担当: 渕野 昌 2017 年 07 月 28 日

以下の演習問題は,前回の演習問題 (2017 年 06 月 30 日 の日付のもの) がカバーしていなかった述語論理の証明の体系 LK と LK。に関するものと健全性定理完全性定理に関するものです. 期末試験では,前回の演習問題と以下の演習問題の類題が (主に) 出題される予定です.

1. (LK_e の健全性定理の証明の一部 — 帰納法による証明での帰納法の初め — 講義では省略した) \mathcal{L} を言語として, s_0 , s_1 ,..., t_0 , t_1 ,... は任意の \mathcal{L} -項とし, f は \mathcal{L} の任意の関数記号, r は \mathcal{L} の任意の関係記号あるいは等号 \equiv とし, m, n はこれらの関数記号と関係記号 (または等号) の変数の数を表しているものとする (特に r が \equiv ときには, n=2 である). 以下の形の論理式がすべて恒真である (i.e. すべての \mathcal{L} -構造で成り立つ) ことを示せ.

(a)
$$s_0 \equiv s_0$$
, (b) $((s_0 \equiv t_0 \land \dots \land s_{m-1} \equiv t_{m-1}) \to f(s_0, \dots, s_{m-1}) \equiv f(t_0, \dots, t_{m-1}))$
(c) $((s_0 \equiv t_0 \land \dots \land s_{n-1} \equiv t_{n-1} \land r(s_0, \dots, s_{n-1})) \to r(t_0, \dots, t_{n-1}))$

- **2.** R をある言語 \mathcal{L} に含まれる二変数の関係記号とするとき, \mathcal{L} -論理式のシークエント $\exists x \forall y R(x,y) \Rightarrow \forall y \exists x R(x,y)$ が $\mathsf{LK_e}$ で証明可能であることを示せ (i.e. $\mathsf{LK_e}$ での証明を与えよ).
- **3.** $\forall x \exists y R(x,y) \Rightarrow \exists y \forall x R(x,y)$ は $\mathsf{LK_e}$ で証明できないことを示せ. (ヒント: $\mathsf{LK_e}$ の健全性定理から、論理式 ($\forall x \exists y R(x,y) \to \exists y \forall x R(x,y)$) を満たさない構造が存在することが示せればよい)
- **4.** \mathcal{L} を言語として,任意の \mathcal{L} -論理式 $\varphi = \varphi(x_0,...,x_{n-1})$ と \mathcal{L} -項 $s_0,...,s_{n-1},t_0,...,t_{n-1}$ に対し,シークエント

$$s_0 \equiv t_0, ..., s_{n-1} \equiv t_{n-1}, \varphi(s_0, ..., s_{n-1}) \Rightarrow \varphi(t_0, ..., t_{n-1})$$

が証明可能であることを φ の構成に関する帰納法で示せ.

- **5.** (a) 任意の \mathcal{L} -論理式 $\varphi_0,...,\varphi_{m-1}$ に対し、シークエント $\varphi_0,...,\varphi_{m-1}$ ⇒ が証明可能であることと、シークエント ⇒ ¬ φ_0 ∨ · · · ∨ ¬ φ_{m-1} が証明可能であることは同値であることを示せ.
- (b) \mathcal{L} -論理式の有限集合 Δ が無矛盾であるとは、シークエント Δ \Rightarrow が $\mathsf{LK_e}$ で証明できないこととする. Δ が無矛盾なら、 $\mathfrak{A} \models \mathsf{M} \Delta$ となる \mathcal{L} -構造が存在することを、 $\mathsf{LK_e}$ の完全性定理から導け.

以上.