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1 Introduction
intro

[This will be written later.]

2 Näıve Axiomatic Set Theory
naive

In this section, we introduce the axiom systems: Zermelo set theory (Z) and Zermelo-

Fraenkel set theory (ZF) as well as these axiom systems with Axiom of Choice (AC)

which are denoted by ZC and ZFC respectively. These Axiomatic frameworks encompass

“the whole mathematics”. Most of the the classical mathematics can be developed in

Z. While ZC is sufficient to develop the 19th century or even the early 20th century

mathematics (excluding Cantor’s theory of transfinite numbers), their extension ZFC is

needed to develop the full-fledged modern mathematics including the theory of transfinite

numbers inside the axiomatic framework.

These axiom systems as treated in this section are still “näıve” in that they are

formulated without the precision first obtained by formulating them in the language of

first order logic which we introduce in Section 4.

In the following development of axiom systems, we take the standpoint that our

mathematical world consists of sets (and nothing else). In particular, if we say “for all

x” or “there exists x”, the range of the variable x is thought to be all possible “sets”.

We describe the fundamental properties of these sets in the following axioms in terms of
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the relation “x is an element of y” which is denoted by x ∈ y. If x is not an element of

y, this is denoted by x 6∈ y.

The statement “our mathematical world consists of sets (and nothing else)” also imply

that the elements of a set are also sets. Hence, with regard to mathematical contents,

there is no difference whether we say “a set” or “a family of sets”. Still, I shall sometimes

make this difference for the sake of intelligibility. Since we are talking only about sets

anyway, we drop often the explanation that something be a set. As this is the case in

the formulation of our first axiom asserting that the elements of a set decide this set

completely:

Axiom I. (Extensionality). Any two x, y are equal (denoted by x = y) if and only if

x and y have exactly the same elements. That is, x = y if and only if, for any u, we have

u ∈ x iff u ∈ y.

Axiom II. (Empty Set). There is a set x which has no element. That is, there is an

x such that u 6∈ x for any u.

By Axiom I, the set x whose existence is guaranteed by Axiom II is unique. We shall

denote this unique set by ∅ and call it the empty set. Any set which is not ∅ is said to

be a non-empty set.

Axiom III. (Pairing). For any x, y there is a u which consists of x and y. That is, for

any x, y, there is a u with the property that, for any v, v ∈ u iff v = x or v = y.

Here, again by Axiom I, the set u is unique for given x and y. So we shall denote this

set u by {x, y}. If x = y the set u consists of the unique element x (= y). In this case

we denote this u by {x} (or {y}).

Axiom IV. (Union). For any x there is a u which consists of elements of some element

of x. That is, for any x, there is a u with the property that, for any v, v ∈ u iff there is

y ∈ x such that v ∈ y.

The set u as above is again unique for a given x. So we shall denote such u by
∪

x.

If x = {a, b} then we also denote
∪

x by a ∪ b. For any v, v ∈ a ∪ b iff v ∈ a or v ∈ b.

y is said to be a subset of x (notation: y ⊆ x), if u ∈ y implies u ∈ x for any u.

For any x, we have x ⊆ x and ∅ ⊆ x.

Axiom V. (Power Set). For any x, there is y which consists of all subsets of x. That

is, for any x, there is y with the property that, for any u, u ∈ y ⇔ u ⊆ x.

The set y in Axiom V is again unique for a given x. So we shall denote this by P(x)

and call it the power set of x. For any x, we have ∅, x ∈ P(x).

psof-subset

Lemma 2.1 If x ⊆ y then P(x) ⊆ P(y).
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Proof. Suppose x ⊆ y. If u ∈ P(x) (or equivalently u ⊆ x) then u ⊆ y (or equivalently

u ∈ P(y)). This shows that P(x) ⊆ P(y).

Axiom VI. (Infinity). There is x such that

(2.1) ∅ ∈ x and, infty-0

(2.2) for any y ∈ x, y ∪ {y} ∈ x. infty-1

Intuitively this axiom declares that there is an infinite set. Since the set x as in Axiom

VI contains

∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}},...

as elements. In set theory these sets are considered to be the numbers 0, 1, 2, 3,...

respectively.

In contrast to the other axioms introduced so far, the set x in Axiom VI is not

determined uniquely. But we will define the canonical infinite set ω by using this Axiom

VI and the next Axiom VII.

Axiom VII. (Separation). For any set u and any definite property ϕ(x) about the

set x which may contain some parameters other than x, there is a set v which consists

of elements of u which satisfy ϕ(x). That is, there is a set v such that, for any y, y ∈ v

iff y ∈ u and ϕ(y).

The set v above is unique up to u and ϕ(x). We denote this set by {y ∈ u : ϕ(y)}.
Axioms I ∼ VII correspond to the axioms introduced by E. Zermelo (1871, Berlin –

1953, Freiburg im Breisgau) in his 1908 paper [3] where the first attempt of axiomatization

of the set theory was done. Although the treatment of the axiom of infinity in [3] slightly

differs from our Axiom VI and permits also objects which are not sets, we shall call the

axiom system consisting of Axioms I ∼ VII the Zermelo set theory and denote it by Z.

”Z” in parenthesis in the following theorem indicates that the assertion of the theorem

is provable in the theory Z.

Theorem 2.2 (Z) (a) For any x, y, there is z which consists of common elements of x intersection

and y.

(b) for any non-empty x, there is y which consists of common elements of all elements

of x.

(c) Let P be a definite property (about a set) such that there is at least one set which

satisfies P . Then there is a set y which consists of elements which are contained in all

sets having the property P .

Proof. (a): z = {u ∈ x : u ∈ y} is such a set. Note that the set z exists by Axiom VII.

(b): Fix a u ∈ x. Then y = {v ∈ u : v ∈ u′ for all u′ ∈ x} is as desired.
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(c): just the same argument as the proof for (b) works. Let u be a set which satisfies

the property P . Then y = {v ∈ u : for all u′ if u′ satisfies P then v ∈ u′} will do.

The set z in Theorem 2.2, (a) is denoted by x ∩ y. and y in Theorem 2.2, (b) by
∩

x.

Theorem 2.3 (Z) There is a set x0 such that existence-of-

omega

(2.3) ∅ ∈ x0; omega-1

(2.4) for any u, if u ∈ x0 then u ∪ {u} ∈ x0. omega-2

and such that x0 is minimal with respect to ⊆ among sets having properties (2.3) and

(2.4).

Proof. By Theorem 2.2, (c).

The unique set x0 in Theorem 2.3 is considered to be the set of all natural numbers

(2.5) 0 = ∅, 1 = {∅}, 2 = {∅, {∅}}, 3 = {∅, {∅}, {∅, {∅}}},...

and denoted by ω (or N).
E-1

Exercise 2.4 Show that any x is an element of ω if and only if

(2.6) x = ∅ or ∅ ∈ x; omega-3

(2.7) for all u ∈ x and v ∈ u we have v ∈ x; omega-3-0

(2.8) for all u, u′ ∈ x, either u = u′ or u ∈ u′ or u′ ∈ u; omega-4

(2.9) for all y ⊆ x there is u ∈ y such that u ∩ x = ∅; omega-4-0

(2.10) for all u ∈ x, if u 6= ∅ then there is u′ ∈ x such that u = u′ ∪ {u′}; omega-5

(2.11) if x 6= ∅, then there is a u ∈ x such that x = u ∪ {u}. omega-6

Hint. It is enough to show that (0): if x satisfies (2.6)∼(2.11) and u ∈ x, then u

satisfies (2.6)∼(2.11). (1): for all x satisfying (2.6)∼(2.11), we have x ∈ ω. (2): {x ∈ ω :

x satisfies (2.6) ∼ (2.11)} satisfies (2.1) and (2.2). (Exercise 2.4)

E-1-0

Exercise 2.5 (1) For any m, n ∈ ω, we have m = n or m ∈ n or n ∈ m.

(2) For any m, n ∈ ω, m ∈ n if and only if m ⊆ n.

Hint. Use Exercise 2.4. (Exercise 2.5)

For x, y, we define the ordered pair 〈x, y〉 of x and y by

(2.12) 〈x, y〉 = {{x}, {x, y}}.

Theorem 2.6 (Z) For any x, y, a, b, we have 〈x, y〉 = 〈a, b〉 if and only if x = a and ordered-pair

y = b.
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Proof. If x = a and y = b then clearly we have 〈x, y〉 = 〈a, b〉. So assume 〈x, y〉 = 〈a, b〉
and we show that x = a and y = b.

Case 1. x = y. Then 〈x, y〉 = {{x}, {x}} = {{x}}. Thus, since 〈x, y〉 = 〈a, b〉, we

have {{a}, {a, b}} = {{x}}. It follows that a = b = x and thus x = a and y = b.

Case 2. x 6= y. In this case 〈x, y〉 contains two distinct elements and so 〈a, b〉
should also have two distinct elements and thus we have a 6= b. Since {{x}, {x, y}} =

{{a}, {a, b}}, the unique element {x} of {{x}, {x, y}} consisting of one single element

must be equal to the unique element {a} of {{a}, {a, b}} consisting of unique element. It

follows that x = a and {x, y} = {a, b}. Since x 6= y and a 6= b it follows that y = b.

E-2

Exercise 2.7 Show that {x, y} in general does not have the property corresponding to

Theorem 2.6.

By Theorem 2.6 〈x, y〉 codes the pair of x and y including the information about the first

and second components being x and y. 〈x, y〉 is thus called the ordered pair of x and y.

We have {x}, {x, y} ⊆ {x, y} and thus {x}, {x, y} ∈ P({x, y}). It follows that

〈x, y〉 = {{x}, {x, y}} ⊆ P({x, y}) or

(2.13) 〈x, y〉 ∈ P(P({x, y})). pair-0

If x ∈ X and y ∈ Y then

(2.14) P(P({x, y})) ⊆ P(P(X ∪ Y )) pair-1

by Lemma 2.1. By (2.13) and (2.14), it follows that 〈x, y〉 ∈ P(P(X ∪ Y )) for all x ∈ X

and y ∈ Y . Thus the set

(2.15) X × Y = {u ∈ P(P(X ∪ Y )) : u consists of a singleton of an element of X

and a two element set consisting of an element

of X and an element of Y }.

consists of all pairs 〈x, y〉 for x ∈ X and y ∈ Y . X × Y is called the Cartesian product

of X × Y .

A subset f of X × Y is said to be a mapping from X to Y if, for any x ∈ X, there

is a unique y ∈ Y such that 〈x, y〉 ∈ f . If f is a function from X to Y , this is denoted

by f : X → Y . For f with f : X → Y and x ∈ X the unique y ∈ Y with 〈x, y〉 ∈ f is

denoted by f(x).

For f : X → Y we say that X is the domain of f (notation: X = dom(f)) and Y is

the range of f . The range of a function f is not unique since f : X → Y and Y ⊆ Y ′

implies f : X → Y ′. For f : X → Y and X ′ ⊆ X, the image of X ′ by f is the set

(2.16) f ′′X ′ = {y ∈ Y : there is x ∈ X ′ such that f(x) = y}.
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f ′′ dom(f) is called the range of f and is also denoted by range(f).

Usual notions about functions can be defined also here naturally. For example a

function f : X → Y is one to one (or injective) if, for any two distinctive x, x′ ∈ X,

we have f(x) 6= f(x′). f is onto (or surjective) if f ′′X = Y . f is one to one onto (or

bijective, in this case we say also frequently that f is a bijection) if f is both one to one

and onto.
E-2-0

Exercise 2.8 Suppose that F is a set consisting of functions such that for any f , g ∈ F
we have always either f ⊆ g or g ⊆ f . Then

∪
F is again a function from X to Y where

X =
∪
{dom(f) : f ∈ F} and Y =

∪
{range f : f ∈ F}.

Example 2.1 In Section ??, we see how the arithmetical functions like addition, multi-

plication etc. can be defined on ω and how the basic mathematics can be formulated in Z

using these functions. The first step toward the definition of such functions is definition of

the successor function S on ω where S : ω → ω is defined by S = {〈n, n∪n〉 ∈ ω×ω : n2}.
For n ∈ ω, S(n) is sometimes also denoted as n + 1.

E-3

Exercise 2.9 (1) S : ω → ω is one to one.

(2) S ′′ω = ω \ {∅}.

Hint. By Exercise 2.4. (Exercise 2.9)

For any sets X, Y , there is the set XY consisting of all functions from X to Y :

(2.17) XY = {f ∈ P(X × Y ) : f : X → Y }.

Exercise 2.10 Answer which sets the following are: (a) ∅Y for any Y ; (b) X∅ for

nonempty X; (c) X{∅}.

Exercise 2.11 (1) For X, Y and Y ′ with Y ⊆ Y ′ we have XY ⊆ X′
Y .

(2) For X, X ′ with X 6= X ′ and Y we have XY ∩ X′
Y = ∅.

The following Axiom VIII enables certain arguments indispensable in modern math-

ematics.

Axiom VIII. (Axiom of Choice). For any x with ∅ 6∈ x there is a mapping f : x →
∪

x

such thatf(u) ∈ u for all u ∈ x.

This Axiom is also called AC for short. The mapping f as above is called a choice

function on x.
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The system of axioms consisting of Axioms I ∼ VII is (the modern version of) the

Zermelo set theory(1) and denote it by Z. The system of axioms Z + Axiom VIII is the

Zermelo set theory with the Axiom of Choice (AC) and denoted by ZC.

The next Axiom IX is rather of technical nature. Its meaning will be clear in later

sections. Intuitively, the Axiom IX asserts that any set has the property (2.9) of subsets

of natural numbers.

Axiom IX. (Regularity). For any nonempty set x there is y ∈ x such that y ∩ x = ∅.
We shall call Axiom IX also Axiom of Regularity and denote it by AR. AR excludes

some pathological sets.

Theorem 2.12 (Z + AR) There is no x such that x ∈ x. x-in-x

Proof. Suppose otherwise and let x be such that x ∈ x. Let x0 = {y ∈ x : y ∈ y}.
Note that, since x ∈ x, we have x ∈ x0, and in particular x0 6= ∅. By Regularity, there is

y ∈ x0 such that y ∩ x0 = ∅. But since y ∈ x0, we have y ∈ y and hence y ∈ y ∩ x0. This

is a contradiction. (Theorem 2.12)

Under AC, AR is equivalent to the non-existence of descending ∈-chain:

Theorem 2.13 (ZC) AR is equivalent to the assertion:

(2.18) there is no function f on ω such that f(n + 1) ∈ f(n) for all n ∈ ω. ar-0

Proof. (2) Suppose first that (2.18) fails, that is, that there is a function f on ω such

that f(n + 1) ∈ f(n) for all n ∈ ω. Then x = f ′′ω is a counterexample to AR (Exercise).

Suppose now that x is a counterexample to AR. Let c : P(x) \ {∅} → x be a choice

function. Let

(2.19) F = {h ∈ P(ω × x) : (α) h : n → x for some n;

(β) if 0 ∈ n then h(0) = g(x); and

(γ) for all m ∈ n

if m + 1 ∈ n then h(m + 1) = g(h(m) ∩ x)}

ar-1

We show that f =
∪

F is a counterexample to (2.18).
C-ar-1

Claim 2.13.1 F 6= ∅ and F contains a non-empty set.

` {〈∅, g(x)〉} ∈ F by (2.19)(β). a (Claim 2.13.1)

C-ar-2

(1) The main differences between what we call here Z and the system Zermelo introduced in 1908 paper

[3] is that (1) the axioms in [3] do not exclude the existence of so called urelements which are objects

without elements but different from the empty set; and (2) the Axiom of Infinity in [3] asserts the existence

of a set different from the set x in our Axiom VI.

(2) The formulation of this proof is somewhat awkward since we are proving the theorem directly without

using the theorem on recursive definition of functions on ω (Theorem ??) which is introduced later in

Section ??. See also Exercise ??.
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Claim 2.13.2 For all h, h′ ∈ F either h ⊆ h′ or h′ ⊆ h holds.

` Suppose that h, h′ ∈ F . By Exercise 2.5 we may assume that dom(h) ⊆ dom(h′). It

is enough to show that h ⊆ h′. Suppose that is not the case then, by Exercise 2.4, (2.9),

there is n ∈ dom(h) such that h(n) 6= h′(n) and such that n is minimal with respect to

∈ among such n with this property.

n 6= ∅, by (2.19), (β). So by Exercise 2.9 (2), there is m ∈ dom(h) such that n = m+1.

By the minimality of n we have

h(n) = g(h(m) ∩ x)

= g(h′(m) ∩ x)

= h′(n)

This is a contradiction. a (Claim 2.13.2)

By Claim 2.13.2 and Exercise 2.8, f =
∪

F is a function.

Claim 2.13.3 dom(f) = ω.

` Suppose that dom(f) 6= ω. Then dom(f) = n for some n ∈ ω (This can be shown

by using Exercise 2.4, (2.9)). n 6= ∅ by Claim 2.13.1. Hence, by Exercise 2.9, (2), and

ExerciseofE-1, (2.10), there is m∗ ∈ n such that n = m∗ + 1. f(m∗) ∩ x 6= ∅ since x is a

counterexample to AR. Thus f ′ = f ∪ {〈m∗, g(f(m∗) ∩ x)〉} is well defined and f ′ ∈ F .

Since dom(f) ( dom(f ′), this is a contradiction to the definition of f . (Theorem 2.13)

The last Axiom we consider here asserts that for any mapping the image of a set by

the mapping is a set.

Axiom X. (Replacement). For any set u and any definite property ϕ(x, y) of sets

which may contain some parameters other than x and y, and such that,

(2.20) for any a, there is a unique b such that ϕ(a, b), repl-0

there is a set v such that b ∈ v if and only if there is a ∈ x such that ϕ(a, b).

Thus Axiom X asserts that there is the set {b : there is a ∈ u such that ϕ(a, b)} if ϕ

satisfies (2.20).

The Axiom of Replacement (Axiom X) was suggested by A. Fraenkel. It is easy to see

that Axiom of Separation (Axiom VII) follows from this axiom (Exercise). The axiom

system consisting of Axioms I ∼ VII + IV + X is called the Zermelo-Fraenkel set theory

and denoted with ZF. The axiom system ZF + Axiom VIII is called the Zermelo-Fraenkel

set theory with Axiom of Choice and denoted with ZFC. Later we shall prove that ZF

(ZFC resp.) is strictly stronger than Z (ZC resp.)
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3 Axiom of Choice and cardinality in Z
AC-in-Z

For any set X a set R ⊆ X2 = X × X is said to be a binary relation on X and, for

〈x, y〉 ∈ X2, “〈x, y〉 ∈ R” is also denoted by “x R y”.

A binary relation v on X is a partial ordering on X if, for any x, y, z ∈ X, we have

(3.1) x v x; ac-a

(3.2) if x v y and y v x then x = y; and ac-0

(3.3) if x v y and y v z then x v z. ac-1

If v is a partial ordering on X, the pair 〈X,v〉 is said to be a partially ordered set. If it

is clear from the context which v is meant, we shall also say that X is a partially ordered

set.

Functions from X to itself are binary relations on X. Similarly to the composition

and the inverse of functions we can define the composition and the inverse of binary

relations:

For a binary relation R,S ⊆ X2 on X, let

(3.4) R−1 = {〈y, x〉 ∈ X2 : 〈x, y〉 ∈ R}; ac-2

(3.5) S ◦ R = {〈x, z〉 ∈ X2 : there is y ∈ X such that 〈x, y〉 ∈ R and 〈y, z〉 ∈ S}. ac-3

L-ac-1

Lemma 3.1 (1) For f : X → X, f−1 : X → X if and only if f is a bijection.

(2) For f : X → X and g : X → X we have g ◦ f : X → X.

Proof. Exercise. (Lemma 3.1)

For a binary relation R ⊆ X2 on a set X and Y ⊆ X we define

(3.6) R|Y = R ∩ Y 2. ac-4

L-ac-2

Lemma 3.2 (1) For f : X → X and Y ⊆ X, f |Y : Y → Y if and only if Y is closed

under f . If this is the case we have f |Y = f � Y .

(2) If v is a partial ordering on X then, for any Y ⊆ X, v |Y is a partial ordering

on Y .

A partial ordering v on X is said to be a linear ordering on X is for any two distinct

x, x′ ∈ X either x v x′ or x′ v x holds. Note that, in this case, x v x′ and x′ v x cannot

hold simultaneously by (3.2). If v is a linear ordering on X, the pair 〈X,v〉 is called

a linearly ordered set. If it is clear from the context which v is meant, we drop v and

simply say that X is a linearly ordered set.

For a partial ordering v on X, a subset C of X is said to be a chain (with respect to

v) if v |C is a linear ordering on Y .
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For a partially ordered set 〈X,v〉 and Y ⊆ X, y ∈ Y is a minimal element of Y if

there is no y′ ∈ Y such that y′ v y and y′ 6= y. y ∈ Y is a maximal element of Y if there

is no y′ ∈ Y such that y v y′ and y′ 6= y.

A chain C in X with respect to v is bounded if there is some x ∈ X such that y v x

holds for all y ∈ C. Such x is called an upper bound of C. C is strictly bounded if there

is an upper bound x of C in X \ C.

If C ⊆ X is a chain, a minimal element of C (if it exists) is the unique smallest

element of C and a maximal element of C (if it exists) is the unique largest element of

C.

The following assertion is called the Zorn’s Lemma or Kuratowski-Zorn’s Lemma after

Max Zorn (1906–1993) and Kazimierz Kuratowski (1896–1980):

(ZL) For any partially ordered set 〈X,v〉, if every chain C of X is bounded, then X

has the maximal element.

In the following we show that ZL is equivalent to AC over Z. In the proof of the

equivalence, the equivalence of AC and ZL with the following Well-ordering Theorem

(WO) is also established.

A linearly ordered set 〈X,v〉 is a well-ordered set if, for any non empty Y ⊆ X, there

is the minimal element of Y . Such v is said to be a well-ordering on X.
E-4

Exercise 3.3 E = {〈m,n〉 ∈ ω2 : m ∈ n} is a well-ordering on ω.

Proof. Use Exercise 2.5 and Exercise 2.4. (Exercise 3.3)

(WO) For any set X, there is a well-ordering v on X.
L-ac-3

Theorem 3.4 AC, ZL and WO are equivalent to each other over Z.

For the proof of Theorem 3.4, we need the following Lemma on well-orderings. For a

partially ordered set 〈X,v〉, Y ⊆ X and x ∈ X, we denote

Y ↓v x = {x′ ∈ Y : x′ v x},

Y ↓↓v x = {x′ ∈ Y : x′ v x, x′ 6= x}.

If it is clear which partial ordering v is meant, we drop it and write Y ↓ x and Y ↓↓ x.

Y ⊆ X is an initial segment of X (with respect to v) if, for any y ∈ Y and x ∈ X,

x v y implies x ∈ Y . X ↓ x and X ↓↓ x are initial segments of X for any x ∈ X. For two

partially ordered sets 〈X,vX〉 and 〈Y,vY 〉, we say that 〈Y,vY 〉 is an initial segment of

〈X,vX〉 if Y ⊆ X, Y is an initial segment of X with respect to vX and vY =vX |Y .
L-ac-4

Lemma 3.5 (1) Suppose that 〈X,v〉 is a well-ordered set and x0 a set with x 6∈ X.

Then 〈X ′,v′〉 is also a well-ordered set where X ′ = X ∪ {x0} and v′=v ∪(X ′ × {x0}).
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(2) Suppose that A is a family of well-ordered sets(3) such that for any 〈X,vX〉,
〈Y,vY 〉 ∈ A, one of them is an initial segment of the other. Then 〈X0,v0〉 is also a

well-ordered set where X0 =
∪
{X : 〈X,v〉 ∈ A for some v} and v0=

∪
{v : 〈X,v〉 ∈

A for some X}.(4)

Proof. Exercise. (Lemma 3.5)

Proof of Theorem 3.4:

(AC) ⇒ (ZL): The following proof is taken from [2].

Assume that AC holds. Toward a contradiction, suppose that there is a partially

ordered set 〈X,v〉 such that

(3.7) every chain C ⊆ X is bounded; but ac-5

(3.8) X does not have any maximal element. ac-6

First, it is easy to see that every chain C ⊆ X has a strict upper bound: if C ⊆ X is

a chain, then there is a bound x of C by (3.7). Since x is not a maximal element in X

by (3.8), there is x′ ∈ X such that x v x′ and x 6= x′. This x′ is a strict upper bound of

C (Exercise).

Let X = {C ∈ P(X) : C is a chain in X}. By AC, there is a mapping f : X → X

such that, for all C ∈ X , f(C) is a strict upper bound of C.(5)

Let

(3.9) F = {C ∈ P(X) : C is a well-ordered chain with f(C ↓↓ c) = c for all c ∈ C}. ac-7

C-ac-1

Claim 3.5.1 (1) F 6= ∅.

(2) For any C, C ′ ∈ F , one of them is an initial segment of the other with respect to

v.

` (1): This is clear since ∅ ∈ F .

(2): Suppose that C, C ′ ∈ F are such that neither of them is an initial segment of

the other. In particular, we have C 6= C ′. Without loss of generality, we may assume

C \ C ′ 6= ∅. Let c0 be the v-minimal element C \ C ′. Then we have C ↓↓ c0 ⊆ C ′ ↓↓ c0.

Suppose that C ↓↓ c0 = C ′ ↓↓ c0. If C ′ ↓↓ c0 = C ′ then C ′ is an initial segment of C. This

is a contradiction to our assumption. Thus C ′ \ (C ′ ↓↓ c0) 6= ∅. Let c′0 be the v-minimal

(3) This just means that A is a set such that, for all x ∈ A, x is a well-ordered set.

(4) Exercise: show that {X : 〈X,v〉 ∈ A for some v} is a set in Z.

(5) For each chain C ∈ X , let BC = {x ∈ X : x is a strict upper bound of C}. By the argument above

we have BC 6= ∅ for all C ∈ X . Let Y = {BC ∈ P(X) : C ∈ X}. By AC there is a choice function

g : Y → X of Y. The mapping f : X → X defined by f(C) = g(BC) is then as desired.

Note that f is also defined for the initial segment ∅ ⊆ X.



Axiomatic Set Theory (29/07/2013 (18:29 JST)) 12

element of this set. Then we have c0 = f(C ↓↓ c0) = f(C ′ ↓↓ c0) = f(C ′ ↓↓ c′0) = c′0. In

particular c0 ∈ C ′. This is a contradiction to the choice of c0.

Thus we have C ↓↓ c0 ( C ′ ↓↓ c0. Let c1 be the minimal element of (C ′ ↓↓ c0) \ (C ↓↓ c0).

Then again we obtain contradictions in all cases arguing similarly to above (Exercise).

a (Claim 3.5.1)

Let C∗ =
∪

F . By Claim 3.5.1 and Lemma 3.5, (2), C∗ ∈ F . Let x∗ = f(C∗) and

let C∗∗ = C∗ ∪ {x}. By Lemma 3.5, (1), we have C∗∗ ∈ F . Since C∗ ( C∗∗ this is a

contradiction to the definition of C∗.

(ZL) ⇒ (WO): Assume ZL. and Suppose that X is an arbitrary set. We have to show

that there is a well-ordering on X. Let

(3.10) F = {Y : Y = 〈YY ,vY〉 is a well ordered set with YY ⊆ X}

For Y, Y ′ ∈ F with Y = 〈YY ,vY〉 and Y ′ = 〈YY ′ ,vY′〉 we define

(3.11) Y 4 Y ′ :⇔ Y is an initial segment of Y ′

Then it is easy to show that 4 is a partial ordering on F (Exercise). By Lemma 3.5, (2),

any chain C ⊆ F has its upper bound 〈Y C ,vC〉 where

(3.12) Y C =
∪
{Y : 〈Y,v〉 ∈ C for some v} and

vC=
∪
{v : 〈Y,v〉 ∈ C for some Y }.

By ZL, there is a maximal element 〈Y ∗,v∗〉 ∈ F . We are done by showing that Y ∗.

Suppose that this is not the case and let x∗ ∈ X \ Y ∗. Let Y ∗∗ = Y ∗ ∪ {x∗} and

v∗∗=v∗ ∪(Y ∗∗ × {x∗}). Then we have 〈Y ∗∗,v∗∗〉 ∈ F by Lemma 3.5, (1) and 〈Y ∗,v∗

〉 4 〈Y ∗∗,v∗∗〉. This is a contradiction to the maximality of 〈Y ∗,v∗〉.

(WO) ⇒ (AC): Assume WO and let X be such that ∅ 6∈ X. Let v be a well-ordering

on
∪

X and define f : X →
∪

X by

(3.13) f := {〈x, y〉 ∈ X ×
∪

X : y is the minimal element of X with respect to v}.

Then f is a choice function on X. (Theorem 3.4)

The next Theorem 3.6 is an application of Theorem 3.4. We show later that the

assertion of the Theorem 3.6 is equivalent to AC over ZF.

Theorem 3.6 (ZC) For any X, Y , there is a one-to-one function from one of X and Y injection

to the other.

Proof. Let F = {f : f is a one-to-one function from a subset of X to Y }. 〈F ,⊆〉 is a

partially ordered set satisfying the condition in ZL (Exercise).

By ZL (which is equivalent to AC by Theorem 3.4), there is a maximal element f∗ in

F with respect to ⊆.
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We show that either dom(f∗) = X or range(f∗) = Y . If dom(f∗) then we are done

and if range(f∗) then (f∗)−1 is a one-to-one function from Y to X.

Suppose that dom(f∗) 6= X and range(f∗) 6= Y . Then, letting x∗ ∈ X \ dom(f∗) and

y∗ ∈ Y \ range(f∗), f∗∗ = f∗ ∪ {〈x∗, y∗〉} is an element of F extending f∗. This is a

contradiction to the maximality of f∗. (Theorem 3.6)

For some other theorems in set theory, the first proofs with AC could be replaced later

with proofs without AC. The following theorems are also such examples though, when

Cantor proved assertions corresponding to these theorems, the Axiom of Choice was not

yet singled out as a separate set-theoretic principle.

Theorem 3.7 (Z) Suppose that f : X → X is one-to-one. If f ′′X ⊆ Y ⊆ X, then there T-cantor-0

is a bijection from X to Y .

Proof. The following proof is taken from [3]. Let

(3.14) Q = Y \ f ′′X ac-7-0

and let

(3.15) F = {Z ∈ P(X) : Q ⊆ Z and f ′′Z ⊆ Z} . ac-8

F 6= ∅ since we have, for example, X ∈ F . Let Z0 =
∩

F . Then clearly we have:
C-cantor-0-1

Claim 3.7.1 (1) Q ⊆ Z0;

(2) f ′′Z0 ⊆ Z0.

` Exercise. a (Claim 3.7.1)

Hence Z0 is the minimal element of F (with respect to ⊆).

Note that by (1) and (2) of Claim 3.7.1, we have

(3.16) f ′′Q ⊆ f ′′Z0 and ac-9

(3.17) f ′′(f ′′Z0) ⊆ f ′′Z0. ac-10

C-cantor-0-2

Claim 3.7.2 Z0 = Q ∪̇ f ′′Z0.

` Q and f ′′Z0 are disjoint since f ′′Z0 ⊆ f ′′X and, Q and f ′′X are disjoint by (3.14).

Q ⊆ Q ∪̇ f ′′Z0 and f ′′(Q ∪̇ f ′′Z0) ⊆ f ′′Z0 by (3.16) and (3.17). Hence, by the

minimality of Z0, Z0 ⊆ Q ∪̇ f ′′Z0.

On the other hand, we also have Q ∪̇ f ′′Z0 ⊆ Z0 by Claim 3.7.1, (1) and (2).

a (Claim 3.7.2)

Now let Y = f ′′X ∪̇ Q. Y can be also represented as

(3.18) Y = (f ′′X \ f ′′Z0) ∪̇ (Q ∪̇ f ′′Z0). ac-11
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Let g : Y → f ′′X be defined by

(3.19) g(x) =

{
x, if x ∈ g ′′X \ f ′′Z0

f(x), otherwise.

Since f � Q ∪̇ f ′′Z0 : Q ∪̇ f ′′Z0 → f ′′Z0 Claim 3.7.2 and this mapping is one-to-one.

Hence g is also one-to-one.

Let h = g−1 ◦ f . Then h : X → Y is a bijection. (Theorem 3.7)

Theorem 3.8 (Cantor-Bernstein-Schroeder Theorem) (Z) Suppose the f : X → cantor-bernstein-

schroederY and g : Y → X are one-to-one functions. Then there is a bijection from X to Y .

Proof. Let h = g ◦ f . Then h is one-to-one and h ′′X = g ′′(f ′′X) ⊆ g ′′Y ⊆ X. Hence

there is a bijection h1 : X → g ′′Y by Theorem 3.7. h2 = g−1 ◦h1 is then a bijection from

X to Y . (Theorem 3.8)

4 First-order predicate logic and strict axiomatization of

set theory
logic
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