担当: 渕野 昌 (Sakaé Fuchino)

1. Calculate the inverse of the following 3×3 -matrix:

$$\begin{bmatrix} 1 & -2 & 0 \\ 1 & 1 & -1 \\ -5 & 5 & 2 \end{bmatrix}$$

2. Prove the following assertion by checking the definition of the inverse of a square matirix:

For any 2×2 -matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, A is invertible if and only if $det(A) = ad - bc \neq 0$, and the inverse of A is

$$A^{-1} = \frac{1}{det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

- **3.** Prove that the following hold for any $n \in \mathbb{N}$:
 - (1) If $\tau \in S_n$ then $\tau^{-1} \in S_n$.
 - (2) For $\tau, \sigma \in S_n$, we have $\tau \sigma \in S_n$ where $\tau \sigma$ denotes the composition of functions σ and τ .
 - (3) $(\pi\tau)\sigma = \pi(\tau\sigma)$ holds for all $\pi, \tau, \sigma \in S_n$.
 - (4) S_n has n! elements.
- 4. Let $\tau : \{1, ..., 5\} \to \{1, ..., 5\}$ be a permutation of degree 5 defined by $\tau = (1 \ 2)(3 \ 4)(2 \ 5)$. Find $\tau(2), \tau(4), \tau(5)$. What is τ^{-1} ?
- **5.** (1) Enumerate all elements of S_3 .

Use the notation: For $\tau : \{1, ..., n\} \rightarrow \{1, ..., n\}$ with $\tau(1) = t_1, \tau(2) = t_2, ..., \tau(n) = t_n, \tau$ is denoted by

$$\tau = \left(\begin{array}{rrrr} 1 & 2 & \cdots & n \\ t_1 & t_2 & \cdots & t_n \end{array}\right).$$

(2) Represent all elements of S_3 as products of transpositions.