$\forall x \left(\left(y(x) \Rightarrow \ldots \right) \iff \exists x \left(\left(y(x) \wedge \ldots \right) \right) \right)$

If A is defined by a formula ϕ is a sentence for
only with variable quantification with quantifiers $\exists x^{+}$

we say A is instantiated in $\exists x^{+}$ (notatical $\exists x^{+}$)

An Δ_{0}-formula ϕ is said to be bounded if

ϕ is in a power form only with variables of
the form $(\exists x^{+})$ or $(\forall x^{+})$ which is

any Δ_{0}-formula

$A \subseteq \mathbb{N}^{+}$ is axiomatized if it is defined by

a formula ϕ in power form over all propositions.
Theorem 18.2 (ZF): Sheffer's Axiom and Theorem

For any transitive (not on class) model of

If a class fragment of ZF

If A is Σ(a) then A \models \lambda M \in A^\infty(M)

(\therefore A^\infty = A^\infty \cap M)

But let \psi be the \Sigma-formula at ω

A = \{ \psi \in \Sigma(a) \mid \psi(M) \in A^\infty(M) \}

(\therefore \text{we see Theorem 18.2 and assume that the fragment of ZF}
\vdash A \models \lambda M \in A^\infty \cap M \models \Lambda \text{ in this context.)}

\text{Let } \psi = 3x \in \{ (x, y, z, w) \}

\text{Suppose } \psi \models \chi \in M_

\text{If } \psi \models \chi \in A^\infty \models \text{then } M \models \chi \in H(M)

\text{The \therefore } \psi \models \chi \in A^\infty \models \text{then } M \models \chi \in H(M)

\text{Thus the \therefore } \psi \models \chi \in A^\infty \models \text{then } M \models \chi \in H(M)

\text{And } \psi \models \chi \in A^\infty \models \text{then } M \models \chi \in H(M)

\text{If } \psi \models \chi \in A^\infty \models \text{then } M \models \chi \in H(M)

\text{Thus } \psi \models \chi \in A^\infty \models \text{then } M \models \chi \in H(M)

\text{We find } N \models \chi \text{ at } \nu \text{ transition criteria and then } N \models \chi \text{ at } \nu \models \chi \text{ in } A^\infty