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渕野 昌 (Sakaé Fuchino)† 酒井 拓史 (Hiroshi Sakai)‡

Graduate School of System Informatics
Kobe University

Rokko-dai 1-1, Nada, Kobe 657-8501 Japan

fuchino@diamond.kobe-u.ac.jp hsakai@people.kobe-u.ac.jp

Abstract

It is known that the reflection cardinal of countable chromatic number
of graphs is fairly large. This stands in contrast with the situation of the
countable coloring number whose reflection cardinal is less or equal to
that of the Fodor-type Reflection Principle and hence can be consistently
ℵ2.

Applying a theorem of Peter Komjáth, it can be shown that the re-
flection of countable list-chromatic number behaves consistently similarly
to the reflection of countable chromatic number but it can also behave
consistently like the reflection of countable coloring number. Moreover,
the Fodor-type Reflection Principle does not decide in which way the
reflection of countable list-chromatic number behaves.
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1 Introduction

For a class C of structures and a property P the reflection cardinal of 〈C, P 〉
is the minimal cardinal κ such that, for any M ∈ C, if there are club many

substructures N ∈ C of M of cardinality < κ with the property P then M also

has the property P (1) . If κ is the reflection cardinal of 〈C, P 〉, we shall write

κ = Refl (C, P ).

In some cases non-existence of reflection cardinal for certain pairs 〈C, P 〉 can

be proved already in ZFC. We shall denote the non-existence of the reflection

cardinal for C and P by Refl (C, P ) = ∞. (1) of the next examples is one of

such instances.

Examples 1. (1) (Hajnal and Juhász [9])

Let κ be a cardinal of uncountable cofinality. Let X = 〈X,O〉 be the topological

space defined by X = κ+1 with the open base for O: {{α} : α < κ}∪{u∪{κ} :

u ⊆ κ, |κ\u | < κ}. All subspaces of X of cardinality < κ are discrete and hence

metrizable. But X itself is not metrizable since the character of the point κ is

κ > ℵ0. Thus ZFC proves that Refl (C, P ) does not exist for “ C = topological

spaces” and “P ≡ metrizable”.

(2) (Dow [1])

For “ C = compact spaces” and “P ≡ metrizable”, ZFC proves Refl (C, P ) = ℵ2.

(3) (Fuchino, Juhász, Soukup, Szentmiklóssy and Usuba [5],

Fuchino, Sakai, Soukup and Usuba [6])

For “ C = locally compact spaces” and “P ≡ metrizable”, Refl (C, P ) = ℵ2 is

consistent with ZFC (modulo some fairly large cardinal) and it is equivalent to

the Fodor-type Reflection Principle.

In the following, we survey known facts and check some of the proofs in

connection with reflection of countability of some of the characteristics about

coloring of infinite graphs; namely, chromatic number, coloring number and

list-chromatic number (see the next section for definition).

It is known that the reflection cardinal of countable chromatic number of

graphs is fairly large (Erdős and Hajnal, see Theorem 3.1 below). This stands

in contrast with the situation of the countable coloring number whose reflection

cardinal is less or equal to that of the Fodor-type Reflection Principle (see

Corollary 4.4) and hence in particular it can be consistently ℵ2 (Fuchino, Sakai,

(1) We are mainly considering porperties P which transfer to arbitrary substructures. For
such P , “club many” may be simply replaced by “all”.
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Soukup and Usuba [6]). In Section 4 we give an upper bound for this reflection

cardinal.

Applying a theorem of Peter Komjáth, it can be shown that the reflection of

countable list-chromatic number behaves consistently similarly to the reflection

of countable chromatic number but it can also behave consistently like the

reflection of countable coloring number. Moreover, the Fodor-type Reflection

Principle does not decide in which way the reflection of countable list-chromatic

number behaves (see Theorem 5.1).

This note is intended as a preliminary work toward [7]. More results includ-

ing some more details of Theorem 5.1 and more related discussions should be

found there.

2 Graph coloring

First, let us recall some basic notions about graphs and the cardinal character-

istics in terms of coloring of graphs we are going to discuss.

A graph is a structure G = 〈G, K〉 such that G is a non empty set and K a

binary relation which is non-reflective and symmetric. Intuitively E is a set of

vertices and a pair {x, y} of vertices with K(x, y) represents an edge connecting

x and y. If K(x, y) we say that x and y are adjacent or x and y are connected

in G.

We sometimes identify K with {{x, y} : 〈x, y〉 ∈ K} and write {x, y} ∈ K

instead of K(x, y).

A subgraph H of a graph G is always an induced subgraph, that is, H =

〈H,L〉 is a subgraph of G = 〈G, K〉 if H ⊆ G and L = K ∩H2. If I is a subset

of (the underlying set of) G then G � I denotes the subgraph 〈I, K ∩ I2〉 of

G = 〈G,K〉. We often misuse the notation deliberately and write G � I = 〈I, K〉
instead of G � I = 〈I,K ∩ I2〉.

For a graph G = 〈G,K〉, a mapping φ : G → κ is said to be a good coloring

for G if φ(x) 6= φ(y) holds whenever x and y are adjacent in G. The chromatic

number of G is defined as:

chr(G) = min{κ ∈ Card : there is a good coloring f : G → κ}.

The list-chromatic number of G is defined by:

list-chr(G) = min{κ ∈ Card : for µ = |G | and for any l : G → [µ]κ

there is a good coloring f : G → µ

such that f(x) ∈ l(x) for all x ∈ G}.
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The following notation is convenient in connection with coloring number we

introduce next. For a graph G = 〈G,K〉, x ∈ G and I ⊆ G, let

Kx
I = {y ∈ I : K(x, y)}.

For an ordering b on G and x ∈ G

Kx
b = {y ∈ G : K(x, y) and y b x}.

Thus if I = {y ∈ I : y b x} we have Kx
b = Kx

I .

Using this notation, coloring number of a graph G = 〈G,K〉 is defined as:

col(G) = min{κ ∈ Card : there is a well-ordering b of G

such that |Kx
b | < κ for all x ∈ G}

It is easy to see that chr(G) ≤ list-chr(G) ≤ col(G) for any graph G.

The inequality can be also rigid (for both finite and infinite graphs). Coloring

number of graphs enjoys several quite useful characterizations. For a graph

〈G,K〉, a mapping f : G → [G]<κ is a κ-coloring mapping if for any a, b ∈ G

with K(a, b), at least one of a ∈ f(b) and b ∈ f(a) holds. A subgraph H of a

graph 〈G,K〉 is a κ-subgraph (notation: H vκ G) if for any a ∈ G \H we have

|Ka
H | < κ.

Theorem 2.1 (Erdős and Hajnal [2], see also [6] and [4]).

For any infinite cardinal κ and any graph G the following are equivalent:

(a) col(G) ≤ κ;

(b) There is a κ-coloring mapping on G;

(c) There is a continuously increasing sequence 〈Gα : α < δ〉 of subalgebras

of G such that col(Gα) ≤ κ and Gα vκ G for all α < κ.

We shall write Refl col to denote Refl (C, P ) for “C = graphs” and “P ≡
of countable coloring number”. We have a relatively good picture of what

Refl col can be. For the definition of the Fodor-type Reflection Principle and

the reflection cardinal Refl FRP see Section 4.

Theorem 2.2. (1) (Fuchino, Sakai, Soukup and Usuba [6])

Refl col = ℵ2 ⇔ Fodor-type Reflection Principle holds.

(2) Refl col = ∞ is consistent.

(3) Refl col ≤ Refl FRP.

Proof. For (1) see [6]. (3) will be proved in Section 4 (see Corollary 4.4).

(2): The next lemma shows that, for example, V = L implies Refl col = ∞.

(Theorem 2.2)
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Lemma 2.3. For a regular cardinal κ, suppose that there exists a non-reflecting

stationary set E ⊆ Eκ
ω. Then there is a graph G of cardinality κ such that

col(G) > ℵ0 but col(H) = ℵ0 for all subgraphs H of G of cardinality < κ.

Proof. Suppose that E ⊆ Eκ
ω is a non-reflecting stationary set. Let g : E →

[E]ℵ0 be any ladder system on E and let G = 〈κ,K〉 where

(2.1) {α, β} ∈ K for α < β < κ if β ∈ E and α ∈ g(β).

The next two claims show that this G is as desired.

Claim 2.3.1. col(G) > ℵ0.

` If col(G) ≤ ℵ0, then, by Theorem 2.1, there is a filtration 〈Gα : α < κ〉
such that Gα vω G for all α < κ. Since E is stationary, there is an α ∈ E

such that Gα = G � α. But Kα
α = g(α) is infinite. This is a contradiction.

a (Claim 2.3.1)

Claim 2.3.2. col(G � α) ≤ ℵ0 for all α < κ.

` We prove the assertion by induction on α.

If α < ω1 the claim is trivial. Successor steps are also trivial. So assume that

α is a limit and we have shown col(G � β) ≤ ℵ0. Since E ∩ α is not stationary

in α, there is a continuously increasing sequence 〈αξ : ξ < δ〉 of elements of α

such that δ = cf(α) and α = supξ<δ αξ and αξ 6∈ E for all ξ < δ. Then it is easy

to see that G � αξ vω G � α for all ξ < δ. By Theorem 2.1, (c) it follows that

col(G � α) = ℵ0. a (Claim 2.3.2)

(Lemma 2.3)

For “C = graphs” and “P ≡ of countable chromatic number”, let us denote

Refl (C, P ) by Refl chr.

The picture we have for Refl chr is a less satisfactory one as we only have

the following inequalities:

Theorem 2.4.

(1) (Erdős and Hajnal [3]) Refl chr ≥ iω.

(2) If κ is a strongly compact cardinal then Refl chr ≤ κ.

Proof. (1) follows from Theorem 3.1 in the next section.

(2) follows easily from the characterization of strongly compact cardinals in

terms of compactness of Lκ,κ. (Theorem 2.4)
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If we replace “graphs” in the definition of Refl chr by the class of graphs

whose vertices are intervals of a given linear ordering and two vertices are ad-

jacent if and only if they intersect, we obtain the reflection cardinal Refl RC

which is connected to Rado’s Conjecture: Rado’s Conjecture is characterized

by Refl RC = ℵ2 (for basic facts about Rado’s Conjecture see e.g. [12], [13]). In

[7], we prove among other things that Refl RC = ℵ2 implies Refl col = ℵ2.

In Section 5, we present a result on the reflection cardinal Refl list-chr which

is Refl (C, P ) for “C = graphs” and “P ≡ of countable list-chromatic number”.

3 Non-reflection of countable chromatic number

In this section, we reconstruct the details of a proof of the following theorem

following the sketch of a proof given in [14]:

Theorem 3.1 (P. Erdős and Hajnal [3]).

For any n ∈ ω \ 1, there is a graph G of cardinality ≥ (in)+ (actually of any

cardinality ≥ (in)+) such that, for any subgraph H of G of cardinality ≤ in,

we have chr(H) ≤ ℵ0 while chr(G) > ℵ0.

In the notation of the previous section, Theorem 3.1 implies Refl chr ≥ iω.

This theorem is well-known. For example, it is cited in recent papers by

Hajnal ([8]) and Todorčević ([14]). [8] contains a proof for the case n = 1 and

[14] a rough sketch of the whole proof. It seems however that the original paper

[3] cited in [8] and [14] proves the theorem only under GCH.

Here, we identify the set Xn of all n-tuples of elements of X with

nX = {f : f is a mapping from n = {0, ...,n − 1} to X}.

In particular, if ~t ∈ Xn is such that ~t = 〈t0, ..., tn−1〉, we say Im(~t) = {t0, ..., tn−1}
and Dom(~t) = n. Also, for ~t as above, we write ~t(i) = ti. For a set X and

n ∈ ω \ 2, let shiftn be the binary relation on Xn, defined by

(3.1) shiftn(~u,~v) ⇔ (a) ~u 6= ~v and

(b) ~u(i) = ~v(i + 1) for all i < n − 1 or

~v(i + 1) = ~u(i) for all i < n − 1

for ~u, ~v ∈ Xn.

In the following we show that the graph G = 〈Xn+1, shiftn+1〉 for any set X

of cardinality ≥ (in)+ is as in Theorem 3.1.
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Lemma 3.2. For n ∈ ω \ 1 and for any set X with |X | ≤ in, we have

chr(〈Xn+1, shiftn+1〉) ≤ ℵ0.

Proof. We prove the lemma by induction on n. First, let us prove the assertion

for n = 1. Let F be a family of subsets of ω such that |F | = i1 (= 2ℵ0) and

such that elements of F are pairwise incomparable (with respect to ⊆). For

~t ∈ F 2, let

(3.2) n~t = min(~t(0) \ ~t(1)).

It is enough to prove the following:

Claim 3.2.1. The mapping φ : F 2 → ω; ~t 7→ n~t is a good coloring for the graph

〈F 2, shift2〉.

` Suppose that ~u, ~v ∈ F 2 are such that shift2(~u,~v), say, with ~u(1) = ~v(0).

Then, since n~u 6∈ ~u(1) but n~v ∈ ~v(0) = ~u(1) by (3.2), we have φ(~u) 6= φ(~v).

a (Claim 3.2.1)

The next claim completes the induction proof of Lemma 3.2.

Claim 3.2.2. For n ≥ 2, suppose that X and Y are infinite sets such that

chr(〈Xn, shiftn〉) ≤ ℵ0 and |Y | ≤ 2|X |. Then we have chr(〈Y n+1, shiftn+1〉) ≤
ℵ0.

` We may assume that X is a cardinal κ and Y ⊆ P(κ) and elements of Y are

pairwise incomparable (with respect to ⊆). Let φ : Xn → ω be a good coloring

for 〈Xn, shiftn〉. For u, v ∈ Y , let

(3.3) αu,v =

{
min(u \ v) + 1, if u 6= v,

0, otherwise.

For ~u ∈ Y n+1, let

(3.4) ~α~u = 〈α~u(0),~u(1), α~u(1),~u(2), ...,α~u(n−1),~u(n)〉.

Note that we have ~α~u ∈ Xn for ~u ∈ Y n+1. Note also that if ~u is not a constant

function then neither is ~α~u. If shiftn+1(~u,~v) for ~u, ~v ∈ Y n+1, then at least one

of ~u and ~v is not constant. It follows that at least one of ~α~u and ~α~v is not

constant. Since it is clear that ~α~u and ~α~v still satisfy (3.1), (b) it follows that

~α~u 6= ~α~v and hence we have shiftn(~α~u, ~α~v).

Now let φ∗ : Y n+1 → ω be defined by
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(3.5) φ∗(~u) = φ(~α~u)

for ~u ∈ Y n+1. φ∗ is then a good coloring for 〈Y n+1, shiftn+1〉: Suppose that ~u,

~v ∈ Y n+1 and shiftn+1(~u,~v). Then we have shiftn(~α~u, ~α~v) as was already seen

above. Since φ is a good coloring, it follows that φ∗(~u) = φ(~α~u) 6= φ(~α~v) = φ∗(~v).

a (Claim 3.2.2)

(Lemma 3.2)

Now, let λ ≥ (in)+. Together with Lemma 3.2, the next lemma completes

the proof of Theorem 3.1 by showing that 〈λn+1, shiftn+1〉 is as desired in The-

orem 3.1.

Lemma 3.3. chr(〈λn+1, shiftn+1〉) > ℵ0.

Proof. Let

(3.6) 〈λ〉n+1 = {~u ∈ λn+1 : ~u is strictly increasing

(as a mapping from n + 1 to λ)}.

Since 〈〈λ〉n+1, shiftn+1〉 is a subgraph of 〈λn+1, shiftn+1〉, it is enough to to show

that chr(〈〈λ〉n+1, shiftn+1〉) > ℵ0.

Suppose otherwise. Then there is a good coloring φ : 〈λ〉n+1 → ω for the

graph 〈〈λ〉n+1, shiftn+1〉. By Erdős-Rado theorem there is a set H ∈ [λ]ℵ1 such

that φ is constant on 〈H〉n+1. If α0 < α1 < · · · < αn+1 are n + 2 elements of H,

then, letting ~u = 〈α0, α1, ...,αn〉 and ~v = 〈α1, α2, ...,αn+1〉, we have shiftn+1(~u,~v)

but φ(~u) = φ(~v). This is a contradiction. (Lemma 3.3)

4 Reflection cardinal of Fodor-type Reflection

The Fodor-type Reflection Principle (FRP, [5], see [6] for the formulation we

give below) states that the following (4.1) λ holds for all regular λ > ℵ1:

(4.1)λ For any stationary E ⊆ Eλ
ω and a mapping g : E → [λ]ℵ0 such that

g(α) is a cofinal subset of α for all α ∈ E, there is α∗ ∈ Eλ
ω1

such that

{x ∈ [α∗]ℵ0 : sup(x) ∈ E, g(sup(x)) ⊆ x}

is stationary in [α∗]ℵ0 .

Let us consider here the following generalization. For any cardinal κ > ℵ1

let FRP<κ be the assertion stipulating that the following (4.2) λ holds for all

regular cardinal λ ≥ κ:
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(4.2)λ For any stationary E ⊆ Eλ
ω and a mapping g : E → [λ]ℵ0 such that

g(α) is a cofinal subset of α for all α ∈ E, there is α∗ ∈ λ such that

ω1 ≤ cf(α∗) < κ and

{x ∈ [α∗]ℵ0 : sup(x) ∈ E, g(sup(x)) ⊆ x}

is stationary in [α∗]ℵ0 .

Then FRP is equivalent to FRP<ℵ2 . For cardinals κ < κ′, if FRP<κ holds,

then FRP<κ′ holds.

Let

Refl FRP = min{κ ∈ Card : FRP<κ holds}

if {κ ∈ Card : FRP<κ holds} is nonempty. Otherwise we let Refl FRP = ∞.

The following reformulation of FRP<κ shows that Refl FRP is actually a

reflection cardinal in line with the reflection cardinals of properties of classes of

structures.

Proposition 4.1. For a cardinal κ > ℵ1, FRP<κ is equivalent to the assertion

that the following (4.3) λ holds for all regular cardinal λ ≥ κ:

(4.3)λ For any stationary E ⊆ Eλ
ω and a mapping g : E → [λ]ℵ0 such that

g(α) is a cofinal subset of α for all α ∈ E, there is a set I of regular

uncountable cardinality µ < κ such that cf(sup I) = µ, I is closed with

respect to g and

{x ∈ [I]ℵ0 : sup(x) ∈ E, g(sup(x)) ⊆ x}

is stationary in [I]ℵ0.

The proposition follows immediately from the next lemma:

Lemma 4.2. For regular uncountable cardinals λ, µ with µ < λ, a stationary

E ⊆ Eλ
ω, a mapping g : E → [λ]ℵ0 such that g(α) is a cofinal subset of α for all

α ∈ E, and α∗ ∈ Eκ
µ, the following are equivalent:

(a) There is I ∈ [α∗]µ such that sup(I) = α∗, I is closed with respect to g

and

ZI = {x ∈ [I]ℵ0 : sup(x) ∈ E and g(sup(x)) ⊆ x}

is stationary;

(a’) For any I ∈ [α∗]µ such that sup(I) = α∗ and I is closed with respect to

g as well as with respect to the order topology of α∗, we have that
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ZI = {x ∈ [I]ℵ0 : sup(x) ∈ E and g(sup(x)) ⊆ x}

is stationary;

(b) The set

Zα∗ = {x ∈ [α∗]ℵ0 : sup(x) ∈ E and g(sup(x)) ⊆ x}

is stationary.

Proof. (a’) ⇒ (a) is clear.

(a) ⇒ (b): Suppose that Zα∗ is not stationary and let C ⊆ [α∗]ℵ0 be a club

disjoint from Zα∗ . Let I ∈ [α∗]µ be such that I is cofinal in α∗ and closed with

respect to g. Let

(4.4) C ′ = {x ∩ I : x ∈ C and sup(x) = sup(x ∩ I)}.

Then we can find a C ′′ ⊆ C ′ which is a club in [I]ℵ0 . C ′′ is still disjoint from

Zα∗ and hence also from ZI . Thus ZI is not stationary.

(b) ⇒ (a’): Assume that Zα∗ is stationary. Let I ∈ [α∗]µ be such that

sup(I) = α∗ and I is closed with respect to g as well as with respect to the

order topology of α∗. We have to show that ZI is stationary in [I]ℵ0 . Suppose

that C ⊆ [I]ℵ0 is a club. Let

(4.5) C̃ = {x ∪ y : x ∈ C, y ∈ [α∗ \ I]ℵ0 , sup(x) ≥ sup(y)}.

Then C̃ is a club in [α∗]ℵ0 . Hence, by the assumption, there is z ∈ Zα∗ ∩ C̃.

Let x = z ∩ I. By (4.5) and since I is closed with respect to the order topology

of α∗, we have sup(z) = sup(x) ∈ E ∩ I. By closedness of I with respect to

g, it follows that g(sup(x)) ⊆ I. Hence g(sup(x)) ⊆ z ∩ I = x. Thus we have

x ∈ ZI ∩ C. This shows that ZI is stationary. (Lemma 4.2)

Theorem 4.3. Assuume FRP<κ for a cardinal > ℵ1. For any graph G =

〈G,K〉, if

(4.6) col(G � I) ≤ ℵ0 holds for all I ∈ [G]<κ,

then col(G) ≤ ℵ0.

Proof. The proof is almost identical with the one given in [6] for the case

κ = ℵ2.

We prove by induction on λ that the following assertion (4.7) λ holds for all

cardinals λ:

(4.7)λ For any graph G = 〈G,K〉 of cardinality λ, if (4.6) holds, then

col(G) ≤ ℵ0.

10



For λ < κ, (4.7) λ trivially holds.

Suppose that λ ≥ κ and we have proved (4.7) λ′ for all λ′ < λ.

If λ is singular, and G is as in (4.7) λ, then we can conclude col(G) ≤ ℵ0 by

the induction hypothesis and Shelah’s Singular Compactness Theorem ([11] see

also [6]).

Suppose now that λ is regular and assume, toward a contradiction, that there

is a graph G of cardinality λ which satisfies (4.6) but col(G) > ℵ0. Without

loss of generality, we may assume that (the underlying set of) G is λ. Note that

col(G � α) ≤ ℵ0 for all α < λ by the induction hypothesis. Hence

(4.8) E = {α ∈ λ : there is β ∈ λ \ α such that |Kβ
α | ≥ ℵ0}.

is stationary by Theorem 2.1. Let E∗ = E ∩ Eλ
ω.

Claim 4.3.1. E∗ is stationary in λ.

` Suppose otherwise. Then E∩Eλ
>ω must be stationary. For each α ∈ E∩Eλ

>ω,

let βα ∈ λ \ α be such that Kβα
α is infinite. Let cα ∈ [Kβα

α ]ℵ0 and ξα = sup(cα).

Then ξα < α since cf(ξα) ≤ ω. βα and cα witness that [ξα, α) ∩ Eλ
ω ⊆ E∗. By

Fodor’s theorem, there are ξ∗ ∈ Eλ
ω and stationary E† ⊆ E ∩ Eλ

>ω such that

ξα = ξ∗ for all α ∈ E†. We have Eλ
ω \ ξ∗ =

∪
α∈E† [ξ∗, α) ∩Eλ

ω ⊆ E∗. Thus E∗ is

stationary. This is a contradiction to the assumption. a (Claim 4.3.1)

For α ∈ E∗, let βα ∈ λ \ α be such that |Kβα
α | ≥ ℵ0 and cα ∈ [Kβα

α ]ℵ0 .

By thinning out E∗ if necessary, we may assume that for any α ∈ E∗, βα <

min(E∗ \α). Let g : E∗ → [λ]ℵ0 be such that cα ⊆ g(α) ⊆ α and g(α) is cofinal

in α for all α ∈ E∗.

By FRP<κ, there is I ∈ [λ]<κ such that ℵ1 ≤ | I | = cf(sup(I)) = µ < κ, I

is closed with respect to g and Z as in Lemma 4.2, (a) (with E there replaced

by E∗) is stationary in [I]ℵ0 . By blowing up I if necessary without changing

sup(I), we may assume that I is also closed with respect to the order topology

of sup(I) as well as closed with respect to the mapping α 7→ βα.

Now, we have col(G � I) ≤ ℵ0 by the assumption (4.6). Hence there is a

ℵ0-coloring mapping f : I → [I]<ℵ0 for G � I by Theorem 2.1. Let

(4.9) C = {x ∈ [I]ℵ0 : x is closed with respect to f}.

Since C is a club in [I]ℵ0 , there is an x ∈ Z ∩ C. By the definition of Z and g,

|Kβ
x | ≥ ℵ0 for β = βsup(x). For any γ ∈ Kβ

x , we have f(γ) ⊆ x as x is closed

with respect to f . Since f(β) is finite, Kβ
x \ f(β) is nonempty. But then, for
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any γ∗ ∈ Kβ
x \ f(β), we have γ∗ 6∈ f(β) and β 6∈ f(γ∗). This is a contradiction.

(Theorem 4.3)

Theorem 4.3 can be reformulated in the following inequality of reflection

cardinals:

Corollary 4.4. Refl col ≤ Refl FRP.

This inequality can be further related to that of Theorem 2.4, (2) just by

observing that Refl FRP is less or equal to the first strongly compact cardinal

(that is, if such a cardinal ever exists).

5 Reflection and Non-reflection of list-chromatic number

Theorem 5.1. The statement “Refl list-chr = ℵ2” is independent from ZFC +

FRP.

For the proof of Theorem 5.1, we use the following reformulation of a theorem

by P. Komjáth:

Theorem 5.2 (Komjáth [10]).

(1) (MA(Cohen)) For any graph G of cardinality ℵ1, we have ℵ0 < chr(G)

⇔ ℵ0 < list-chr(G).

(2) For any graph G of cardinality ℵ1, if ℵ0 < col(G) then, for the poset

P = Fn(ω2, 2, < ℵ1), we have ‖–P “ℵ0 < list-chr(G) ”.

We also need the following facts:

Facts 5.3. (1) (Fuchino, Juhász, Soukup, Szentmiklóssy and Usuba [5])

FRP is preserved by any c.c.c. forcing.

(2) (Fuchino, Sakai, Soukup and Usuba [6])

Suppose that κ is strongly compact. Then we have ‖–P “ FRP ” where P is the

standard poset P = Col (ℵ1, < κ) collapsing κ to ω2.

Proof of Theorem 5.1: First, start from a model V of ZFC + FRP and

force MA(Cohen) by a c.c.c. poset. Let V [G] be the generic extension. By

Fact 5.3, (1), we still have FRP in V [G]. By Theorem 3.1, there is a graph G

witnessing Refl chr > ℵ2 in V [G]. By Theorem 5.2, (1), this G witnesses also

Refl list-chr > ℵ2 in V [G].

Assume now that κ is a strongly compact cardinal in V and let V [G] be the

generic extension obtained by collapsing κ to ℵ2 by P = Col (ℵ1, < κ). Then we

12



have V [G] |= FRP by Fact 5.3, (2). In V [G] every graph H of cardinality ℵ1 is

contained in cofinally many intermediate models over each of which many Cohen

subsets of ω1 are added. Hence, by Theorem 5.2, (2), if H has countable list-

chromatic number in V [G] then H also has countable coloring number. Now,

in V [G], if G is a graph such that all subgraphs H of cardinality ≤ ℵ1 have

countable list-chromatic number, then they all have countable coloring number.

By FRP in V [G] it follows that col(G) ≤ ℵ0. Since list-chr(G) ≤ col(G) we

obtain list-chr(G) ≤ ℵ0. This shows that Refl list-chr = ℵ2 in V [G].

(Theorem 5.1)

Note that by the same argument as in the first part of the proof of Theorem

5.1, we obtain that MM implies Refl list-chr > ℵ2. This is quite unexpected

since it is usualy so that if we have certain reflection phenomena then we do

have it under MM or some weakening of it. Here we have consistently the

reflection of countable list-chromatic number but MM refutes it! This might

suggest that Refl list-chr = ℵ2 underlies a new type of reflection phenomenon

still to be studied.
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