Then $\mathbb{M} = (\text{Radix Theorem})$

(a) $T + 6.54 = T$

(b) $T + 6.54$ and $T + 6.54$

(c) $T + 6.54$

(d) $T + 6.54$

(e) $T + 6.54$

(f) $T + 6.54$

(g) $T + 6.54$

(h) $T + 6.54$

(i) $T + 6.54$

(j) $T + 6.54$

(k) $T + 6.54$

(l) $T + 6.54$

(m) $T + 6.54$

(n) $T + 6.54$

(o) $T + 6.54$

(p) $T + 6.54$

(q) $T + 6.54$

(r) $T + 6.54$

(s) $T + 6.54$

(t) $T + 6.54$

(u) $T + 6.54$

(v) $T + 6.54$

(w) $T + 6.54$

(x) $T + 6.54$

(y) $T + 6.54$

(z) $T + 6.54$

[Proof]

Suppose $\mathbb{B} = (\ldots, B_2, B_1, B_0) = \{0, 1\}$ is a part of T and $\mathbb{B} = (\ldots, B_2, B_1, B_0) = \{0, 1\}$ is a part of T.

The $\mathbb{B} = (\ldots, B_2, B_1, B_0) = \{0, 1\}$ is a part of T.

Thus, $\mathbb{B} = (\ldots, B_2, B_1, B_0) = \{0, 1\}$ is a part of T.

Therefore, $\mathbb{B} = (\ldots, B_2, B_1, B_0) = \{0, 1\}$ is a part of T.

Hence, $\mathbb{B} = (\ldots, B_2, B_1, B_0) = \{0, 1\}$ is a part of T.

Since $\mathbb{B} = (\ldots, B_2, B_1, B_0) = \{0, 1\}$ is a part of T, $\mathbb{B} = (\ldots, B_2, B_1, B_0) = \{0, 1\}$ is a part of T.

Therefore, $\mathbb{B} = (\ldots, B_2, B_1, B_0) = \{0, 1\}$ is a part of T.

Hence, $\mathbb{B} = (\ldots, B_2, B_1, B_0) = \{0, 1\}$ is a part of T.

Since $\mathbb{B} = (\ldots, B_2, B_1, B_0) = \{0, 1\}$ is a part of T, $\mathbb{B} = (\ldots, B_2, B_1, B_0) = \{0, 1\}$ is a part of T.

Therefore, $\mathbb{B} = (\ldots, B_2, B_1, B_0) = \{0, 1\}$ is a part of T.

Hence, $\mathbb{B} = (\ldots, B_2, B_1, B_0) = \{0, 1\}$ is a part of T.

Since $\mathbb{B} = (\ldots, B_2, B_1, B_0) = \{0, 1\}$ is a part of T, $\mathbb{B} = (\ldots, B_2, B_1, B_0) = \{0, 1\}$ is a part of T.

Therefore, $\mathbb{B} = (\ldots, B_2, B_1, B_0) = \{0, 1\}$ is a part of T.

Hence, $\mathbb{B} = (\ldots, B_2, B_1, B_0) = \{0, 1\}$ is a part of T.

Since $\mathbb{B} = (\ldots, B_2, B_1, B_0) = \{0, 1\}$ is a part of T, $\mathbb{B} = (\ldots, B_2, B_1, B_0) = \{0, 1\}$ is a part of T.

Therefore, $\mathbb{B} = (\ldots, B_2, B_1, B_0) = \{0, 1\}$ is a part of T.

Hence, $\mathbb{B} = (\ldots, B_2, B_1, B_0) = \{0, 1\}$ is a part of T.