} \quad \text{で連続} \quad \]}

\[\lim_{x \to 2} g(x) = (0, 5), \quad g(2) \]

\[D = \{ x \in \mathbb{R}^2 \mid g(x) \neq 0 \text{かつ} 0 < x < 3 \} \quad \text{であり} \quad \]

\[f(x) \text{は} D \text{に

\[\begin{align*}
\lim_{x \to 2} f(x) &< g(x) \quad \text{に対して} \\
\lim_{x \to 2} f(x) &\leq g(x) \quad \text{ならばなら}
\end{align*} \]

\[f(x) \leq g(x) \quad \text{が成り立つと} \\
\lim_{x \to 2} f(x) \leq \lim_{x \to 2} g(x) \quad \text{が成り立つ} \]

\[f(1) < g(1) \quad \text{としても} \quad \lim_{x \to 2} f(x) < g(1) \quad \text{は必ずしも成り立たない}！

\[\text{例} \quad f(x) = 1 \quad \text{時}\quad 1 + x \quad D = (0, 10) \quad \text{で} \quad \]
(1) \(\lim_{x \to a} f(x) = b \)

(2) ここで、\(a \) の収束条件下の数列を \(\{x_n\} \)

\(\lim_{n \to \infty} f(x_n) = b \)

関数の連続性
関数 \(f : D \to \mathbb{R} \) が \(d \in D \) で

連続であるとは、

\(\lim_{x \to d} f(x) = f(d) \) となること。
定理4.6 (1) D の各点関数 f と D の各点関数 g とを連続な関数とするとき、
(1) f が t で連続なら、cf は t で連続である。
(2) f と g が連続なら、f + g と f - g も連続である。
(3) f と g が連続なら、fg と f/g が連続である。
(4) \(f(x) = 0 \) で f が t で連続なら、\(\frac{f}{g} \) は t で連続である。
$f: D \to \mathbb{R}$ で $D_0 \subseteq D$ とするとき

f が、D_0 で連続ならば D_0 で連続である。

f が連続ならば、部分関数も連続である。

系 4.7 有限関数（多項式を含む）は、定義域上で連続。

試験関数（定義域の関数）は、定義域上で連続。

例 (1) $D = \mathbb{R}$

$$f(x) = \begin{cases} 0, & x \neq 0 \\ 1, & x = 0 \end{cases}$$

$$\lim_{x \to 0} f(x) = 0 \neq 1 = f(0) \quad \text{だが，} f \text{は} 0 \text{で連続でない。}$$

例 (2) $f(x) = \begin{cases} 0, & x < 0 \\ 1, & 0 \leq x \end{cases}$

$$\lim_{x \to 0^-} f(x) = 0 \quad \text{だが，} f \text{は} 0 \text{で連続でない。}$$

例 (3) $f(x) = \begin{cases} 0, & x < 0 \\ 1, & x \geq 0 \end{cases}$

$$\lim_{x \to 0} f(x) = 0 \neq 1 = f(0) \quad \text{だが，} f \text{は} 0 \text{で連続である。}$$