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Beginning of the Set Theory 000000-00000 (3)19)

OO0 (Set Theory) 0 OOOO Georg Cantor (1845(0 0 2)
—1913(00 7)) 0000000000000 OO0OoOOOOD
00 (00, sets) 00000000000 OOOOOOOOO
(infinitesets) 000000000000 OOOOO



Diagonal argument 000000 -00000 (4/19)

00 (G. Cantor, 1873(00 6))0 OOOOO (real numbers)
0000 (natural numbers) 000000000000 0OOOO

obobO obooboobooobooboboobooonon:

n = 2.4161073825503356 - - -
rp =—562.4328358208955225 - - -
r3 = 1.9462686567164178 - - -
ry = 0.00117822429

rs = —1.5490801
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Classical mathematics in Set Theory 000000 -00000 (5/19)
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Modern mathematics in Set Theory 000000 -00000 (6/19)
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Full mathematics in Set Theory 000000-00000 (1)19)
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Crisis of Mathematics 000000 -00000 (8/19)
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0000 Bertrand Russell (1872(0 0 5) — 1970(0 0 45))
000 1916(00 5) 00000



Russell’s Paradox 000000-00000 (3)19)
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000000 Ernst Zermelo (1871(00 4) — 1953(0 0 28))
000 1907(00 40) 00O O



Zermelo’s Axioms of Set Theory 000000 -00000 (11)19)

» 00000 (Zermelo) 00O OOOOO (system of axioms) OO
goooooobooogno:

Axiom |. (Extensionality) For any sets x and y, we have x = y if
they have the same elements.

Axiom Il. (Empty Set) There is a set x such that no v is an
element of x.

Axiom Ill. (Pairing) For any x, y there is a set u which contains
exactly x and y as elements.

Axiom VII. (Separation) For any set u and any definite property
¢(x) about the set x there is a set v which exactly consists of
elements of u satisfying ¢(x) (notation: v ={x € u : ¢(x)})

Compare Axiom VII with the argument in Russell’s paradox.



Remaining problems with Zermelo's axioms 000000 -00000 (12/19)

Axiom VII. (Separation) For any set u and any definite property
¢(x) about the set x there is a set v which exactly consists of
elements of u satisfying ¢(x) (notation: v ={x € u : ¢(x)})

Problem A. It is not clear what the “definite property” in Axiom
VIl exactly are.

Problem B. The theory of the transfinite ordinals as G. Cantor
developed in his research of set theory cannot be fully realized in
this axiom system.

Actually Zermelo could not give a method to treat the theory of
transfinite ordinals in his axiomatic system in the 1908 paper.

Problem C. Is this system of axioms consistent?



Solution of Problem B 000000 -00000 (13/19)

Problem B. The theory of the transfinite ordinals as G. Cantor
developed in his research of set theory cannot be fully realized in
this axiom system.

Actually Zermelo could not give a method to treat the theory of
transfinite ordinals in his axiomatic system in the 1908 paper.

» Problem B can be solved by replacing the Axiom of Separation by
the stronger Axiom of Replacement:

Axiom IX. (Axiom of Replacement) If ¢(x,y) is a definite
property s.t. for any x there is the unique y s.t. ¢(x,y) then for
any given set u there is a set of the form:

{y : p(x,y) for some x € u}.



Axiom of Replacement and transfinite ordinals 100000 -00000 (14/19)

» The Axiom of Replacement was introduced independently by
A. Fraenkel and Thoralf Skolem. The axiom was also somewhat
later introduced independently and used in its full strength by J.
von Neumann to reformulate the theory of transfinite ordinals in
the framework of axiomatic set theory.

The strict treatment of the transfinite ordinals in the framework
of the axiomatic set theory was established in a paper which John
von Neumann (1903 — 1957) wrote when he was 19 years old.



Two solutions of Problem A 000000 -00000 (15/19)

Problem A. It is not clear what the “definite property” in
Axiom of Separation or in Axiom of Replacement exactly are.

Von Neumann created a system of axioms which contains finite
number of axioms giving an “algebraic” description of the definite
properties. This axiom system is further simplified by Paul Ber-
nays and Kurt Godel and called now Neumann-Bernays-Gddel
Set Theory (NBG).

Fraenkel and Skolem solved the problem by formulating the axioms
of Zermelo in the first order predicate logic in the way that
“definite property” in the original formulation is simply replaced
by “formula in the language of the logic”. This axiom system
extended by Replacement, Axiom of Choice and another axiom
corresponding to an axiom von Neumann introduced for his system
is called now Zermelo-Fraenkel Set Theory with Axiom of
Choice (ZFC).



ZFC and NBG are basically the same 000000 -00000 (16/19)

» Today, it is known that the modern versions of
Neumann-Bernays-Godel Set Theory (NBG) and Zermelo-Fraenkel
Set Theory (ZFC) are basically the same axiom systems.

» Now we usually use Zermelo-Fraenkel formalism as the base of
set-theory.



Problem C is unsolvable 000000 -00000 (17/9)

Problem C. Is the system of axioms ZFC consistent?

» Kurt Godel proved that this question is unsolvable:

The Second Incompleteness Theorem. (1931) For any concretely
given axiom system T which contains elementary number theory,
the consistency of the system T cannot be proved in the system
T itself as far as the system T is consistent.

» ZFC is concretely formulated and it does include number theory.

» Actually, as already mentioned, the whole mathematics can be
carried out in ZFC. So if the consistency of ZFC is not provable in
ZFC there cannot be any reasonable ground on which such
consistency proof can be carried out!



Kurt Godel 000000 -00000 (18/19)

' g‘ /
Kurt Godel (1906 — 1978). A picture taken in 1926.

» Non-existence of consistency proof does not mean inconsistency!
» There are many partial results suggesting the consistency of ZFC.

» There are also may relative consistency results: For example, Godel
proved that if Zermelo-Fraenkel Set Theory without the Axiom of
Choice is consistent then Zermelo-Fraenkel Set Theory with the

Axiom of Choice is also consistent.

Professor Kikuchi (00 O O 0O O )'s lecture in this lecture series will
treat more details about the Incompleteness Theorem.
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