To prove the above fact, we check the condition on the kernel. We see that\[E = (\mathbb{R}^a, A_e) \]
to be a \(E \)-valued GRA mapping of \(A \). Hence, we have
\[\tilde{\alpha} \subseteq \tilde{\alpha} \]
and \(\tilde{\alpha} \alpha \). By some theorem, we have proved that if \(\tilde{\alpha} \subseteq \tilde{\alpha} \), then the implication holds.

Consider the function \(f: A \to A \) defined by
\[
E^e = \begin{cases} \{ \text{the smallest } x \in A \text{ s.t.} & \\
(x, a_1, \ldots, a_n) \in \tilde{\alpha} \} & \text{if } (x, a_1, \ldots, a_n) \in \tilde{\alpha} \}
\end{cases}
\]

Suppose \((x_1, a_1, \ldots, a_n) \in \tilde{\alpha} \). By some addition, we have\[(x_1, a_1, \ldots, a_n) \in \tilde{\alpha} \]
Lemma 6. (a) $H(x)$ is a set and $|H(x)| < 2^{|x|}$.
(b) If x is a regular cardinal and $H(x) = \mathbf{ZFC}$, then \mathbf{ZFC} is not finitely axiomatizable.

(1) $H(x)$ is a transitive set.

(2) $H(x)$ is a transitive set.

(3) $H(x)$ is a transitive set.

(4) $H(x)$ is a transitive set.

(5) $H(x)$ is a transitive set.

(6) $H(x)$ is a transitive set.

(7) $H(x)$ is a transitive set.

(8) $H(x)$ is a transitive set.

Remark. If M is the set of all well-founded transitive sets, then $M = \{m \in M | m \notin M\}$.

So $M = \langle M \in H(x) | M \subseteq H(x) \rangle$ and $M = \langle M \in H(x) | M \subseteq H(x) \rangle$.

For $x \in H(x)$ and $y \notin H(x)$.

(λ, γ, δ)

For $x \in H(x)$ and $y \notin H(x)$.

(λ, γ, δ)

For $x \in H(x)$ and $y \notin H(x)$.

(λ, γ, δ)

For $x \in H(x)$ and $y \notin H(x)$.

(λ, γ, δ)

For $x \in H(x)$ and $y \notin H(x)$.