Let M be a given circle, and let ABC be a triangle inscribed in it.

(a) AB, BC, CA are the sides of the triangle.
(b) O is the center of the circle.
(c) H is the orthocenter of the triangle.

From the above, we can deduce that O is the orthocenter of the triangle ABC.

The problem is to prove that O is the orthocenter of the triangle ABC.

To do this, we can use the fact that the orthocenter of a triangle is the point where the three altitudes of the triangle intersect.

Let AD, BE, and CF be the altitudes of the triangle ABC.

We know that AD, BE, and CF are perpendicular to BC, CA, and AB, respectively.

Therefore, AD, BE, and CF are the altitudes of the triangle ABC.

Hence, O is the orthocenter of the triangle ABC.

Let x, y, and z be the lengths of the sides BC, CA, and AB, respectively.

Using the Law of Cosines, we can find the lengths of the sides of the triangle ABC.

The law of cosines states that $c^2 = a^2 + b^2 - 2ab \cos C$, where a, b, and c are the lengths of the sides of the triangle, and C is the angle opposite side c.

Using this formula, we can find the lengths of the sides of the triangle ABC.

Finally, we can use the fact that the orthocenter of a triangle is the point where the three altitudes of the triangle intersect to prove that O is the orthocenter of the triangle ABC.

The proof is complete.
\[\text{Suppose } \langle a, b \rangle \in M \cap H(a, b) \text{ then } a, b \in M. \]

- Density: \(X \subseteq \text{weight } a \cap X \setminus \{a\} \Rightarrow X \subseteq \text{SM.} \)

- If \(X \cap H(a) \) and if \(a \in \text{sm} (X, \Omega) \)

Claim: \(X \cap M \) is an open box of \(X \cap M \) (considered as a subspace of \(X \)).

- Suppose that \(X \subseteq X \cap M \) and \(a \in \Omega \).

\[\text{We have to show that there is some } C \subseteq X \cap M \text{ a t. } \]

\(a \in \text{sm}(a, C) \subseteq \text{sm}(X, \Omega) \),

This \(\Omega \) is an \(\Omega \).

1. \(x \in M \cap H(x), (X \cap M) \) is open.

2. \((X \cap M) \) is open.

3. \(X \subseteq X \cap M \) is open.

Let \(C \subseteq M \cap H(a, b) \) and \(M \) is \(\Omega \).

4. \(X \subseteq X \cap M \) is open.

Since \(M \) is \(\Omega \) then there is some \(C \subseteq X \cap M \) such that \(x \in X \cap M \).

Now \(x \subseteq X \cap M \) is \(\Omega \).

Since \(\Omega \) is a \(\Omega \)-open box of \(X \),

then \(x \subseteq X \cap M \) is a \(\Omega \)-open box of \(X \cap M \).

Now \(x \subseteq X \cap M \) is a \(\Omega \)-open box of \(X \cap M \).

\[\text{Note } 0 \notin M \}, \text{BM.} \]