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1 Fremlin-Miller Covering Principle

The following result is stated in A. Miller [3] as an answer to a question by David

Fremlin:

Theorem 1. (Theorem 3.7 in A. Miller [3]) The following holds in the generic

extension obtained by adding at least N3 Cohen reals to a model of CH:

(1.1)  For any family F of Borel sets with | F | = R such that (\F = 0, there is
a subfamily F' C F with | F'| < ¥y such that (F' = 0.

Note that by moving to complements of elements of F, the assertion (1.1) can be
also conceived as a covering property resembling Lindelof property of topological
spaces. Thus we shall call here the property (1.1) the Fremlin-Miller Covering
Principle. More generally, for cardinals £ > A, let us denote with FMCP(k, A) the

following parametrized Fremlin-Miller Covering Principle:

FMCP(k,\): For any family F of Borel sets with | F | < x such that ((F =0
there is F' € [F]<* such that (| F' = 0.
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Lemma 2. ([3]) (0) For cardinals k > k" > XN > X\, FMCP(k, \) implies
FMCP(#/, V).
(1) FMCP(k, k) holds for any cardinal k.
(2) FMCP(c*,¢) does not hold.
(3) FMCP(Xy,Ry) does not hold.
(4) If Kk is one of a, b, ... or b* then FMCP(k™, k) does not hold.

Proof. (0),(1): Trivial by definition.
(2): Let A be a maximal almost disjoint family C [w]™ of cardinality ¢. For
each a € A, let

X, ={2 € P(w) : z is almost disjoint from a}.

Then X, € Borel(P(w)) for all a € A and (), 4 Xo = 0 by the maximality of A
but (e Xo # 0 for any A’ C A.

(3): Let ((fa)a<w s (98)s<w,) be a Hausdorff gap. For each oo < wy, let

Xa:{fEWW3fa§*f§*9a}-

Then X,’s are Borel sets and ) X, =0 but (,c; Xa # 0 for any countable
I g wi.
(4): Similarly to (2) and (3). (1 (Lemma 2)

a<<wi

By Lemma 2, “Ny < £ < ¢ and FMCP(x,R;)” is the first non-trivial instance of
the principle FMCP (&, A).
It is easy to show that the following principle for cardinals x < A is a general-

ization of the corresponding parametrized Fremlin-Miller Covering Principle:

GFMCP(k,\): For any projective relation R C R?, and X € [R]<", if X is
unbounded in (R, R), there is Xy € [X]<* such that X is unbounded
in (R, R).

Here we say X is unbounded in (R, R) if
VreR3Ire X ~(x Rr)
holds.
Proposition 3. GFMCP (&, A) implies FMCP(k, A) for any cardinals k > A.

Proof. Assume that GFMCP(k,\) holds and suppose that (X, : a < 0) is a
sequence of Borel subsets of R for some § < x such that (),_; Xo = 0.

For a < 9, let ¢, be a Borel code of X, and let X* = {¢, : a < d}.
For any x € R, let



(1.2) B { the Borel set coded by z, if x is a Borel code

0, otherwise.
Let R C R? be defined by
xRy < B, is anon empty subset of B,
for z, y € R. The relation R is easily seen to be IT}. Clearly, we have
(1.3) X is unbounded in (R,R) < ({{B,:z€ X} =10

for any X C R. In particular, X* above is unbounded in (R, R). By GFMCP(k, \),
there is X™* C X* of cardinality < A such that X** is already unbounded in (R, R).
Thus, again by (1.3), (,c; Xa =0 for I = {a <6 : ¢ € X**}. [ (Proposition 3)

The proof of Theorem 1 in [3] can be recast to show the following consistency
result on GFMCP (¢, Ry):

Theorem 4. Let k < i be reqular cardinals. Suppose that Py,y, o < p are posets
such that

(1.4) ]P){a} = ]P{o} for all o < p;
(15) P=T[" B, satisfies the c.c.c.;

a<p
(1.6) [Py | <k =r",r" <p.

Then |Fp“GFMCP(u,x™)”.

We shall give the details of the proof of Theorem 4 in the next section.

The formulation of GFMCP(k, Xy) has a certain resemblance to that of HP(Xy)
of J. Brendle and S. Fuchino [1]. This feeling is also supported by the fact that
they both hold in Cohen models. The following proposition shows however that

these principles are rather independent to each other:

Proposition 5. (1) ¢>N3 A GFMCP(c¢,8y) A =HP(Xy) is consistent.
(2) —-GFMCP(R3,Xy) A HP(Ry) is consistent.

Proof. (1): The arguments used in the proof of Theorem 4 are also valid for the
generic extension with (measure theoretic) side-by-side product of random forcing.
It is known that HP(X;) does not hold in a random extension (see [1]).

(2): In a model of HP(Ry) A ¢ = Ry we have “GFMCP(X3,Ry) by Lemma
2,(2). (1 (Proposition 5)

Problem 1. Is -GFMCP(¢,Ry) A HP(Ry) consistent under ¢ > Rg ¢



2 Proof of the consistency result

In this section we prove Theorem 4.
Let x < p be regular cardinals and Py, o < p satisfy (1.4), (1.5) and (1.6).
For X C u, we denote

(2.1) Py =[[/7 P,

Thus P = P,. We assume that finite support product is introduced just as in [1].
In particular, we have Py <Py <P forall X CY C p.
A bijection f : u — p induces an automorphism of P and this induces in turn

an automorphism on P-names. We shall denote both of these automorphisms by

f.
All of the following Lemmas 6, 7 and 8 are folklore:

Lemma 6. Suppose that X C p and ¢, £ < 0 are P-names of elements of H(X;)
(in the sense of V¥) such that supp(i¢) C X for all € < 4. If

(2.2) X \U{supp(i¢) : £ <0} is uncountable,
then we have
(2.3)  |Fp“ (HR)VIEPX] {5 2 € < 6},...,€) < (H(Ry), {de : £ <6},...,€)7.

Proof. Suppose that p|p “ (H(Xy),{Z¢ : £ <0}, ..., €) E Jrp(z,aq,...,a,) " for a
Lyp-formula ¢ and Px-names ay,..., a, of elements of H(X;). By the Tarski-Vaught

criterion, it is enough to show that

plFe “ (H®X), {&e : £ <0}, . €) = (6, an, ... an)”

for some Py-name ¢ of an element of H(Ny).

By (1.5), we may assume without loss of generality that
(2.4) supp(ay),...,supp(a,) are all countable.
By (2.2), we may assume that supp(p) C X. Let
(2.5)  X'=U{supp(ae) : £ <6} UU{supp(a;) : @ € n+ 1\ 1} Usupp(p).

By the assumptions above, we have X’ C X. By (2.2) and (2.4), X \ X' is still
uncountable. By Maximal Principle, there is a P-name b of an element of H(Ry)
such that

plFe “ (HRY), {de : € <6}, .,€) = @by ay, ..y in)”.



By (1.5), we can find such b with countable supp(b).
Let f: pu — p be a bijection such that

f 1 X' =idx and f”supp(b) C X.

Let ¢ = f(b). Then ¢ is a P-name and

p “—]}D « <H(N1), {Qfg . 6 < 5}, ceey E> }Z QD(C, dl, ,an) 7,
(1 (Lemma 6)

Lemma 7. Suppose that X C u, p\ X is infinite and Xo C p\ X is countable.
Let ¢, € < & be P-names of elements of H(Ry) (in the sense of V¥) such that
supp(ze) € X for all £ < 0.

If pllFp “(HXy),{2¢ : £ <6}, ...,€) E @7 for some p € Px and Lyp-sentence

¢ then we have p|Fpy x, “(H(), {d¢ 1 £ <6}, .., €) F @7,
Thus we have

e “ (H(R,)VIENEIX L ¢ <6}, ., €) = (HR)VIE {ie - € <6}, ...,€)7,

Proof. It is enough to show the following (2.6) ,, for all Lzp-formula ¢ = ¥(xy, ..., ;)
by induction on :

(2.6),, For any P-names ay,..., @, of elements of H(X;) such that
(2.6a) supp(a;) C XUXyforien+1\1and
(2.6b) Xo\ U{suppa; : i € n+ 1\ 1} is infinite,
it ¢ € Pxux, and ¢ <p p, then
dle * (HOW), (e = € < 6}, €) b G(ar, wmritn)”
if and only if

q H_]P’Xuxo ¢ <H(N1)7 {if : f < 5}) EES) E) ): ¢(d17 ceey an) 7.

The crucial step in the induction proof of (2.6) y is when ¢ (x4, ..., z,,) is of the form
dzn(z, 1, ..., Tp).

Suppose that ay,..., a, are P-names of elements of H(X;) satisfying (2.6a) and
(2.6b), ¢ € Pxux,, ¢ <p p and

q ”_IF’ ¢ <H(N1)7{I§ : 5 < 5}7 ) €> }: 1/)(511, 7an) 7

Then there is a P-name a of an element of H(X;) such that

q H_IP ¢ <H(N1>7 {iﬁ : 5 < 5}7 ) €> ): 77(@7 al? ---adn)”'



By (1.5), we may assume that supp(a) is countable. Let f : u — p be a bijection
such that

27) f1X =idy

where X’ = X UJ{supp(a;) : : € n+ 1\ 1} Usupp(q);

(2.8)  f"(supp(r) Usupp(a)) € X U X, and

(2.9)  Xo\ (U{supp(@) : i € n+1\ 1} Usupp()) is infinite.

Then by induction’s hypothesis, we have

¢l ey, “(HO), {ge € <0}, €) En(f(a) an i)™

It follows that

q ”_IP’XUXO ¢ <H(N1>’ {‘Tﬁ : 5 < 5}7 L) €> ’: ¢(d17 ""dn)” .

The “only if” direction of this induction step can be shown similarly and more
easily. (1 (Lemma 7)

If G is a (V,Q)-generic set for a poset Q and M is a set, we denote with M[G]
the set {2 : # € VeN M}.

Lemma 8. Suppose that Q is a poset and P € M < H(0) for sufficiently large
reqular 0. If G is a (V,Q)-generic set then we have

(2.10) MI[G] < H(0)[G).

Proof. Note that H(6)[G] = H(0)VI?l. We check again the forcing version of
Tarski-Vaught criterion.

Suppose that

(2.11) pllFo“H(O) = Jzp(z,aq, ..., an)"

for Lzp-formula ¢ and Q-names ay,..., a, of elements of M. We may assume that

ai,...,a, € M. (2.11) is equivalent to

H(0) = plre “ 3op(r, ar,s s in) ™

Then by elementarity we have

M EplFo“Ire(x,an, ..., an) 7.



It follows that there is some a@ € V¥ N M such that M | pl|ko “p(a,ar,...,a,)".
By elementarity of M this is equivalent to H(0) = p|Fq “¢(a, ai, ...,a,)” This, in
turn, is equivalent to p|q “H(0) = ¢(a, aq, ..., a,)". 1 (Lemma 8)

Proof of Theorem 4: Suppose that s, p, Py, o < p, P are as in Theorem 4,
p € P and

(2.12) plFp “{%s : @ < J} is unbounded in H(R;) with respect to
' R={(z,y) : H®) = o(,y,a)}”

where 0 < k, ¢ is a Lzp-formula and @ is a P-name of an element of H ().

Let X C X be such that X O (J{supp(Z.) : o < 6} Usupp(p) Usupp(a). Then
| X | < kand X \ {supp(i,) : a < d} is uncountable.

Let G be a (V,Px)-generic filter with p € G and let 6 be a sufficiently large

regular cardinal. By Lemma 7, we have
(2.13) H(O)[G] & |Fep, “{25 : a < §} is unbounded in H(R;) with respect to R”.
Let M < H(#) be such that

(2.14) P, {i, : a <6} € M,
(2.15) [M]¥ C M; and
(2.16) | M| < k.

The last two conditions are possible since kM = k. By Lemma 8, we have

(2.17) M[G] < H(0)[G]

and hence

(2.18) M[G] & |Fp, “{i% : a < d} is unbounded in H(X;) with respect to R”.

Note that P, is an element of M but not P,y for ¥ as below and thus we cannot
apply the elementary submodel argument to the latter poset.
Let Y = d N M. Since |Y | < k by (2.16), it is enough to show the following

claim:

Claim 8.1. H(0)[G] F e, ° {29 © a € Y} is unbounded in H(X;)

[0}

with respect to R”.

[ In the following we work always in H(6)[G]. Suppose that ¢ € P, x and @ is a
P, x-name of an element of H(X,). Let Z = supp(&) Usupp(p). Let Xy € M be a
countable subset of p disjoint from Y U Z. f: u\ X — p\ X be a bijection such
that



(2.19) f"ZCYUXgand f|Y =idy.

Note that f(i) is a Px,-name of an element of H(X;). By (1.5) and (2.15), we may
assume that f(i) € M. Also note that Py, = P,,.
By (2.18), there are 7 <p f(g) and o € 6N M(=Y) such that

(2:20) M[G] = 7 ey, (38 R f(3)) .

By (2.17), it follows that 7 |Fp, “=(2& R f())".
By Lemma 6, it follows that

(2.21) 7z, (@S R f(2)) .

Let r = f~(7). Then r <p,.x ¢- By mapping the parameters in (2.21) by 1 we
obtain

(2.22) rlfFe, ‘(@S RE)”.
Since g and & were arbitrary, it follows that

(2.23) |Fe,  “{2§ : a € Y} is unbounded in H(R;) with respect to R”.

«

- (Claim 8.1)
[1 (Theorem 4)
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