Note that \(\{ \Phi_n \} \) converges to \(\Phi \) in the topology of \(\| \cdot \| \).

Lemma 21.1: \(A \subseteq \text{l}(\omega) \) is open iff for any \(\Phi A \) then \(\text{new} \) \(n \).

\[
[\Phi n] \subseteq A \iff [\Phi n] = \{ \Phi n \}
\]

Proof: Suppose \(A \) is open. By \(21.0 \) there is a \(n \)-free formula \(\psi \) in \(\text{new} m, \text{new} n \) such as \(\Phi n \in \{ \Phi n \} \).

Suppose \(A \subseteq \text{l}(\omega) \) is open.

\[
\text{Let } \psi n = \Phi n \in \{ \Phi n \} \text{ new } m, \text{new} n \text{.}
\]

Let \(\psi n = \Phi n \in \{ \Phi n \} \text{ new } m, \text{new} n \text{.}

\[
\text{Suppose } \psi n \text{ is } n \text{-free and } \psi \text{ is } m \text{-free.}
\]

\[
A = \bigcup [\Phi n] \text{ if } \psi n \text{ new } m, \text{new} n \text{.}
\]
Lemma 2.1.2. (a) Suppose \(B = \{ f \in M(W) : A^2 = f(\mathbf{v}, \mathbf{a}) \} \) for an \(\mathfrak{g} \)-module \(\mathbf{v} \) and \(\mathbf{a} \).

Then \(\{ f \in M(W) : A^2 = f(\mathbf{v}, \mathbf{a}) \} = p(B) \).

(2) If \(B = \{ f \in M(W) : A^2 = f(\mathbf{v}, \mathbf{a}) \} \) is a subalgebra of \(\mathfrak{g} \), then \(\{ f \in M(W) : A^2 = f(\mathbf{v}, \mathbf{a}) \} = \{ \sum \mathbf{v} : f(\mathbf{v}, \mathbf{a}) \} \) is a subalgebra of \(\mathfrak{g} \).

Lemma 2.1.6. \(\mathfrak{g}^2 + A(\mathfrak{g}) \) is an ideal.

Then \(\{ f \in M(W) : A^2 = f(\mathbf{v}, \mathbf{a}) \} \) is a subalgebra of \(\mathfrak{g} \).

Proof: \(\mathfrak{g}^2 + A(\mathfrak{g}) \) is an ideal.

Then \(\{ f \in M(W) : A^2 = f(\mathbf{v}, \mathbf{a}) \} \) is a subalgebra of \(\mathfrak{g} \).

Note that \(\mathfrak{g} \) is a subalgebra of \(\mathfrak{g}^2 + A(\mathfrak{g}) \).
Consider the type formula Ψ:

$$\exists x \left(\phi(x) \land \forall z, z \in x \rightarrow \exists w, z \in \text{trail}(w, E_n) \right)$$

Then by induction on n:

- $\phi(x)$ is Σ^1_n (it $A \in \Sigma^1_n$ is determined in $\langle H(n), \in \rangle$)
- By straightforward induction on n!