Repeat Exercise (in next problem) from last meeting 15 June.

\[V_1 = n \in \text{On} \text{.} \]

\[V_0 = 1 \] \quad \text{formal members of} \quad V_1.

\[V_0 = P(V)_1 \quad \text{(formal members of} \quad V) \]

\[V_1 = V_0 \cup V_0^\times \quad \text{not a member of} \quad V \]

\[L = V \]

[Reason: For anyone } \quad \text{Axiom of Regularity:}

\[L = \{ x \in V \mid \exists y \subseteq [x \times \text{On}] \neg (y \in x) \} \]

\[L_0 = \emptyset \]

\[L_{\alpha + 1} = \text{def}(L_\alpha) \cup L_\alpha \]

\[L_\alpha = \text{def}(L_\alpha) \cup L_\alpha \]

\[L_\alpha = \text{def}(L_\alpha) \cup L_\alpha \]

\[L = \bigcup_{\alpha \in \text{On}} L_\alpha \]

\[L_0 = \emptyset \]

\[L_{\alpha + 1} = \text{def}(L_\alpha) \cup L_\alpha \]

\[L_\alpha = \text{def}(L_\alpha) \cup L_\alpha \]

\[L = \bigcup_{\alpha \in \text{On}} L_\alpha \]

\[L = \text{def}(L_\alpha) \cup L_\alpha \]

\[L_0 = \emptyset \]

\[L_{\alpha + 1} = \text{def}(L_\alpha) \cup L_\alpha \]

\[L_\alpha = \text{def}(L_\alpha) \cup L_\alpha \]

\[L = \bigcup_{\alpha \in \text{On}} L_\alpha \]

\[L_0 = \emptyset \]

\[L_{\alpha + 1} = \text{def}(L_\alpha) \cup L_\alpha \]

\[L_\alpha = \text{def}(L_\alpha) \cup L_\alpha \]

\[L = \bigcup_{\alpha \in \text{On}} L_\alpha \]

\[L = \text{def}(L_\alpha) \cup L_\alpha \]

\[L_0 = \emptyset \]

\[L_{\alpha + 1} = \text{def}(L_\alpha) \cup L_\alpha \]

\[L_\alpha = \text{def}(L_\alpha) \cup L_\alpha \]

\[L = \bigcup_{\alpha \in \text{On}} L_\alpha \]

\[L = \text{def}(L_\alpha) \cup L_\alpha \]

\[L_0 = \emptyset \]

\[L_{\alpha + 1} = \text{def}(L_\alpha) \cup L_\alpha \]

\[L_\alpha = \text{def}(L_\alpha) \cup L_\alpha \]

\[L = \bigcup_{\alpha \in \text{On}} L_\alpha \]

\[L = \text{def}(L_\alpha) \cup L_\alpha \]

\[L_0 = \emptyset \]

\[L_{\alpha + 1} = \text{def}(L_\alpha) \cup L_\alpha \]

\[L_\alpha = \text{def}(L_\alpha) \cup L_\alpha \]

\[L = \bigcup_{\alpha \in \text{On}} L_\alpha \]

\[L = \text{def}(L_\alpha) \cup L_\alpha \]

\[L_0 = \emptyset \]

\[L_{\alpha + 1} = \text{def}(L_\alpha) \cup L_\alpha \]

\[L_\alpha = \text{def}(L_\alpha) \cup L_\alpha \]

\[L = \bigcup_{\alpha \in \text{On}} L_\alpha \]

\[L = \text{def}(L_\alpha) \cup L_\alpha \]

\[L_0 = \emptyset \]

\[L_{\alpha + 1} = \text{def}(L_\alpha) \cup L_\alpha \]

\[L_\alpha = \text{def}(L_\alpha) \cup L_\alpha \]

\[L = \bigcup_{\alpha \in \text{On}} L_\alpha \]

\[L = \text{def}(L_\alpha) \cup L_\alpha \]

\[L_0 = \emptyset \]

\[L_{\alpha + 1} = \text{def}(L_\alpha) \cup L_\alpha \]

\[L_\alpha = \text{def}(L_\alpha) \cup L_\alpha \]

\[L = \bigcup_{\alpha \in \text{On}} L_\alpha \]

\[L = \text{def}(L_\alpha) \cup L_\alpha \]

\[L_0 = \emptyset \]

\[L_{\alpha + 1} = \text{def}(L_\alpha) \cup L_\alpha \]

\[L_\alpha = \text{def}(L_\alpha) \cup L_\alpha \]

\[L = \bigcup_{\alpha \in \text{On}} L_\alpha \]

\[L = \text{def}(L_\alpha) \cup L_\alpha \]

\[L_0 = \emptyset \]

\[L_{\alpha + 1} = \text{def}(L_\alpha) \cup L_\alpha \]

\[L_\alpha = \text{def}(L_\alpha) \cup L_\alpha \]

\[L = \bigcup_{\alpha \in \text{On}} L_\alpha \]

\[L = \text{def}(L_\alpha) \cup L_\alpha \]

\[L_0 = \emptyset \]

\[L_{\alpha + 1} = \text{def}(L_\alpha) \cup L_\alpha \]

\[L_\alpha = \text{def}(L_\alpha) \cup L_\alpha \]

\[L = \bigcup_{\alpha \in \text{On}} L_\alpha \]

\[L = \text{def}(L_\alpha) \cup L_\alpha \]

\[L_0 = \emptyset \]

\[L_{\alpha + 1} = \text{def}(L_\alpha) \cup L_\alpha \]

\[L_\alpha = \text{def}(L_\alpha) \cup L_\alpha \]

\[L = \bigcup_{\alpha \in \text{On}} L_\alpha \]

\[L = \text{def}(L_\alpha) \cup L_\alpha \]

\[L_0 = \emptyset \]

\[L_{\alpha + 1} = \text{def}(L_\alpha) \cup L_\alpha \]

\[L_\alpha = \text{def}(L_\alpha) \cup L_\alpha \]

\[L = \bigcup_{\alpha \in \text{On}} L_\alpha \]

\[L = \text{def}(L_\alpha) \cup L_\alpha \]

\[L_0 = \emptyset \]

\[L_{\alpha + 1} = \text{def}(L_\alpha) \cup L_\alpha \]

\[L_\alpha = \text{def}(L_\alpha) \cup L_\alpha \]

\[L = \bigcup_{\alpha \in \text{On}} L_\alpha \]

\[L = \text{def}(L_\alpha) \cup L_\alpha \]

\[L_0 = \emptyset \]

\[L_{\alpha + 1} = \text{def}(L_\alpha) \cup L_\alpha \]

\[L_\alpha = \text{def}(L_\alpha) \cup L_\alpha \]

\[L = \bigcup_{\alpha \in \text{On}} L_\alpha \]

\[L = \text{def}(L_\alpha) \cup L_\alpha \]
\(\exists \varphi, \varphi^k = (\exists \varphi, \varphi^k) \varphi^k \)

Proposition 1.2 \(E + D \)

Suppose the \(\mathcal{R} \) is a relation

\(\mathcal{R} \) is a relation

\(\mathcal{L} \subset \mathcal{R} \) is partial

A binary relation \(\mathcal{E} \) is a subset of \(A \times A \) and will terminate if for every pair \(A, a \),

\(\mathcal{E} \) is an equivalence relation of \(A \).

\(\mathcal{E} \) is an equivalence relation of \(A \).

DC If \(\varphi \) true does not imply any maximal node than it has an infinite branch!