Recp.

Axiom of Set Theory
(Is a very axiomatization setting)

- Axiom of Extensionality
- Axiom of Empty set
- Pairing Axiom

\[\forall x, y, z : (x = y) \Rightarrow (x = z) \]

Existence
For \(a : x \), \(b : y \)

\[\forall x, y, z : (x = y) \Rightarrow (x = z) \]

Note that if \(a = b \), then \(\langle a, b \rangle = \langle b, b \rangle = \langle a, a \rangle \)

Lemma 1.4 \(\exists \{ \} \)

Axiom of Union \(\forall x, y : \exists z \forall w : (w \in z) \Rightarrow (w \in x) \)

Axiom of Separation: If \(\psi(x) \) is some property formulized

\[\{ \{ x \in p \} \mid \psi(x) \} \]

Lemma 2.1 For any property \(\psi(x) \) on \(\mathbb{R} \)

\[\forall x, y : \exists z \forall w : (w \in z) \Rightarrow (w \in x) \]

Intuitively \(a = \bigcap \{ b \mid \psi(b) \} \)

This is not a set in general.
A proof in a non-unique q.

Proof: let there be powers with \(P(c) \).

(1) a if \(a = 1 \) is an element.

\[a = \{ \text{decide if } b \neq \text{ for all } b \in P(c) \} \]

This is a set by Axiom of Separation.

\[A = \{ \text{decide if } b \neq \text{ for all } b \in P(c) \} \]

For \(a, b, c \) and \(d, e \) and to be a subset of \(b \).

If \(a \) and \(b \) subset of \(c \) then we denote this by:

\[a, b, c \text{ and } d, e \text{ are } \subset \text{ to } \]

\[\{a, b, c \} \text{ and } \{d, e\} \text{ are } \subset \text{ to } \]

\[\{a, b, c \} \text{ and } \{d, e\} \text{ are } \subset \text{ to } \]

Axiom of infinity. There is a with the following property:

\[\text{for all } a \in A, \text{ if } b \in A \text{ then } b = \text{ and } a \in A \]

\[\{1, 2, 3, \ldots \} \text{ or } A \]

Define \(N = \bigcap \{a \mid \forall \} \)

This is the set at \(N \) by Lemma 2.1.

\[N \text{ satisfies } \}

\[(a) \text{ and } (b) \]

\[\text{and this } a \text{ is as desired!} \]
Lemma 7.1 An isotropic (l.c.a.)

(Admit?) every thing is classical ad
Ca be dualized in t

Proof: Ax: For 3 x a there is b x b.

Sah 1 is called the power function of a and written by

b = P(a)
The axiom system consisting of all the axioms introd in the R"amak act theory

(Admit?) every thing is classical ad
Ca be dualized in t

Lemma 7.2 Ab exists.

Post: Assuming that Ab exist.

ce Ab c, the AcAb exist w

ce c, d = [f, g, h]

A B = \{c | (c, d) for all c, d \}

A B = \{ce P(P(A B)) | (c, d) for all c, d \}
For A, B a function $f: A \to B$ is a what F of $A \times B$ etc.

For any A then there is a unique b_0 at $c_0 \subseteq F$

If F is a function $f: A \to B$ we denote this by $F: A \to B$

For a, a' in A the a' be b with $a, a' \subseteq F$ is denoted by $F(a)$.

Lemma 2.9 $F, A, B \ni \; x$

at $F_B = \{ F; F: A \to B \}$

Proof: Assuming A, B exists

$F(a) = F(A \times B) = F(P(A \times B))$