担当: 渕野 昌 2017 年 05 月 30 日

以下の問題のいくつかの細部を調節したもの and/or 演習問題が定期試験の基本問題となります.(最低線でも)これらの問題が解けるよう準備しておいてください.

ただし、これらのタイプの問題以外にも、もう少し challenging な問題も1題以上出る可能性があります。

このプリントのファイルは,

 $\verb|http://fuchino.ddo.jp/kobe/biseki1-ss17-pre-final-exam.pdf|$

としてダウンロードできます.

- <u>I.</u> $f: \mathbb{R} \to \mathbb{R}$ を連続関数とする. a を任意の実数として,数列 $\{a_n\}$ を $a_0=a, a_{n+1}=f(a_n)$ により定義する. $\{a_n\}$ が収束するとして, $b=\lim_{n\to\infty}a_n$ とすると,f(b)=b が成り立つことを示せ.
- $oxed{II.}$ $a,b\in\mathbb{R},\ a< b$ として, $f:[a,b]\to\mathbb{R}$ を微分可能で導関数が連続となるようなものとする.平均値の定理と,中間値の定理から,次が言えることを示せ.
 - (1) (a) f'(x) = 0 となる $x \in [a,b]$ が存在しないとき,f は狭義単調 (真に単調) であることを示せ.(b) 更に,f(a) < 0,f(b) > 0 であるときには,f は単調増加で,f(x) = 0 となる $x \in (a,b)$ がちょうど一つ存在することを示せ.
 - (2) f'(x) = 0 となる点 $x \in [a,b]$ が,ちょうど m 個 存在するとき,f(x) = 0 となるような $x \in [a,b]$ は全部で m+1 以下しか存在しないことを示せ.
 - (3) f が [a,b] で増加なとき, $N=\{c\in[a,b]:f'(c)=0\}$ が有限なら,N の各点で f' は極小になることを示せ.
- III. ある実数 $\alpha \in \mathbb{R}, \alpha > 0$ に対し, $f(x) = (x+1)^{\alpha}$ とするとき,f(x) のマクローリン展開を求めよ.
- [IV.] (a) e^x のマクローリン展開を求めよ. (b) 次の不等式を示せ $e^x > 1 + x + \frac{1}{2}x^2$ (x > 0)