Theorem 14.1 (Squeeze Theorem)
For $x \rightarrow 7$ we have
$T \rightarrow T'$

Theorem 3.1

Proof: For any $\epsilon > 0$, we choose $\delta > 0$ such that

$|x - 7| < \delta
\Rightarrow |T - T'| < \epsilon$

Let P be a point. Then $L(x) = T P$ and $T P$ is linear in x and $T P(x^2) = T P(x^2)$.

Squeeze $(\delta) > 0$

Suppose that the line is a part of T for $x \rightarrow a$. If the line p is $T \rightarrow 0$, then for any x close to a, we have $L(x) = T P$

Then x is near a, and $T P(x)$ is near $T P(a)$.
Let T be a consistent set of sentences. Then T is consistent if there is no contradiction in T.

1. If T is consistent, then for any sentence A, $T \cup \{A\}$ is consistent.

2. Let $T = \{ \forall x (P(x)) \}$ in T. We want to show that T is consistent.

3. Suppose T is inconsistent. Then $T \cup \{ \forall x (P(x)) \}$ is consistent.

4. Thus, T is consistent.

5. If T is consistent, then $T \cup \{ \neg \forall x (P(x)) \}$ is consistent.

6. Therefore, T is consistent.

7. $T_1 = \{ \forall x (P(x)) \}$ is consistent.

8. Suppose $T = \{ \forall x (P(x)) \}$ is consistent. Then $T \cup \{ \neg \forall x (P(x)) \}$ is consistent.

9. Thus, T is consistent.

10. Therefore, T is consistent.
Let \(T = \{ 0 \}, T^* = \{ 1 \} \). Then \(\phi(0) \in T \) and \(\phi(1) \in T^* \).

For \(a, b \in C \) at \(a \in C \cap \phi(0) \cap \phi(1) \).

Claim: \(T \) is an equivalence relation.

\[T \mid T \mid \text{transitive} \]

By Lemma 14.5, \(\phi(0) \cap \phi(1) \) is an equivalence class.

Let \(a, b \in \phi(0) \cap \phi(1) \). Then \(a \equiv b \).

Let \(a, b \in \phi(0) \cap \phi(1) \). Then \(a \equiv b \).

Proof of Claim 2(a): By Lemma 14.5,

\[A = \{ C \mid C \in \phi(0) \cap \phi(1) \} \]

The equivalence class of \(C \) modulo \(T \).

For \(a \in T \) let \(C_0 = \{ a \} \). Then \(C_0 \in \phi(0) \cap \phi(1) \).

For \(a \in T \) let \(C_0 = \{ a \} \). Then \(C_0 \in \phi(0) \cap \phi(1) \).

Lemma 14.6: \((C_1, C_2) \in T \) if \(C_1 \cap C_2 = \emptyset \).

Proof by induction on \(C \).

In particular, \(a \in T \) is a representative of \(T \).