1 Calculate the determinant of the following matrices:

	1	2	3	4		1	9	6	7	
(a)	1	2	4	8	(b)	0	6	1	4	
	1	3	5	7		0	9	1	0	
	1	3	9	27		1	4	4	0	

4 Which of the following are linear mappings. Explain why. Determine the matrices M_{φ} corresponding to the linear mappings φ among the following.

- $\begin{array}{l} \text{(a)} \ \varphi_1 : \mathbb{R}^2 \to \mathbb{R}^2; \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} x+1 \\ y+1 \end{bmatrix} & \text{(b)} \ \varphi_2 : \mathbb{R}^2 \to \mathbb{R}^2; \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} x+y \\ x-y \end{bmatrix} \\ \text{(c)} \ \varphi_3 : \mathbb{R}^2 \to \mathbb{R}^2; \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} x \sin \theta \\ y \cos \theta \end{bmatrix} & \text{(d)} \ \varphi_4 : \mathbb{R}^2 \to \mathbb{R}^3; \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \\ \text{(e)} \ \varphi_5 : \mathbb{R}^2 \to \mathbb{R}^3; \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} y \\ 0 \\ x \end{bmatrix} & \text{(f)} \ \varphi_6 : \mathbb{R}^2 \to \mathbb{R}^4; \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \\ \text{(g)} \ \varphi_7 : \mathbb{R} \to \mathbb{R}^2; x \mapsto \begin{bmatrix} x \\ x^2 \end{bmatrix}$
- 5 Let $\varphi_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ be the rotation counter-clockwise through the angle θ around the origin.
- (a) Show that φ_{θ} is a linear mapping.
- (b) Determine the matrix $M_{\varphi_{\theta}}$ corresponding to the linear mapping φ_{θ} .
- (c) Find a geometric explanation for the fact that $M_{\varphi_{\theta}}$ does not have any eigenvector if $\theta \neq 0$.
- (d) Can $M_{\varphi_{\theta}}$ be diagonalized for $\theta \neq 0$?

6 Let $\varphi : \mathbb{R}^2 \to \mathbb{R}^3$ be a linear mapping such that $\varphi(\begin{bmatrix} 1\\2 \end{bmatrix}) = \begin{bmatrix} 1\\2\\-3 \end{bmatrix}$ and $\varphi \begin{bmatrix} 2\\1 \end{bmatrix} = \begin{bmatrix} 2\\4\\-6 \end{bmatrix}$. (a) Find the matrix M_{φ} representing the linear mapping φ . (b) Decide $\operatorname{Im}(\varphi)$ and $\operatorname{Ker}(\varphi)$.

7 Show that any linear mapping $\varphi : \mathbb{R}^m \to \mathbb{R}^n$ satisfies the following: (a) $\varphi(\mathbf{0}) = \mathbf{0}$. (b) If $\varphi(\mathbf{a}) = \mathbf{0}$ for some $\mathbf{a} \in \mathbb{R}^m$ then $\varphi(\mathbf{a} + \mathbf{b}) = \varphi(\mathbf{b})$ for all $\mathbf{b} \in \mathbb{R}^m$.