(2014/01/30)

2013/14 Fall Semester, Sakaé Fuchino (TA: Diego Mejía)

1 Calculate the determinant of the following matrices:

- (a) $\begin{bmatrix} 1 & 2 & -1 & 3 \\ 0 & 1 & 2 & -5 \\ -2 & 3 & -1 & 4 \\ 7 & -1 & 3 & -2 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 9 & 6 & 7 \\ 0 & 3 & 9 & 6 \\ 0 & 2 & 6 & 4 \\ 1 & 4 & 4 & 0 \end{bmatrix}$

4 Which of the following are linear mappings. Explain why. Determine the matrices M_{φ} corresponding to the linear mappings φ among the following.

(a)
$$\varphi_1 : \mathbb{R}^2 \to \mathbb{R}^2; \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} x+1 \\ y+1 \end{bmatrix}$$
 (b) $\varphi_2 : \mathbb{R}^2 \to \mathbb{R}^2; \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} x+y \\ x-y \end{bmatrix}$
(c) $\varphi_3 : \mathbb{R}^2 \to \mathbb{R}^2; \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} x \sin \theta \\ y \cos \theta \end{bmatrix}$ (d) $\varphi_4 : \mathbb{R}^2 \to \mathbb{R}^3; \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$
(e) $\varphi_5 : \mathbb{R}^2 \to \mathbb{R}^3; \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} y \\ 0 \\ x \end{bmatrix}$ (f) $\varphi_6 : \mathbb{R}^2 \to \mathbb{R}^4; \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
(g) $\varphi_7 : \mathbb{R} \to \mathbb{R}^2; x \mapsto \begin{bmatrix} x \\ x^2 \end{bmatrix}$ (h) $\varphi_8 : \mathbb{R}^2 \to \mathbb{R}^3; \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} x \\ y \\ x+2y \end{bmatrix}$

5 Let $\varphi_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ be the rotation counter-clockwise through the angle θ ($0 \le \theta < 2\pi$) around the origin.

(a) Show that φ_{θ} is a linear mapping.

(b) Determine the matrix $M_{\varphi_{\theta}}$ corresponding to the linear mapping φ_{θ} .

(c) Find a geometric explanation for the fact that $M_{\varphi_{\theta}}$ does not have any eigenvector if $\theta \neq 0$.

(d) For which θ can $M_{\varphi_{\theta}}$ be diagonalized?

6 Let $\varphi : \mathbb{R}^2 \to \mathbb{R}^3$ be a linear mapping such that $\varphi(\begin{bmatrix} 1\\2 \end{bmatrix}) = \begin{bmatrix} 1\\2\\-3 \end{bmatrix}$ and $\varphi(\begin{bmatrix} 2\\1 \end{bmatrix}) = \begin{bmatrix} 2\\4\\-6 \end{bmatrix}$. (a) Find the matrix M_{φ} representing the linear mapping φ . (b) Decide $\operatorname{Im}(\varphi)$ and $\operatorname{Ker}(\varphi)$.

7 Show that any linear mapping $\varphi : \mathbb{R}^m \to \mathbb{R}^n$ satisfies the following: (a) $\varphi(\mathbf{0}) = \mathbf{0}$. (b) If $\varphi(\mathbf{a}) \neq \mathbf{0}$ for some $\mathbf{a} \in \mathbb{R}^m$ then $\varphi(\mathbf{a} + \mathbf{b}) \neq \varphi(\mathbf{b})$ for all $\mathbf{b} \in \mathbb{R}^m$.

⁸ Suppose that ε is an eigenvalue of an $n \times n$ matrix A. Show that

 $\{\mathbf{u} \in \mathbb{R}^n : \mathbf{u} \text{ is an eigenvector of } A \text{ with eigen value } \varepsilon\} \cup \{\mathbf{0}\}$

is a linear subspace of \mathbb{R}^n .

Example of Possible Answers

 $\begin{vmatrix} 1 & (a): \\ 1 & 2 & -1 & 3 \\ 0 & 1 & 2 & -5 \\ -2 & 3 & -1 & 4 \\ 7 & -1 & 3 & -2 \end{vmatrix} = \begin{vmatrix} 1 & 2 & -1 & 3 \\ 0 & 1 & 2 & -5 \\ 0 & 7 & -3 & 10 \\ 0 & -15 & 10 & -23 \end{vmatrix} = 1 \times \begin{vmatrix} 1 & 2 & -5 \\ 7 & -3 & 10 \\ -5 & 10 & -23 \end{vmatrix} = -134$ (b): (b): $\begin{vmatrix} 1 & 9 & 6 & 7 \\ 0 & 3 & 9 & 6 \\ 0 & 2 & 6 & 4 \\ 1 & 4 & 4 & 0 \end{vmatrix} = 0,$

since the third row of the matrix is $\frac{2}{3}$ times the second row.

 $\begin{bmatrix} 0 & 0 & 0 & 2 & | & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & | & 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 & | & 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \longleftrightarrow \begin{bmatrix} 2 & 0 & 0 & 0 & | & 0 & 0 & 0 & 1 \\ 0 & 2 & 0 & 0 & | & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & | & 0 & 0 & 0 \end{bmatrix} \longleftrightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & | & 0 & 0 & 0 & \frac{1}{2} \\ 0 & 1 & 0 & 0 & | & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 & 0 & | & 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 2 & | & 1 & 0 & 0 & 0 \end{bmatrix}$ Hence $\begin{bmatrix} 0 & 0 & 0 & 2 \\ 0 & 0 & 2 & 0 \\ 0 & 2 & 0 & 0 \\ 2 & 0 & 0 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 \end{bmatrix}.$ 3: Solving the characteristic polynomial, we obtain the eingenvalues of our matrix A as: $\begin{vmatrix} 3-\varepsilon & -1\\ -1 & 2-\varepsilon \end{vmatrix} = 0 \Leftrightarrow \varepsilon^2 - 5\varepsilon + 5 = 0 \Leftrightarrow \varepsilon = \frac{5\pm\sqrt{5}}{2}.$ For the eigenvalue $\varepsilon = \frac{5 + \sqrt{5}}{2}$ of A, one of the non-trivial solution of the equation $A\mathbf{x} = \varepsilon \mathbf{x}$ is $\begin{vmatrix} 2 \\ 1 - \sqrt{5} \end{vmatrix}$. For $\varepsilon = \frac{5 - \sqrt{5}}{2}$, $\begin{bmatrix} 2\\ 1 + \sqrt{5} \end{bmatrix}$. Thus, letting $U = \begin{bmatrix} 2 & 2\\ 1 - \sqrt{5} & 1 + \sqrt{5} \end{bmatrix}$, we have $U^{-2}AU = \begin{bmatrix} \frac{5 + \sqrt{5}}{2} & 0\\ 0 & \frac{5 - \sqrt{5}}{2} \end{bmatrix}$. 4 (a): φ_1 is not a linear mapping since $\varphi_1(\mathbf{0}) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \neq \mathbf{0}$. (b): φ_2 is a linear mapping since φ_2 is represented as $\varphi_2\begin{pmatrix} x \\ y \end{pmatrix} = \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} \begin{vmatrix} x \\ y \end{vmatrix}$. In particular $M_{\varphi_2} = \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix}$. (c): φ_3 is a linear mapping since φ_3 is represented as $\varphi_3\begin{pmatrix} x \\ y \end{pmatrix} = \begin{vmatrix} \sin \theta & 0 \\ 0 & \cos \theta \end{vmatrix} \begin{bmatrix} x \\ u \end{bmatrix}$. In particular $M_{\varphi_3} = \begin{vmatrix} \sin\theta & 0 \\ 0 & \cos\theta \end{vmatrix}$. (d) φ_4 is not a linear mapping since $\varphi_4(\mathbf{0}) = \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix} \neq \mathbf{0}$. (e): φ_5 is a linear mapping since φ_5 is represented as $\varphi_5\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$. In particular $M_{\varphi_5} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}$.

(f): φ_6 is a linear mapping since φ_6 is represented as $\varphi_6\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$.

In particular $M_{\varphi_6} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$.

(g): φ_7 is not a linear mapping since for example $2\varphi_7(1) = 2\begin{bmatrix} 1\\1 \end{bmatrix} = \begin{bmatrix} 2\\2 \end{bmatrix} \neq \begin{bmatrix} 2\\4 \end{bmatrix} = \varphi_7(2)$. (h): φ_8 is a linear mapping since φ_8 is represented as $\varphi_8(\begin{bmatrix} x\\y \end{bmatrix}) = \begin{bmatrix} 1 & 0\\0 & 1\\1 & 2 \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix}$.

In particular $M_{\varphi_8} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 2 \end{bmatrix}$.

5 (a): φ_{θ} is linear since, for any vectors \mathbf{x} , \mathbf{y} in \mathbb{R}^2 and $a \in \mathbb{R}$ (2) the rotation of $\mathbf{x} + \mathbf{y}$ is equal to the addition of the vectors \mathbf{x} rotated and \mathbf{y} rotated, (2) $a\mathbf{x}$ rotated is the same as a times vecv rotated.

(b): Sicne
$$\varphi_{\theta} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$
 and $\varphi_{\theta} \begin{pmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$, we have $M_{\varphi_{\theta}} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$.

(c): If $\theta \neq 0$ then vectors are rotated by non-zero angle. In particular, for any non-zero vector $\mathbf{x} \in \mathbb{R}^2$ $\varphi_{\theta}(\mathbf{x})$ has different direction as $\alpha \mathbf{x}$ for any $\alpha \in \mathbb{R}$ if $\theta \neq 0$ and $\theta \neq \pi$. This explains that φ_{θ} has no eigenvector.

(d): By (c), φ_{θ} cannot diagonalized if $\theta \neq 0$ and $\theta \neq \pi$, If $\theta = 0$ then φ_{θ} is the identity mapping and its matrix $M_{\varphi_{\theta}}$ is the 2 × 2 unit matrix E. Thus $M_{\varphi_{\theta}}$ is diagonalization of itself and hence diagonalizable. If $\theta = \pi$ then each \mathbf{x} is sent to $-\mathbf{x}$ by the mapping φ_{θ} . Thus $M_{\varphi_{\theta}} = -E$.

6 (a):

Since
$$\begin{bmatrix} 1\\0 \end{bmatrix} = -\frac{1}{3} \left(\begin{bmatrix} 1\\2 \end{bmatrix} - 2 \begin{bmatrix} 2\\1 \end{bmatrix} \right)$$
, we have $\varphi(\begin{bmatrix} 1\\0 \end{bmatrix}) = -\frac{1}{3} \left(\begin{bmatrix} 1\\2\\-3 \end{bmatrix} - 2 \begin{bmatrix} 2\\4\\-6 \end{bmatrix} \right) = -\frac{1}{3} \begin{bmatrix} -3\\-6\\9 \end{bmatrix} = \begin{bmatrix} 1\\2\\-3 \end{bmatrix}$.
Similarly, since $\begin{bmatrix} 0\\1 \end{bmatrix} = \frac{1}{3} \left(2 \begin{bmatrix} 1\\2 \end{bmatrix} - \begin{bmatrix} 2\\1 \end{bmatrix} \right)$, $\varphi(\begin{bmatrix} 0\\1 \end{bmatrix}) = \frac{1}{3} \left(2 \begin{bmatrix} 1\\2\\-3 \end{bmatrix} - \begin{bmatrix} 2\\4\\-6 \end{bmatrix} \right) = \frac{1}{3} \begin{bmatrix} 0\\0\\0 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$.
It follows that $M_{\varphi} = \begin{bmatrix} 1&0\\2&0\\-3&0 \end{bmatrix}$.

(b):
$$\operatorname{Im}(\varphi) = \{a \begin{bmatrix} 1\\ 2\\ -3 \end{bmatrix} : a \in \mathbb{R}\}. \operatorname{Ker}(\varphi) = \{\begin{bmatrix} 0\\ a \end{bmatrix} : a \in \mathbb{R}\}.$$

7 (a): We have $\varphi(\mathbf{0}) = \varphi(\mathbf{0} + \mathbf{0}) = \varphi(\mathbf{0}) + \varphi(\mathbf{0})$ by the additivity of the linear mapping. By subtracting $\varphi(\mathbf{0})$ from the both sides of the equation, we obtain $\mathbf{0} = \varphi(\mathbf{0})$ as desired.

(b): We have $\varphi(\mathbf{a} + \mathbf{b}) = \varphi(\mathbf{a}) + \varphi(\mathbf{b})$. Thus we would have $\mathbf{0} = \varphi(\mathbf{b})$ if $\varphi(\mathbf{a} + \mathbf{b}) = \varphi(\mathbf{a})$.

⁸ Let $X = {\mathbf{u} \in \mathbb{R}^n : \mathbf{u} \text{ is an eigenvector of } A \text{ for the eigen value } \varepsilon } \cup {\mathbf{0}}, \text{ and suppose } \mathbf{a}, \mathbf{b} \in X$ and $c, d \in \mathbb{R}$. It is enough to show that $c\mathbf{a} + d\mathbf{b} \in X$. Note first that we have $A\mathbf{a} = \varepsilon \mathbf{a}$ and $A\mathbf{b} = \varepsilon \mathbf{b}$ (independently of whether a or b is $\mathbf{0}$ or not). If $c\mathbf{a} + d\mathbf{b} = \mathbf{0}$ then this is clear. So suppose $c\mathbf{a} + d\mathbf{b} \neq \mathbf{0}$. We have $A(c\mathbf{a} + d\mathbf{b}) = cA\mathbf{a} + dA\mathbf{b} = c\varepsilon\mathbf{a} + d\varepsilon\mathbf{b} = \varepsilon(c\mathbf{a} + d\mathbf{b})$. This shows that $c\mathbf{a} + d\mathbf{b}$ is an eigenvector of A for the eigenvalue ε and hence $c\mathbf{a} + d\mathbf{b} \in X$ as desired.