Problem

\[\text{Theorem C.1 (Zermelo-Fraenkel)} \]

(a) AC

(b) Well-ordering Theorem (Well-ordering set)

(i.e. every set has a well-ordering)

A pair \((X, R) \) with \(R \) an irreflexive (i.e. \(a \neq a \) for all \(a \)) antisymmetric (i.e. \(a R b \Rightarrow b R a \) for all \(a, b \) in \(X \)) partial order is called a "partial ordering".

A partial ordering \((X, R) \) is a linear ordering if for any \(Y \subseteq X \), \(Y \) contains the minimal element of \(Y \).

\[\text{Theorem C.1 (Zermelo-Fraenkel)} \]

(a) AC

(b) Well-ordering Theorem (Well-ordering set)

(i.e. every set has a well-ordering)

A pair \((X, R) \) with \(R \) an irreflexive (i.e. \(a \neq a \) for all \(a \)) antisymmetric (i.e. \(a R b \Rightarrow b R a \) for all \(a, b \) in \(X \)) partial order is called a "partial ordering".

A partial ordering \((X, R) \) is a linear ordering if for any \(Y \subseteq X \), \(Y \) contains the minimal element of \(Y \).

\[\text{Theorem C.1 (Zermelo-Fraenkel)} \]

(a) AC

(b) Well-ordering Theorem (Well-ordering set)

(i.e. every set has a well-ordering)

A pair \((X, R) \) with \(R \) an irreflexive (i.e. \(a \neq a \) for all \(a \)) antisymmetric (i.e. \(a R b \Rightarrow b R a \) for all \(a, b \) in \(X \)) partial order is called a "partial ordering".

A partial ordering \((X, R) \) is a linear ordering if for any \(Y \subseteq X \), \(Y \) contains the minimal element of \(Y \).
where \(X = X \cup \mathbb{R} \)
\(R' = R \cup (X \times \mathbb{R}) \).

The \(\langle X, R' \rangle \) is a linear order,
(well-ordering, etc.) when
\[X^* = U \{ (X, R) \in \mathcal{P}(X) \times \mathcal{P}(R) \mid (X, R) \in \mathcal{P}(X) \times \mathcal{P}(R) \} \]
\[R^* = U \{ (X, R) \in \mathcal{P}(X) \times \mathcal{P}(R) \mid (X, R) \in \mathcal{P}(X) \times \mathcal{P}(R) \} \]

And \(\langle X, R' \rangle \) is an end-orientation of \(\langle X, R \rangle \).

(3) Suppose that \(\mathbb{N} \) is a set consisting of linear orderings
(well-ordering, etc.) p.t. for any \(\langle X, R \rangle \), \(X \neq \mathbb{N} \).
\(\mathbb{N} \) is a linear ordering of \(X \).
\(\mathbb{N} \) is an end-orientation of \(X \).

For a partial ordering \(\langle P, R \rangle \) \(\subseteq \mathbb{P} \)
\(\mathbb{R} \) is a chain if \(\langle C, R \rangle \) \(\subseteq \mathbb{R} \) is a linear ordering.

For a partial ordering \(\langle P, R \rangle \) \(\subseteq \mathbb{P} \)
\(\mathbb{R} \) is a chain if \(\langle C, R \rangle \) \(\subseteq \mathbb{R} \) is a linear ordering.

For a partial ordering \(\langle P, R \rangle \) \(\subseteq \mathbb{P} \)
\(\mathbb{R} \) is a chain if \(\langle C, R \rangle \) \(\subseteq \mathbb{R} \) is a linear ordering.

For a partial ordering \(\langle P, R \rangle \) \(\subseteq \mathbb{P} \)
\(\mathbb{R} \) is a chain if \(\langle C, R \rangle \) \(\subseteq \mathbb{R} \) is a linear ordering.

(i) \mathbb{P} \) has an upper bound if \(\mathbb{P} \) is a linear ordering.

This \(\mathbb{R} \) \(\subseteq \mathbb{P} \)

(i) \mathbb{P} \) has an upper bound if \(\mathbb{P} \) is a linear ordering.

This \(\mathbb{R} \) \(\subseteq \mathbb{P} \)

(i) \mathbb{P} \) has an upper bound if \(\mathbb{P} \) is a linear ordering.
For any set X

$$\emptyset \subseteq P(X)$$

If $\emptyset \in P(X)$ then $\forall x \in X \forall y \in x \Rightarrow y \in P(X)$

Proof:

$X = \{\emptyset\} \implies \emptyset \subseteq X$ for all $x \in X$

Let $x \in X$ and $y \in x$.

Then $\emptyset \subseteq x$.

Let $x \in X$ and $y \in x$.

Since $\emptyset \subseteq x$, then $y \in \emptyset$.

Therefore, $\emptyset \subseteq P(x)$.

Hence, $y \in P(x)$.

Thus, $y \in P(X)$.

Q.E.D.