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1 Fremlin-Miller Covering Principle

The following result is stated in A. Miller [3] as an answer to a question by David

Fremlin:

Theorem 1. (Theorem 3.7 in A. Miller [3]) The following holds in the generic

extension obtained by adding at least ℵ3 Cohen reals to a model of CH:

(1.1) For any family F of Borel sets with | F | = ℵ2 such that
⋂F = ∅, there is

a subfamily F ′ ⊆ F with | F ′ | ≤ ℵ1 such that
⋂F ′ = ∅.

Note that by moving to complements of elements of F , the assertion (1.1) can be

also conceived as a covering property resembling Lindelöf property of topological

spaces. Thus we shall call here the property (1.1) the Fremlin-Miller Covering

Principle. More generally, for cardinals κ ≥ λ, let us denote with FMCP(κ, λ) the

following parametrized Fremlin-Miller Covering Principle:

FMCP(κ, λ) : For any family F of Borel sets with | F | < κ such that
⋂F = ∅

there is F ′ ∈ [F ]<λ such that
⋂F ′ = ∅.
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Lemma 2. ([3]) (0) For cardinals κ ≥ κ′ ≥ λ′ ≥ λ, FMCP(κ, λ) implies

FMCP(κ′, λ′).

(1) FMCP(κ, κ) holds for any cardinal κ.

(2) FMCP(c+, c) does not hold.

(3) FMCP(ℵ2,ℵ1) does not hold.

(4) If κ is one of a, b, . . . or b∗ then FMCP(κ+, κ) does not hold.

Proof. (0), (1): Trivial by definition.

(2): Let A be a maximal almost disjoint family ⊆ [ω]ℵ0 of cardinality c. For

each a ∈ A, let

Xa = {x ∈ P(ω) : x is almost disjoint from a}.
Then Xa ∈ Borel(P(ω)) for all a ∈ A and

⋂
a∈A Xa = ∅ by the maximality of A

but
⋂

a∈A′ Xa 6= ∅ for any A′ ( A.

(3): Let 〈〈fα〉α<ω1 , 〈gβ〉β<ω1〉 be a Hausdorff gap. For each α < ω1, let

Xα = {f ∈ ωω : fα ≤∗ f ≤∗ gα}.
Then Xα’s are Borel sets and

⋂
α<ω1

Xα = ∅ but
⋂

α∈I Xα 6= ∅ for any countable

I ⊆ ω1.

(4): Similarly to (2) and (3). (Lemma 2)

By Lemma 2, “ℵ2 < κ ≤ c and FMCP(κ,ℵ2)” is the first non-trivial instance of

the principle FMCP(κ, λ).

It is easy to show that the following principle for cardinals κ ≤ λ is a general-

ization of the corresponding parametrized Fremlin-Miller Covering Principle:

GFMCP(κ, λ) : For any projective relation R ⊆ R2, and X ∈ [R]<κ, if X is

unbounded in 〈R, R〉, there is X0 ∈ [X]<λ such that X0 is unbounded

in 〈R, R〉.

Here we say X is unbounded in 〈R, R〉 if

∀r ∈ R ∃x ∈ X ¬(x R r)

holds.

Proposition 3. GFMCP(κ, λ) implies FMCP(κ, λ) for any cardinals κ ≥ λ.

Proof. Assume that GFMCP(κ, λ) holds and suppose that 〈Xα : α < δ〉 is a

sequence of Borel subsets of R for some δ < κ such that
⋂

α<δ Xα = ∅.
For α < δ, let cα be a Borel code of Xα and let X∗ = {cα : α < δ}.
For any x ∈ R, let
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(1.2) Bx =

{
the Borel set coded by x, if x is a Borel code

∅, otherwise.

Let R ⊆ R2 be defined by

x R y ⇔ By is a non empty subset of Bx

for x, y ∈ R. The relation R is easily seen to be Π1
1. Clearly, we have

(1.3) X is unbounded in 〈R, R〉 ⇔ ⋂{Bx : x ∈ X} = ∅

for any X ⊆ R. In particular, X∗ above is unbounded in 〈R, R〉. By GFMCP(κ, λ),

there is X∗∗ ⊆ X∗ of cardinality < λ such that X∗∗ is already unbounded in 〈R, R〉.
Thus, again by (1.3),

⋂
α∈I Xα = ∅ for I = {α < δ : cα ∈ X∗∗}. (Proposition 3)

The proof of Theorem 1 in [3] can be recast to show the following consistency

result on GFMCP(c,ℵ2):

Theorem 4. Let κ < µ be regular cardinals. Suppose that P{α}, α < µ are posets

such that

(1.4) P{α} ∼= P{0} for all α < µ;

(1.5) P =
∏fin

α<µ Pα satisfies the c.c.c.;

(1.6) |P{0} | ≤ κ = κℵ0 , κ+ < µ.

Then ‖–P “ GFMCP(µ, κ+) ”.

We shall give the details of the proof of Theorem 4 in the next section.

The formulation of GFMCP(κ,ℵ2) has a certain resemblance to that of HP(ℵ2)

of J. Brendle and S. Fuchino [1]. This feeling is also supported by the fact that

they both hold in Cohen models. The following proposition shows however that

these principles are rather independent to each other:

Proposition 5. (1) c ≥ ℵ3 ∧ GFMCP(c,ℵ2) ∧ ¬HP(ℵ2) is consistent.

(2) ¬GFMCP(ℵ3,ℵ2) ∧ HP(ℵ2) is consistent.

Proof. (1): The arguments used in the proof of Theorem 4 are also valid for the

generic extension with (measure theoretic) side-by-side product of random forcing.

It is known that HP(ℵ2) does not hold in a random extension (see [1]).

(2): In a model of HP(ℵ2) ∧ c = ℵ2 we have ¬GFMCP(ℵ3,ℵ2) by Lemma

2, (2). (Proposition 5)

Problem 1. Is ¬GFMCP(c,ℵ2) ∧ HP(ℵ2) consistent under c ≥ ℵ3 ?
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2 Proof of the consistency result

In this section we prove Theorem 4.

Let κ < µ be regular cardinals and P{α}, α < µ satisfy (1.4), (1.5) and (1.6).

For X ⊆ µ, we denote

(2.1) PX =
∏fin

α∈X Pα.

Thus P = Pµ. We assume that finite support product is introduced just as in [1].

In particular, we have PX ≤◦ PY ≤◦ P for all X ⊆ Y ⊆ µ.

A bijection f : µ → µ induces an automorphism of P and this induces in turn

an automorphism on P-names. We shall denote both of these automorphisms by

f̃ .

All of the following Lemmas 6, 7 and 8 are folklore:

Lemma 6. Suppose that X ⊆ µ and ẋξ, ξ < δ are P-names of elements of H(ℵ1)

(in the sense of V P) such that supp(ẋξ) ⊆ X for all ξ < δ. If

(2.2) X \⋃{supp(ẋξ) : ξ < δ} is uncountable,

then we have

(2.3) ‖–P “ 〈H(ℵ1)
V [Ġ∩PX ], {ẋξ : ξ < δ}, ...,∈〉 ≺ 〈H(ℵ1), {ẋξ : ξ < δ}, ...,∈〉 ”.

Proof. Suppose that p ‖–P “ 〈H(ℵ1), {ẋξ : ξ < δ}, ...,∈〉 |= ∃xϕ(x, ȧ1, ..., ȧn) ” for a

LZF-formula ϕ and PX-names ȧ1,..., ȧn of elements of H(ℵ1). By the Tarski-Vaught

criterion, it is enough to show that

p ‖–P “ 〈H(ℵ1), {ẋξ : ξ < δ}, ...,∈〉 |= ϕ(ċ, ȧ1, ..., ȧn) ”

for some PX-name ċ of an element of H(ℵ1).

By (1.5), we may assume without loss of generality that

(2.4) supp(ȧ1),..., supp(ȧn) are all countable.

By (2.2), we may assume that supp(p) ⊆ X. Let

(2.5) X ′ =
⋃{supp(ẋξ) : ξ < δ} ∪⋃{supp(ȧi) : i ∈ n + 1 \ 1} ∪ supp(p).

By the assumptions above, we have X ′ ⊆ X. By (2.2) and (2.4), X \ X ′ is still

uncountable. By Maximal Principle, there is a P-name ḃ of an element of H(ℵ1)

such that

p ‖–P “ 〈H(ℵ1), {ẋξ : ξ < δ}, ...,∈〉 |= ϕ(ḃ, ȧ1, ..., ȧn) ”.
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By (1.5), we can find such ḃ with countable supp(ḃ).

Let f : µ → µ be a bijection such that

f ¹ X ′ = idX′ and f ′′ supp(ḃ) ⊆ X.

Let ċ = f̃(ḃ). Then ċ is a P-name and

p ‖–P “ 〈H(ℵ1), {ẋξ : ξ < δ}, ...,∈〉 |= ϕ(ċ, ȧ1, ..., ȧn) ”.

(Lemma 6)

Lemma 7. Suppose that X ⊆ µ, µ \ X is infinite and X0 ⊆ µ \ X is countable.

Let ẋξ, ξ < δ be P-names of elements of H(ℵ1) (in the sense of V P) such that

supp(ẋξ) ⊆ X for all ξ < δ.

If p ‖–P “ 〈H(ℵ1), {ẋξ : ξ < δ}, ...,∈〉 |= ϕ ” for some p ∈ PX and LZF-sentence

ϕ then we have p ‖–PX∪X0
“ 〈H(ℵ1), {ẋξ : ξ < δ}, ...,∈〉 |= ϕ ”.

Thus we have

‖–P “ 〈H(ℵ1)
V [G∩(X∪X0)], {ẋξ : ξ < δ}, ...,∈〉 ≡ 〈H(ℵ1)

V [G], {ẋξ : ξ < δ}, ...,∈〉 ”.

Proof. It is enough to show the following (2.6) ψ for all LZF-formula ψ = ψ(x1, ...,xn)

by induction on ψ:

(2.6)ψ For any P-names ȧ1,..., ȧn of elements of H(ℵ1) such that

(2.6a) supp(ȧi) ⊆ X ∪X0 for i ∈ n + 1 \ 1 and

(2.6b) X0 \
⋃{supp ȧi : i ∈ n + 1 \ 1} is infinite,

if q ∈ PX∪X0 and q ≤P p, then

q ‖–P “ 〈H(ℵ1), {ẋξ : ξ < δ}, ...,∈〉 |= ψ(ȧ1, ..., ȧn) ”

if and only if

q ‖–PX∪X0
“ 〈H(ℵ1), {ẋξ : ξ < δ}, ...,∈〉 |= ψ(ȧ1, ..., ȧn) ”.

The crucial step in the induction proof of (2.6) ψ is when ψ(x1, ...,xn) is of the form

∃xη(x, x1, ...,xn).

Suppose that ȧ1,..., ȧn are P-names of elements of H(ℵ1) satisfying (2.6a) and

(2.6b), q ∈ PX∪X0 , q ≤P p and

q ‖–P “ 〈H(ℵ1), {ẋξ : ξ < δ}, ...,∈〉 |= ψ(ȧ1, ..., ȧn) ”.

Then there is a P-name ȧ of an element of H(ℵ1) such that

q ‖–P “ 〈H(ℵ1), {ẋξ : ξ < δ}, ...,∈〉 |= η(ȧ, ȧ1, ..., ȧn) ”.
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By (1.5), we may assume that supp(ȧ) is countable. Let f : µ → µ be a bijection

such that

(2.7) f ¹ X ′ = idX′

where X ′ = X ∪⋃{supp(ȧi) : i ∈ n + 1 \ 1} ∪ supp(q);

(2.8) f ′′(supp(r) ∪ supp(ȧ)) ⊆ X ∪X0 and

(2.9) X0 \ (
⋃{supp(ȧi) : i ∈ n + 1 \ 1} ∪ supp(ȧ)) is infinite.

Then by induction’s hypothesis, we have

q ‖–PX∪X0
“ 〈H(ℵ1), {ẋξ : ξ < δ}, ...,∈〉 |= η(f̃(ȧ), ȧ1, ..., ȧn) ” .

It follows that

q ‖–PX∪X0
“ 〈H(ℵ1), {ẋξ : ξ < δ}, ...,∈〉 |= ψ(ȧ1, ..., ȧn) ” .

The “only if” direction of this induction step can be shown similarly and more

easily. (Lemma 7)

If G is a (V,Q)-generic set for a poset Q and M is a set, we denote with M [G]

the set {ẋG : ẋ ∈ V Q ∩M}.

Lemma 8. Suppose that Q is a poset and P ∈ M ≺ H(θ) for sufficiently large

regular θ. If G is a (V,Q)-generic set then we have

(2.10) M [G] ≺ H(θ)[G].

Proof. Note that H(θ)[G] = H(θ)V [G]. We check again the forcing version of

Tarski-Vaught criterion.

Suppose that

(2.11) p ‖–Q “H(θ) |= ∃xϕ(x, ȧ1, ..., ȧn) ”

for LZF-formula ϕ and Q-names ȧ1,..., ȧn of elements of M . We may assume that

ȧ1,..., ȧn ∈ M . (2.11) is equivalent to

H(θ) |= p ‖–Q “∃xϕ(x, ȧ1, ..., ȧn) ”.

Then by elementarity we have

M |= p ‖–Q “∃xϕ(x, ȧ1, ..., ȧn) ”.
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It follows that there is some ȧ ∈ V P ∩M such that M |= p ‖–Q “ ϕ(ȧ, ȧ1, ..., ȧn) ”.

By elementarity of M this is equivalent to H(θ) |= p ‖–Q “ ϕ(ȧ, ȧ1, ..., ȧn) ” This, in

turn, is equivalent to p ‖–Q “H(θ) |= ϕ(ȧ, ȧ1, ..., ȧn) ”. (Lemma 8)

Proof of Theorem 4: Suppose that κ, µ, P{α}, α < µ, P are as in Theorem 4,

p ∈ P and

(2.12)
p ‖–P “ {ẋα : α < δ} is unbounded in H(ℵ1) with respect to

R = {〈x, y〉 : H(ℵ1) |= ϕ(x, y, ȧ)} ”

where δ ≤ κ, ϕ is a LZF-formula and ȧ is a P-name of an element of H(ℵ1).

Let X ⊆ λ be such that X ⊇ ⋃{supp(ẋα) : α < δ} ∪ supp(p) ∪ supp(ȧ). Then

|X | < κ and X \ {supp(ẋα) : α < δ} is uncountable.

Let G be a (V,PX)-generic filter with p ∈ G and let θ be a sufficiently large

regular cardinal. By Lemma 7, we have

(2.13) H(θ)[G] |= ‖–Pω “ {ẋG
α : α < δ} is unbounded in H(ℵ1) with respect to R ”.

Let M ≺ H(θ) be such that

(2.14) P, {ẋα : α < δ} ∈ M ;

(2.15) [M ]ℵ0 ⊆ M ; and

(2.16) |M | ≤ κ.

The last two conditions are possible since κℵ0 = κ. By Lemma 8, we have

(2.17) M [G] ≺ H(θ)[G]

and hence

(2.18) M [G] |= ‖–Pω “ {ẋG
α : α < δ} is unbounded in H(ℵ1) with respect to R ”.

Note that Pω is an element of M but not Pµ\Y for Y as below and thus we cannot

apply the elementary submodel argument to the latter poset.

Let Y = δ ∩M . Since |Y | ≤ κ by (2.16), it is enough to show the following

claim:

Claim 8.1. H(θ)[G] |= ‖–Pµ\X
“ {ẋG

α : α ∈ Y } is unbounded in H(ℵ1)

with respect to R ”.

` In the following we work always in H(θ)[G]. Suppose that q ∈ Pµ\X and ẋ is a

Pµ\X-name of an element of H(ℵ1). Let Z = supp(ẋ) ∪ supp(p). Let X0 ∈ M be a

countable subset of µ disjoint from Y ∪ Z. f : µ \X → µ \X be a bijection such

that
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(2.19) f ′′Z ⊆ Y ∪X0 and f ¹ Y = idY .

Note that f̃(ẋ) is a PX0-name of an element of H(ℵ1). By (1.5) and (2.15), we may

assume that f̃(ẋ) ∈ M . Also note that PX0
∼= Pω.

By (2.18), there are r̃ ≤PX0
f̃(q) and α∗ ∈ δ ∩M(= Y ) such that

(2.20) M [G] |= r̃ ‖–PX0
“¬(ẋG

α∗ R f̃(ẋ)) ”.

By (2.17), it follows that r̃ ‖–PX0
“¬(ẋG

α∗ R f̃(ẋ)) ”.

By Lemma 6, it follows that

(2.21) r̃ ‖–Pµ\X
“¬(ẋG

α∗ R f̃(ẋ)) ”.

Let r = f̃−1(r̃). Then r ≤Pµ\X
q. By mapping the parameters in (2.21) by f̃−1, we

obtain

(2.22) r ‖–Pµ\X
“¬(ẋG

α∗ R ẋ) ”.

Since q and ẋ were arbitrary, it follows that

(2.23) ‖–Pµ\X
“ {ẋG

α : α ∈ Y } is unbounded in H(ℵ1) with respect to R ”.

a (Claim 8.1)

(Theorem 4)
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