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Abstract

Assuming Fodor-type Reflection Principle, we prove that every T1-space
with a point countable base is left-separated if all of its subspaces of cardi-
nality ≤ ℵ1 are left-separated. This result improves a theorem by Fleissner
[4] who proved the same assertion under Axiom R.

1 Introduction

Axiom R introduced in Fleissner [4] is often used to show that some property of

certain topological space reflects down to a subspace of small cardinality. Let us

mention the following two well-known results:

Theorem 1.1. (1) (Balogh [1, Theorem 2.2]) Assume Axiom R. Suppose that

X is locally countably compact. If X is not metrizable then there is a subspace Y

of X of cardinality ≤ ℵ1 which is not metrizable.
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(2) (Fleissner [4, Theorem 4.2]) Assume Axiom R. Suppose that X is a T1-space

with a point countable base. If X is not left-separated then there is a subspace Y

of X of cardinality ≤ ℵ1 which is not left-separated.

Both of the assertions cited in Theorem 1.1 are known to be independent from

ZFC. For example, the existence of non-reflecting stationary subset of Eκ
ω = {α <

κ : cf(α) = ω} for some regular κ > ℵ1 implies the negation of both of (1) and (2)

in Theorem 1.1 (see [7] and [4], for the independence of the assertion of (2) see also

Proposition 2.4 below). Thus we do need some assumption like Axiom R in these

results.

In Fuchino, Juhász, Soukup, Szentmiklóssy and Usuba [7], it is shown that

Axiom R in Theorem 1.1, (1) can be replaced by Fodor-type Reflection Principle

(FRP, see Section 3 for the definition of this principle) which is a consequence of

Axiom R.

One of the advantages of replacing Axiom R with FRP is that it is shown that

FRP is compatible with arbitrary size of the continuum (see [7]) while Axiom R

implies that the continuum has size ≤ ℵ2. Actually, it is shown in [7] that FRP

is preserved by any generic extension by a c.c.c. poset. Hence conclusions of FRP

are compatible with any property which can be forced to be true by a c.c.c. poset

starting from a model of ZFC + FRP.

Let P be a property of topological spaces and κ a cardinal. We shall say that

a topological space X is ≤ κ-P (< κ-P , respectively) if every subspace Y of X of

cardinality ≤ κ (< κ, respectively) has the property P . In this notation, we shall

always put ‘≤’ or ‘<’ to the cardinal κ since very often “κ P” or “κ-P” is already

used for some other notions (this is e.g. the case with “ℵ1 meta-Lindelöf”). X is

said to be almost P if X is < |X |- P , that is, if every subspace of X of cardinality

< |X | has the property P .

Using this terminology, Theorem 1.1 can be reformulated as follows:

Theorem 1.2. (a reformulation of Theorem 1.1)

(1) (Balogh [1, Theorem 2.2]) Assume Axiom R. Suppose that X is locally count-

ably compact. If X is ≤ ℵ1-metrizable, then X is metrizable.

(2) (Fleissner [4, Theorem 4.2]) Assume Axiom R. Suppose that X is a T1-space

with a point countable base. If X is ≤ ℵ1-left-separated, then X is left-separated.

In this paper, we show that Axiom R in Theorem 1.1 (2) (or Theorem 1.2 (2))

can be also replaced by FRP (Theorem 4.1).
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2 Preliminaries

Let us first review the topological notions appeared in Theorem 1.1 (2) (or Theorem

1.2 (2)).

A family F of subsets of X is said to be point countable if {a ∈ F : p ∈ a}
is countable for all p ∈ X. By Bing-Nagata-Smirnov theorem, metrizable spaces

are examples of topological spaces with a point countable base. If a space X has

a point countable base, then X is countably tight, i.e. for any p ∈ X and Y ⊆ X,

p ∈ Y if and only if there is some a ∈ [Y ]ℵ0 such that p ∈ a.

A topological space X is left-separated if there is a well-ordering < of X such

that every initial segment with respect to < is a closed subset of X. For a left-

separated space X with a well-ordering < as above, we say that X is left-separated

in order type κ if otp(X,<) = κ.

Left-separated T1-spaces with a point countable base enjoy a nice characteriza-

tion (Theorem 2.1). Let us first review some more notions used in the characteri-

zation.

A topological space X is said to be weakly separated if there is a family {Up :

p ∈ X} such that, for each p ∈ X, Up is a neighborhood of p and, for distinct p,

q ∈ X, at least one of p ̸∈ Uq or q ̸∈ Up holds. A left-separated space X is weakly

separated since, for a well ordering < of X witnessing the left-separatedness of X,

the family {Up : p ∈ X} with Up = {q ∈ X : q = p or p < q} for p ∈ X has the

property above. X is σ weakly separated if X is a union of countably many weakly

separated subspaces.

A family F of closed subsets of X is said to be closure preserving if
∪
G is closed

for any G ⊆ F .

Theorem 2.1. (Fleissner [4, Theorem 2.2]) For a T1-space X with a point-countable

base, the following are equivalent:

(a) X is left-separated in order type |X |;
(b) X is σ-weakly separated;

(c) X has a closure preserving cover consisting of countable closed sets.

Corollary 2.2. A T1-space X with a point-countable base is left-separated if and

only if it is left separated in order type |κ |.

Proof. If X is left-separated in order type |κ | then it is surely left-separated.

If X is left-separated then it is weakly separated. By Theorem 2.1, (b)⇒ (a),

it follows that X is left-separated in order type |κ |. (Corollary 2.2)
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Lemma 2.3. (a) Suppose that X is a T1-space and X =
∪

ξ<δ Xξ where ⟨Xξ :

ξ < δ⟩ is a continuously increasing sequence of subspaces of X. If Xξ is left

separated and closed in X for all ξ < δ then X is also left-separated.

(b) Suppose that X is an almost left-separated T1-space with a point countable

base. Then X is left-separated if and only if X has a filtration consisting of closed

subsets of X.

Proof. (a): We may assume that δ is a limit ordinal. For each ξ < δ, let ≤ξ

be a well-ordering of Xξ witnessing the left-separatedness of Xξ. Let < be the

well-ordering of X defined by

x < y ⇔ x ∈ Xξ and y ̸∈ Xξ for some ξ < δ

or x, y ∈ Xξ+1 \ Xξ for some ξ and x <ξ+1 y

Since each initial segment with respect to < is either Xξ or Xξ∪ an initial segment

of Xξ+1 with respect to <ξ+1 for some ξ < δ, it follows that all initial segments

with respect to < are closed in X. Thus < witnesses the left-separatedness of X.

(b): If X is left-separated then, by Corollary 2.2, X is left-separated by order

type |X |. Let κ = |X | and let f : κ → X be a bijection such that f ′′α is closed

subset for all α < κ. Then ⟨f ′′α : α < κ⟩ is a filtration of X consisting of closed

subsets of X.

Suppose now that X has a filtration ⟨Xα : α < κ⟩ such that all Xα, α < κ

are closed in X. Since X is almost left-separated, all Xα, α < κ are left-separated.

Hence, by (a), it follows that X is also left-separated. (Lemma 2.3)

The following proposition shows that the assertion of Theorem 1.1, (2) (or The-

orem 1.2,(2)) is independent even if the condition “T1-space with a point countable

base” is replaced by “metrizable space”. The proof of the next Proposition of

Fleissner given here is perhaps less elegant than the one given in Fleissner [4].

Nevertheless we included our proof since it fits Lemma 2.3 and its proof.

Proposition 2.4. (Fleissner [4]) Suppose that κ is a regular uncountable cardinal

and there is a non-reflecting stationary set S ⊆ Eκ
ω. Then there is a metrizable

space X of cardinality κ which is almost left-separated but not left-separated.

Proof. Let S ⊆ Eκ
ω be a non-reflecting stationary set. That is, S itself is stationary

in κ but S ∩ α is not stationary in α for all α < κ. Let ā be a ladder system on S.

That is, ā : S × ω → κ and, for all α ∈ S, ⟨ā(α, n) : n ∈ ω⟩ is a strictly increasing

sequence of ordinals < α such that limn→∞ ā(α, n) = α.

For α, β ∈ S, let
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(2.1) d(α, β) = 2−µn(ā(α,n) ̸=ā(β,n))

if α ̸= β and d(α, β) = 0 if α = β.

Claim 2.4.1. d is a metric on S.

⊢ We only show that d satisfies the triangle inequality since it is easy to see that

the other properties of a metric are satisfied by d.

Suppose α, β, γ ∈ S. We show that d(α, γ) ≤ d(α, β) + d(β, γ). Without loss

of generality, we may assume that α, β, γ are pairwise distinct. Let

nα,β = µn(ā(α, n) ̸= ā(β, n));

nβ,γ = µn(ā(β, n) ̸= ā(γ, n));

nα,γ = µn(ā(α, n) ̸= ā(γ, n)).

Then, there are the following three cases:

Case 1. nα,β < nβ,γ. In this case, we have nα,γ = nα,β.

Case 2. nα,β > nβ,γ. In this case, we have nα,γ = nβ,γ .

Case 3. nα,β = nβ,γ. In this case, we have nα,γ ≥ nα,β, nβ,γ .

In all of these cases, it is easy to see that we have

d(α, γ) = 2−nα,γ ≤ 2−nα,β + 2−nβ,γ = d(α, β) + d(β, γ).

⊣ (Claim 2.4.1)

Let τ be the topology induced from the metric d and let us consider S as the

topological space (S, τ). Clearly |S | = κ. We show that S is a topological space

as desired.

Let θ be a sufficiently large regular cardinal and let M ≺ H(θ) be such that κ,

S, ā ∈ M and κ ∩ M ∈ S. Let α = κ ∩ M . We have:

Claim 2.4.2. α ∈ α.

⊢ For n ∈ ω, we show that there is β ∈ α such that d(α, β) < 1
2n .

Let

ξ0 = ā(α, 0), ξ1 = ā(α, 1),..., ξn = ā(α, n).

Since ξ0, ξ1,..., ξn ∈ κ ∩ M , by elementarity, we have

M |= ∃η < κ (ā(η, 0) = ξ0 ∧ ā(η, 1) = ξ1 ∧ · · · ∧ ā(η, n) = ξn).
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Let β ∈ κ ∩ M be such that ā(β, 0) = ξ0, ā(β, 1) = ξ1,..., ā(β, n) = ξn. Then, by

the definition of d, we have d(α, β) < 1
2n . ⊣ (Claim 2.4.2)

Thus α is not closed in S. Since there are stationarily many α representable

as κ ∩ M for some M as above, it follows from Lemma 2.3, (b) that S is not

left-separated.

Now, we are done showing that S is almost left-separated. To prove this, it

is enough to show that S ∩ α for all α < κ is left-separated. We prove this by

induction on α < κ. If S ∩α is finite, this is clear. So suppose that we have shown

that all S ∩ β, β < α are left-separated.

If α is a successor of some δ ∈ κ \ S, then S ∩ α = S ∩ δ. Since S ∩ δ is

left-separated by the induction hypothesis, so is also S ∩ α.

If α is a successor of some δ ∈ S then S ∩ α = (S ∩ δ) ∪ {δ}. By the induction

hypothesis, there is a well-ordering @ of S ∩ δ witnessing the left-separatedness of

S ∩ δ. Let @̃ be the well-ordering of S ∩ α defined by

β @̃ β′ ⇔ β = δ or

β ≤ ā(δ, n) < β′ < δ for some n ∈ ω or

( β, β′ < ā(δ, 0) and β @ β′ ) or

( ā(δ, n) < β, β′ ≤ ā(δ, n + 1) for some n ∈ ω and β @ β′ )

Since S ∩ (ā(δ, n) + 1) is closed in S ∩ α for all n, it follows that @̃ witnesses the

left-separatedness of S ∩ α.

Finally suppose that α is a limit. Since S ∩ α is non-stationary, there is a club

C ⊆ α disjoint from S. Let ⟨αξ : ξ < δ⟩ be an increasing enumeration of C. By

αδ ̸∈ S, we have that S∩αξ is closed in S for all ξ < δ. Also, S∩αξ is left-separated

for all ξ < δ by the induction hypothesis. Hence it follows by Lemma 2.3, (a) that

S ∩ α =
∪

ξ<δ S ∩ αξ is left-separated. (Proposition 2.4)

Lemma 2.5. (Fleissner [4, Lemma 4.1]) Suppose that X is a ≤ ℵ1-left-separated

T1-space with a point countable base. Then, for all Y ∈ [X]≤ℵ1, |Y | = |Y |.

3 Fodor-type Reflection Principle

In this section, we summarize the definitions and basic results in connection with

Fodor-type Reflection Principle. For the omitted proofs, the reader may consult

Fuchino, Juhász, Soukup, Szentmiklóssy and Usuba [7]. More results on Fodor-type

Reflection Principle will appear in Fuchino, Sakai, Soukup and Usuba [8].
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Definition 3.1. Let κ be a cardinal of cofinality ≥ ω1. The Fodor-type Reflection

Principle for κ (FRP(κ)) is the following statement:

FRP(κ) : For any stationary S ⊆ Eκ
ω and mapping g : S → [κ]≤ℵ0 there is I ∈ [κ]ℵ1

such that

(3.1) cf(I) = ω1;

(3.2) g(α) ⊆ I for all α ∈ I ∩ S;

(3.3) for any regressive f : S ∩ I → κ such that f(α) ∈ g(α) for all

α ∈ S ∩ I, there is ξ∗ < κ such that f−1 ′′{ξ∗} is stationary in

sup(I).

Note that, for S and I as above, S ∩ I is stationary in sup(I). In particular, if

S ∩ I were empty, then ∅ : S ∩ I → κ is a/the regressive function for which there is

no ξ∗ as in (3.3). Note also that FRP(ω1) holds in ZFC: indeed, if we take I = ω1

then the statement follows immediately from the Fodor Lemma.

Lemma 3.2. ([7]) FRP(κ) fails for a singular κ.

Definition 3.3. Fodor-type Reflection Principle (FRP) is the assertion:

FRP: FRP(κ) holds for all regular κ ≥ ℵ1.

Recall that Axiom R is the principle asserting that the following AR([κ]ℵ0) holds

for all cardinals κ ≥ ℵ2:

AR([κ]ℵ0) : For any stationary S ⊆ [κ]ℵ0 and ω1-club T ⊆ [κ]ℵ1 , there is I ∈ T

such that S ∩ [I]ℵ0 is stationary in [I]ℵ0 .

Here, T ⊆ [X]ℵ1 for an uncountable set X is said to be ω1-club (or tight and

unbounded in Fleissner’s terminology in Fleissner [4]) if

(3.4) T is cofinal in [X]ℵ1 with respect to ⊆ and

(3.5) for any increasing chain ⟨Iα : α < ω1⟩ in T of length ω1, we have∪
α<ω1

Iα ∈ T .

For regular κ ≥ ℵ2, FRP(κ) is not provable in ZFC since, for example, the existence

of a non-reflecting subset of Eκ
ω would refute FRP(κ).

However, we have:

Theorem 3.4. ([7]) For any regular cardinal κ > ℵ1, RP([κ]ℵ0) implies FRP(κ).

Here, for a cardinal κ ≥ ℵ2, RP([κ]ℵ0) is the following principle:
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RP([κ]ℵ0) : For any stationary S ⊆ [κ]ℵ0 , there is an I ∈ [κ]ℵ1 such that

(3.6) ω1 ⊆ I;

(3.7) cf(I) = ω1;

(3.8) S ∩ [I]ℵ0 is stationary in [I]ℵ0 .

AR([κ]ℵ0) implies RP([κ]ℵ0) for a cardinal κ of cofinality ≥ ω1 since T = {I ∈
[κ]ℵ0 : ω1 ⊆ I and cf(I) = ω1} is ω1-club. Jech [9] called a weakening of RP([κ]ℵ0)

“Reflection Principle” which is obtained by dropping the condition (3.7) from the

definition of RP([κ]ℵ0). Jech’s reflection principle is sometimes also called “Weak

Reflection Principle” in the literature (see, e.g. König, Larson and Yoshinobu [10])

and so we denote this principle by WRP([κ]ℵ0).

Axiom R follows from MA+(σ-closed) (see Beaudoin [2]) which in turn is a

consequence of Martin’s Maximum (see Foreman, Magidor and Shelah [5]). In

more modern terminology of Foreman and Todorcevic [6], Axiom R is equivalent

to the stationary reflection to a internally unbounded structure (this fact is stated

essentially in Dow [3] under the definition of Axiom R which is slightly stronger

than the one we use here). Since MA+(σ-closed) is consistent with CH (modulo

some large cardinal), all the reflection principles we treat here are compatible with

CH.

It is still open if WRP([κ]ℵ0), RP([κ]ℵ0) and AR([κ]ℵ0) can be separated. This

seems to be a quite difficult problem if these principles should be ever sepa-

rated: it is known that RP([ω2]
ℵ0) and AR([ω2]

ℵ0) are equivalent; under 2ℵ1 = ℵ2,

WRP([ω2]
ℵ0) and RP([ω2]

ℵ0) are equivalent and, e.g. under GCH, WRP([ωn]ℵ0) and

RP([ωn]ℵ0) for all n ∈ ω are equivalent (see König, Larson and Yoshinobu [10]).

Nevertheless, our Fodor-type Reflection Principle can be easily separated from

these reflection principles:

Theorem 3.5. ([7]) Suppose that FRP(κ) holds and P is a c.c.c. poset. Then

∥–P “ FRP(κ) holds ”.

Starting form a model of ZFC + FRP, we can add more than ℵ2 reals by a

c.c.c. poset. Since WRP([ℵ2]
ℵ0) implies 2ℵ0 ≤ ℵ2 (Todorčević, see [9] for a proof),

WRP([ℵ2]
ℵ0) does not hold in the generic extension while FRP is still valid in the

extension by Theorem 3.5.

In the application of FRP in the next section, we use the following characteri-

zation of the principle:

Lemma 3.6. ([7]) For a regular cardinal κ ≥ ℵ2, FRP(κ) is equivalent to the

following FRP•(κ):
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FRP•(κ) : For any stationary S ⊆ Eκ
ω and mapping g : S → [κ]≤ℵ0 there is a

continuously increasing sequence ⟨Iξ : ξ < ω⟩ of countable subsets of κ

such that

(3.9) ⟨sup(Iξ) : ξ < ω1⟩ is strictly increasing;

(3.10) each Iξ is closed with respect to g and

(3.11) {ξ < ω1 : sup(Iξ) ∈ S and g(sup(Iξ))∩ sup(Iξ) ⊆ Iξ} is stationary

in ω1.

4 Left-separated spaces under FRP

As announced in the introduction, we prove the following theorem:

Theorem 4.1. (FRP) Suppose that X is a T1-space with a point countable base. If

X is ≤ ℵ1-left-separated, then X is left-separated.

Let us begin with the following lemma:

Lemma 4.2. (FRP) Suppose that κ ≥ ℵ1, X is a ≤ κ-left-separated T1-space with

a point countable base. Then for any Y ∈ [X]≤κ we have |Y | = |Y |.

Proof. We prove the lemma by induction on κ. For κ = ℵ1, this is just Lemma

2.5.

Assume that κ > ℵ1 and the assertion of the lemma holds with κ replaced by

any λ such that ℵ1 ≤ λ < κ. Suppose that X is a ≤ κ-left-separated T1-space with

a point countable base and Y ∈ [X]κ. It is enough to show that |Y | = κ.

Case I. cf(κ) > ω. Let λ = cf(κ) and let ⟨Yα : α < λ⟩ be a filtration of Y . By

the induction hypothesis we have |Yα | < κ for all α < λ. Since X is countably tight

and λ > ω is regular it follows that Y =
∪

α<λ Yα and thus |Y | = |
∪

α<λ Yα | = κ.

Case II. cf(κ) = ω. Assume toward a contradiction that there is a Y ∈ [X]κ

such that |Y | > κ. Let Z ⊆ Y be such that Y ⊆ Z and |Z | = κ+. Let

⟨Zα : α < κ+⟩ be a filtration of Z with Z0 = Y . For α < κ+, let xα ∈ Zα+1 \ Zα

and let aα ∈ [Y ]ℵ0 be such that xα ∈ aα. By identifying Z with κ+ is such a way that

each Zα corresponds to an ordinal < κ+, we may apply FRP•(κ+) to this situation

to obtain a continuously and strictly increasing sequence ⟨Uξ : ξ < ω1⟩ of countable

subsets of Z and a continuously and strictly increasing sequence ⟨αξ : ξ < ω1⟩ of

ordinals < κ+ such that

(4.1) Uξ ⊆ Zαξ
and xαξ

∈ Uξ+1 for all ξ < ω1;

(4.2) {ξ < ω1 : aαξ
⊆ Uξ} is stationary in ω1.
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Let U =
∪

ξ<ω1
Uξ. By (4.1) and (4.2), {ξ < ω1 : Uξ is not closed in U} is station-

ary. Hence, by Lemma 2.3 (b), U is not left-separated. But this is a contradiction

to the ≤ κ-left-separatedness of X. (Lemma 4.2)

Proof of Theorem 4.1: Assume for contradiction that there are counter-

examples to the theorem. Let X be such a counter-example with minimal possible

cardinality. Thus X is T1-space with a point countable base and, by minimality of

κ = |X |, we have

(4.3) X is almost left-separated; while

(4.4) X is not left-separated.

Case I. cf(κ) = ω. Let ⟨Xn : n ∈ ω⟩ be a filtration of X. By Lemma 4.2, we

may choose Xn’s such that they are all closed subsets of X. Since all of Xn’s are

left-separated by (4.3), it follows by Lemma 2.3, (b) that X is left-separated which

is a contradiction to (4.4).

Case II. κ is a singular cardinal with cf(κ) > ω. Let λ = cf(κ). By Lemma 4.2,

we can construct a (not necessarily continuously) increasing sequence ⟨Xξ : ξ < λ⟩
of closed subsets of X such that

(4.5) λ < |Xξ | < κ for all ξ < λ;

(4.6) X =
∪

ξ<λ Xξ.

By (4.3) each Xξ is left-separated. Hence, by Lemma 2.1, (c), there is a closure

preserving cover Cξ of Xξ consisting of countable closed sets of Xξ.

Now let ⟨Zδ : δ < λ⟩ be a filtration of X such that, for all ξ < δ,

(4.7) if x ∈ Xξ ∩Zδ then there is some c ∈ Cξ such that x ∈ c ⊆ Zδ for all ξ < λ.

Claim 4.2.1. Zδ is a closed subset of X for all δ < λ.

⊢ Suppose that x ∈ Zδ. We show x ∈ Zδ. By the countable tightness of X, there

is an a ∈ [Zδ]
ℵ0 such that x ∈ a. Since λ is regular and > ω, there is ξ∗ < λ such

that a ⊆ Xξ∗ . By (4.7) Zδ ∩ Zξ∗ is the union of a subset of Cξ∗ and hence, by the

closure preservation of Cξ, Zδ ∩Zξ∗ is closed. It follows that x ∈ a ⊆ Zδ ∩Zξ∗ ⊆ Zδ.

⊣ (Claim 4.2.1)

By (4.3), Zδ’s are all left-separated. Hence, by the Claim above and Lemma

2.3, X is left-separated. This is a contradiction to (4.4).

Case III. κ is regular. Let ⟨Xα : α < κ⟩ be a filtration of X. By Lemma 4.2,

we may choose Xα, α < κ such that Xα+1 is a closed subset of X for all α < κ. By

the countable tightness of X, it follows that
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(4.8) Xα is a closed subset of X for all α ∈ κ \ Eκ
ω.

By (4.3), each Xα is left-separated. Hence, by (4.4) and Lemma 2.3,

S = {α < κ : Xα is not a closed subset of X}

is stationary. By (4.8), we have S ⊆ Eκ
ω. For each α ∈ S, let xα ∈ X be such that

xα ∈ Xα \ Xα and let aα ∈ [Xα]ℵ0 be such that x ∈ aα.

By the same argument as in the Case II of the proof of Lemma 4.2, we can

apply FRP to obtain continuously and strictly increasing sequence ⟨Yα : α < ω1⟩
of countable subsets of X and a continuously and strictly increasing sequence ⟨ξα :

α < ω1⟩ of ordinals < κ such that

(4.9) Yα ⊆ Xξα for all α < ω1;

(4.10) xξβ
∈ Yα for all β < α with ξβ ∈ S;

(4.11) S ∩ {ξα : α < ω1, aξα ⊆ Yα} is stationary in supα<ω1
ξα.

Let Y =
∪

α<ω1
Yα. Then, by (4.10) and (4.11), and since ⟨ξα : α < ω1⟩ is

continuously and strictly increasing, we have

(4.12) {α < ω1 : Yα is not closed in Y } is stationary.

By Lemma 2.3, it follows that Y is not left-separated. But, since |Y | = ℵ1, this is

a contradiction to (4.3). (Theorem 4.1)
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