担当: Sakaé Fuchino (渕野 昌)

This sheet of exercises (and its possible update) is downloadable as

http://kurt.scitec.kobe-u.ac.jp/~fuchino/kobe/linalg-I-ss12-exercise.pdf

1. Determine if the vectors in the following (a) — (d) are linearly independent. Justify each answer.

(a)
$$\begin{bmatrix} 5\\0\\0 \end{bmatrix}$$
, $\begin{bmatrix} 7\\2\\-6 \end{bmatrix}$, $\begin{bmatrix} 9\\4\\-8 \end{bmatrix}$ (b) $\begin{bmatrix} 0\\2\\3 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\-8 \end{bmatrix}$, $\begin{bmatrix} -1\\3\\1 \end{bmatrix}$
(c) $\begin{bmatrix} 2\\-3 \end{bmatrix}$, $\begin{bmatrix} -4\\6 \end{bmatrix}$ (d) $\begin{bmatrix} -1\\3 \end{bmatrix}$, $\begin{bmatrix} -3\\-9 \end{bmatrix}$

2. Determine if the linear transformations with the standard matrix A in the following (a) and (b) is one to one.

(a)
$$A = \begin{bmatrix} 0 & -3 & 9 \\ 2 & 1 & -7 \\ -1 & 4 & -5 \\ 1 & -4 & 2 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} 1 & 4 & -3 & 0 \\ -2 & -7 & 5 & 1 \\ -4 & -5 & 7 & 5 \end{bmatrix}$

3. Mark each of the following statements True or False. Justify each answer.

(a) The columns of a matrix A are linearly independent if the equation $A\mathbf{x} = \mathbf{0}$ has the trivial solution.

(b) If S is a linearly dependent set, then each vector is linear combination of the other vectors in S.

(c) The columns of any 4×5 matrix are linearly dependent.

(d) If \mathbf{x} and \mathbf{y} are linearly independent, and if $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ is linearly dependent then \mathbf{z} is in Span $\{\mathbf{x}, \mathbf{y}\}$.

(e) If \mathbf{u} and \mathbf{v} are linearly independent, and if \mathbf{w} is in $\text{Span}\{\mathbf{u}, \mathbf{v}\}$ then $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent.

3. In the following (a) and (b) find a vector \mathbf{x} which satisfies $\varphi_A(\mathbf{x}) = \mathbf{b}$

(a)
$$A = \begin{bmatrix} 1 & 0 & -3 \\ -3 & 1 & 6 \\ 2 & -2 & -1 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} -2 \\ 3 \\ -1 \end{bmatrix}$
(b) $A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 1 & -3 \\ 2 & -5 & 6 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} -6 \\ -4 \\ -5 \end{bmatrix}$

4. Define $f : \mathbb{R} \to \mathbb{R}$ by f(x) = mx + b.

(a) Show that f is a linear transformation when b = 0.

(b) Find a property of a linear transformation that is violated when $b \neq 0$.

5. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, and let $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be a linearly dependent set in \mathbb{R}^n . Explain why the set $\{T(\mathbf{v}_1), T(\mathbf{v}_2), T(\mathbf{v}_3)\}$ is linearly dependent.

6. Find the standard matrices of the following linear transformation from \mathbb{R}^2 to \mathbb{R}^2 : (a) Reflection through the x_2 -axis.

- (b) Reflection through the origin.
- (c) Horizontal expansion by factor k (i.e. $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} kx \\ y \end{bmatrix}$)

7. Find the standard matrix of the linear transformation

$$\varphi : \mathbb{R}^2 \to \mathbb{R}^3; \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mapsto \begin{bmatrix} 3x_1 + x_2 \\ 5x_1 + 7x_2 \\ x_1 + 3x_2 \end{bmatrix}.$$

8. Show that, for a linear transformation φ , its standard matrix is determined uniquely, that is, if $\varphi : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation and A and B are matrices such that $A\mathbf{x} = \varphi(\mathbf{x}) = B\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$ then we have A = B.