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Abstract

We prove that the Fodor-type Reflection Principle (FRP) is equiv-
alent to the assertion that any Boolean algebra is openly generated
if and only if it is ℵ2-projective. Previously it was known that this
characterization of openly generated Boolean algebras follows from
Axiom R. Since FRP is preserved by c.c.c. generic extension, we
conclude in particular that this characterization is consistent with
any set-theoretic assertion forcable by a c.c.c. poset starting from a
model of FRP.

A crucial step of the proof of the main result is to show that
FRP implies Shelah’s Strong Hypothesis (SSH). In particular, we
obtain that FRP implies the Singular Cardinals Hypothesis (SCH).
Continuing Rinot [17], we also establish some new characterizations
of SSH in terms of topological reflection theorems.
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1 Introduction

In [7], [8], [9], [12], it is shown that many mathematical reflection theorems

which were originally proved under Axiom R of Fleissner [4] hold already

under the Fodor-type Reflection Principle (FRP) and that most of them are

even equivalent to FRP over ZFC.

The present paper deals with the reflection theorem on the open gener-

atedness of Boolean algebras proved in [5] under Axiom R and shows that

this reflection theorem is also equivalent to FRP (Theorem 5.2).

Here, FRP is the following principle introduced in [9]:

FRP : For any regular cardinal λ > ℵ1, stationary E ⊆ Eλ
ω = {α ∈ λ :

cf(α) = ω} and mapping g : E → [λ]≤ℵ0 , there is I ∈ [λ]ℵ1 such

that

(1.1) cf(I) = ω1;

(1.2) g(α) ⊆ I for all α ∈ I ∩ E;

(1.3) for any regressive f : E ∩ I → λ such that f(α) ∈ g(α)

for all α ∈ E ∩ I, there is ξ∗ < λ such that f−1 ′′{ξ∗} is

stationary in sup(I).

In Fuchino, Juhász, Soukup, Szentmiklóssy and Usuba [9], it is shown

that FRP follows from RP (see below for the definition of this principle).

Since RP trivially follows from Axiom R, FRP is also a consequence of

Axiom R.

In contrast to RP which implies that the size of the continuum is less or

equal to ℵ2 (S. Todorčević, see e.g. Theorem 37.18 in [14]), FRP does not

put any restriction on the size of the continuum since FRP is preserved by

c.c.c. generic extension ([9]).

RP and Axiom R are the principles defined as follows:

RP : For any cardinal λ of cofinality > ω1 and stationary S ⊆ [λ]ℵ0 , there

is an I ∈ [λ]ℵ1 such that

(1.4) ω1 ⊆ I;

(1.5) cf(I) = ω1;

(1.6) S ∩ [I]ℵ0 is stationary in [I]ℵ0 .

T ⊆ [X]ℵ1 for an uncountable set X is said to be ω1-club (or tight and

unbounded in Fleissner’s terminology in [4]) if

(1.7) T is cofinal in [X]ℵ1 with respect to ⊆ and
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(1.8) for any increasing chain 〈Iα : α < ω1〉 in T of length ω1, we have∪
α<ω1

Iα ∈ T .

Axiom R : For any uncountable cardinal λ and stationary S ⊆ [λ]ℵ0 and

ω1-club T ⊆ [λ]ℵ1 , there is I ∈ T such that S ∩ [I]ℵ0 is stationary

in [I]ℵ0 .

R.E. Beaudoin [1] proved that Axiom R follows from MA+(σ-closed). It

is easy to see that Axiom R implies RP. It is also easy to see that FRP

implies the stationary sets of ordinals version of the reflection principles

which I denote ORP:

ORP : For any cardinal λ of cofinality > ω1 and stationary S ⊆ Eλ
ω there

is a δ ∈ Eλ
ω1

= {α < λ : cf(α) = ω1} such that S ∩ δ is stationary

in δ.

By the remarks above and by results from [9] and [12], the axioms men-

tioned above can be put together in the following diagram:

MM ⇒ MA+(σ-closed) ⇒ Axiom R ⇒ RP 6⇐⇒ FRP 6⇐⇒ ORP

FRP is equivalent to its seeming strengthening obtained when the phrase

“there is I ∈ [λ]ℵ1” in the definition of FRP is replaced by “there are

stationarily many I ∈ [λ]ℵ1”:

Lemma 1.1 (FRP). Suppose that λ > ℵ1 is a regular cardinal. Then, for

any mapping g : E → [λ]≤ℵ0 on a stationary E ⊆ Eλ
ω and club C ⊆ [λ]ℵ1,

there is I ∈ C such that I together with E and g satisfies (1.1), (1.2) and

(1.3).

Proof. Suppose that λ, E, g, C are as above. Let skM be the canoni-

cal Skolem-hull operator on M = 〈H(θ),∈, g, C, . . . ,E〉 for a sufficiently

large regular cardinal θ and a well-ordering E on H(θ). Let C∗ = {α <

λ : ω1 < α, skM(α) ∩ λ = α} and let h : λ → λ be defined by h(α) =

min ((E ∩ C∗) \ α) for α ∈ λ.

Now, let g′ : E → [λ]≤ℵ0 be defined by

(1.9) g′(α) = g(α) ∪ {h(α)}

for α ∈ S. By FRP, there is I0 ∈ [λ]ℵ1 such that 〈I0, E, g′〉 |= (1.1), (1.2),

(1.3). Then, by (1.9), and since C∗ is closed, we have sup(I0) ∈ C∗. Let

I ∈ [λ]ℵ1 be such that I0∪ω1 ⊆ I ⊆ sup(I0) and skM(I)∩λ = I. I ∈ C since
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I =
∪

(C ∩ skM(I)) by ω1 ⊆ skM(I) and elementarity. Clearly I together

with E and g satisfies (1.1), (1.2) and (1.3). (Lemma 1.1)

For an uncountable setX, a filtration ofX is a continuously ⊆-increasing

sequence 〈Xα : α < δ〉 of subsets of X such that δ = cf(|X |), |Xα | < |X |
for all α < δ and

∪
α<δ Xα = X. If X is an algebraic structure we also

assume that all Xα, α < δ are subalgebras of X.

The following fact was proved in Fuchino, Juhász, Soukup, Szentmiklóssy

and Usuba [9].

Lemma 1.2 (see the proof of Lemma 2.4 in [9]). Suppose that λ, E, g are

as in the definition of FRP and I ∈ [λ]ℵ1, together with these E and g,

satisfies (1.1), (1.2) and (1.3). Then, for any filtration 〈Iα : α < ω1〉 of I,

the set

{α < ω1 : sup(Iα) ∈ I and g(sup(Iα)) ∩ sup(Iα) ⊆ Iα}

is stationary in ω1.

Our notation and conventions on Boolean algebras are quite standard

and follow closely S. Koppelberg [15]. In particular, a Boolean algebra B

is thought to be an algebraic structure B = 〈B,+,−, ·, 0, 1〉 satisfying the

usual axiom of Boolean algebras with the partial ordering ≤B (or simply ≤
if it is clear which B is meant) defined by a ≤B b ⇔ a · b = a (⇔ a+ b = b).

For a Boolean algebra B, let B+ = B \{0}. X ⊆ B+ is pairwise disjoint

if x · y = 0 for every distinct x, y ∈ B. Recall that a Boolean algebra

B is said to satisfy the c.c.c. (countable chain condition) if every pairwise

disjoint X ⊆ B+ is countable.

For Boolean algebras A and B, we write A ≤ B to denote that A is

a subalgebra of B. A is a relatively complete subalgebra of B (notation:

A ≤rc B) if A ≤ B and, for any b ∈ B, pA(b) =
∑AA � b exists where

A � b denotes the ideal {a ∈ A : a ≤ b} on A. pA(b) is called the lower

projection of b on A. If A ≤rc B, the upper projection qA(b) of b ∈ B

on A defined by qA(b) = −pA(−b) is the smallest element of the filter

A ↑ b = {a ∈ A : b ≤ a} on A. To prove that A ≤rc B holds, it is clearly

enough to show that all b ∈ B have their upper projection qA(b).

If A ≤ B but A is not a relatively complete subalgebra of B, we denote

this by A ≤¬rc B. If A ≤ B, we have A ≤¬rc B if and only if there is a b ∈ B

which has no lower projection on A (i.e. the ideal A � b is not generated by

a single element).
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A ≤ B is a σ-subalgebra of B (notation: A ≤σ B) if, for all b ∈ B, the

ideal A � b on A is generated by countably many elements of A � b.
For Boolean algebras A and B, A⊕B denotes the free product of A and

B. Note that A and B are identified canonically with subalgebras of A⊕B

and we have A ≤rc A⊕B, B ≤rc A⊕B with respect to this identification.

A Boolean algebra B is projective if, for any Boolean algebras A and C,

Boolean homomorphism ϕ : B → A and surjective Boolean homomorphism

ψ : C → A, there is a unique Boolean homomorphism η : B → C such that

ϕ = ψ ◦ η.

B A

C

�
ϕ

ψ

η

Theorem 1.3 (R. Haydon, S. Koppelberg, see [16]). For a Boolean algebra

B, the following are equivalent:

(a) B is projective.

(b) B ⊕ Fr(κ) is free for some large enough κ.

(c) There is a continuously increasing chain 〈Bα : α < ρ〉 of subalgebras

of B such that
∪

α<ρBα = B, B0 is countable, Bα+1 is countably generated

over Bα and Bα ≤rc B for all α < ρ.

Note that it follows from (b) above that every projective Boolean algebra

satisfies the c.c.c.

A Boolean algebraB is openly generated (or rc-filtered in the terminology

of L. Heindorf and L.B. Shapiro [13]) if {A ∈ [B]ℵ0 : A ≤rc B} contains a

club subset of [B]ℵ0 . The notion of the open generatedness was originally

studied by E.V. Ščepin in the context of topological spaces. L. Heindorf

then translated this notion into the context of Boolean algebras via Stone

duality. See [13] for more historical details.

The following can be obtained immediately from the definition of the

open generatedness and Theorem 1.3.

Lemma 1.4. (1) If a Boolean algebra B is openly generated and |B | ≤ ℵ1,

then B is projective.

(2) A Boolean algebra B is openly generated if and only if, for any σ-closed

p.o. P forcing |B | to be less or equal to ℵ1, we have ‖–P “B is projective ”.
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(3) If a Boolean algebra B is projective then B is openly generated.

(4) An openly generated Boolean algebra B satisfies the c.c.c.

Let κ be a cardinal and P a property of a Boolean algebra. A Boolean

algebra B is said to be κ-P if the set

{C ∈ [B]<κ : C ≤ B and C satisfies P}

contains a club subset of [B]<κ.

By Lemma 1.4, (1) and (3), we obtain:

Lemma 1.5. A Boolean algebra B is ℵ2-projective if and only if B is ℵ2-

openly generated.

Our main theorem can be now formulated as follows:

Theorem 1.6. Assume FRP. Then, for any Boolean algebra B, the follow-

ing are equivalent:

(a) B is openly generated.

(b) B is ℵ2-projective (i.e. ℵ2-openly generated).

We shall prove this theorem in Section 4. The proof of Theorem 1.6 uses

the fact that FRP implies Shelah’s Strong Hypothesis (SSH). This fact is

established in the following Section 2. In continuation of Rinot [17], we also

give some new characterizations of SSH in terms of topological reflection

theorems.

In Section 3, we give a fairly self-contained exposition of (mostly already

known) results on openly generated and ℵ2-openly generated Boolean alge-

bras which we need in the proof of Theorem 1.6.

The assertion of Theorem 1.6 was proved first under MA+(σ-closed) by

the first author in [5]. Qi Feng then pointed out that almost the same proof

can be applied to prove the assertion under Axiom R (see also Fuchino [6]).

On the other hand, the proof of Theorem 1.6 is not a straightforward

modification of the proof under Axiom R in [5]. This is partially due to the

fact that FRP cannot handle with the reflection on any singular cardinal

λ (see Lemma 2.2 in [9]). But, even for regular λ > ℵ1, it appears that

we need some more algebraic tools (some being proved under SSH) from

Section 3.

In [5], a counterexample to the assertion of Theorem 1.6 was constructed

under the existence of a non-reflecting stationary set S ⊆ Eκ
ω for some reg-

ular cardinal κ. This means that the assertion of Theorem 1.6 implies
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ORP. In Section 5, we construct a counterexample to the assertion of The-

orem 1.6 under the existence of an almost essentially disjoint ladder system

g : S → [κ]ℵ0 for a regular cardinal κ and a stationary S ⊆ Eκ
ω. In Fuchino,

Sakai, Soukup and Usuba [12], it is proved that the existence of such a

ladder system is equivalent to the negation of FRP. Thus, this construc-

tion shows that the assertion of Theorem 1.6 implies FRP and hence it is

equivalent to FRP over ZFC (Theorem 5.2).

2 FRP implies Shelah’s Strong Hypothesis

In light of previous works showing that the Singular Cardinal Hypothesis

(SCH) follows from diverse reflection principles (see e.g. [20], [21], [22],

[23]), it seems natural to ask if FRP also implies SCH.

However, in contrast to the principles considered in the papers cited

above, FRP does not imply that the continuum is very small. Hence the

right question to be asked here seems to be rather if FRP implies Shelah’s

Strong Hypothesis (SSH). Note that SCH and SSH become equivalent under

2ℵ0 < ℵω (see Theorem 2.1 and (2.2) below).

In this section, we shall give the positive answer to the latter question.

Of course the positive answer to the former question follows from this.

Let us begin with reviewing the definition and some basic facts about

SSH. Shelah’s Strong Hypothesis (SSH) states that the pseudopowers of

singular cardinals take their minimal possible values, i.e. pp(λ) = λ+ holds

for all singular λ. Here, the pseudopower pp(λ) is defined as the supremum

of

PP(λ) = {cf(
∏

a/D) : a ⊆ λ ∩Reg, sup a = λ, otp(a) = cf(λ),

D is an ultrafilter over a disjoint from the

ideal Ib(a) of the bounded subsets of a }.

Claim 2.4 in Section II of [19] shows that a result similar to Silver’s theorem

holds for pp(·). From this it follows that

(2.1) if pp(λ) > λ+ for some singular cardinal λ then there is a singular

cardinal λ′ ≤ λ of countable cofinality such that pp(λ′) > (λ′)+.

SSH is actually a cardinal arithmetical statement.

Theorem 2.1 (S. Shelah, see [17]). SSH is equivalent to each of the follow-

ing assertions:
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(a) cf([κ]θ, ⊆) = κ holds for all cardinals κ, θ with θ < cf(κ).

(b) cf([κ]ℵ0 , ⊆) = κ+ for all singular cardinals κ, with cf(κ) = ω.

Note that the implication (b) ⇒ SSH in Theorem 2.1 follows from (2.1).

By Silver’s theorem, it is easy to see that the Singular Cardinal Hypoth-

esis (SCH) is equivalent to the assertion:

(2.2) cf([κ]ℵ0 , ⊆) = κ+ for every singular cardinal κ > 2ℵ0 of cofinality

ω.

From this and the characterization of SSH above, it is clear that SSH

implies SCH.

S. Shelah (Claim 1.3 in Chapter II of [19]) proved that

(2.3) if pp(λ) > λ+ for a singular cardinal λ, then there is a better scale

〈~λ, ~f〉 for λ.

Here, a pair 〈~λ, ~f〉 is said to be a better scale for a singular cardinal λ if

(2.4) ~λ = 〈λi : i < cf(λ)〉 is a strictly increasing sequence of regular

cardinals cofinal in λ;

(2.5) ~f = 〈fα : α < λ+〉, fα ∈
∏

i<cf(λ) λi for all α < λ+ and 〈fα : α <

λ+〉 is a scale in
∏

i<cf(λ) λi with respect to the ideal Ib(cf(λ)) of the

bounded subsets of cf(λ); and

(2.6) For every δ < λ+ with cf(δ) > cf(λ), there is a closed unbounded

C ⊆ δ such that

(2.6a) otp(C) = cf(δ) and

(2.6b) for all β ∈ C there is i < cf(λ) such that fγ(j) < fβ(j) for

all j ≥ i and γ ∈ C ∩ β.

It is proved in Cummings, Foreman and Magidor [2, Theorem 4.1] that the

existence of a better scale for singular λ implies the combinatorial principle

ADSλ. Here,

ADSλ : There exists a sequence 〈aα : α < λ+〉 of unbounded subsets of λ

such that

(2.7) otp(aα) = cf(λ); and

(2.8) for all β < λ+ there exists g : β → κ such that the sequence

〈aα \ g(α) : α < β〉 consists of pairwise disjoint sets.

In [9] it is shown that ADSλ for a singular cardinal λ of cofinality ω implies

ADS−(λ+) where, for a regular cardinal κ,
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ADS−(κ) : There are a stationary set S ⊆ κ and g : S → [κ]ℵ0 such that

(2.9) g(α) ⊆ α and otp(g(α)) = ω for all α ∈ S;

(2.10) g is almost essentially disjoint. That is, for all β < κ, there

is a function f : S∩β → [κ]<ℵ0 such that f(α) < sup(g(α))

for all α ∈ S ∩ β and g(α) \ f(α), α ∈ S ∩ β are pairwise

disjoint.

It is also shown in [9] that ADS−(κ) for a regular uncountable κ implies

¬FRP — actually, we can further show that FRP is equivalent to the state-

ment that ADS−(κ) does not hold for all regular uncountable κ (see [12,

Theorem 2.5]).

By putting together the facts mentioned above we obtain a proof of the

following Theorem 2.21) . We give here a slightly more direct proof of this

theorem.

Theorem 2.2. FRP implies SSH.

Proof. Suppose ¬SSH. Then, by (2.1), there is a singular cardinal λ such

that cf(λ) = ω and pp(λ) > λ+. By (2.3), there is a better scale 〈~λ, ~f〉 for

λ, say, with ~λ = 〈λi : i < ω〉 and ~f = 〈fα : α < λ+〉. Fix a one-to-one

mapping ϕ : ω>λ → λ and let E = Eλ+

ω \ λ. Let g : E → [λ+]ℵ0 be defined

by

(2.11) g(α) = {ϕ(fα � n) : n ∈ ω} for α ∈ E.

Note that we actually have g : E → [λ]ℵ0 and hence g(α) ⊆ α for all α ∈ E.

We show that this g together with the E as above is a counterexample

to FRP.

Suppose that I ∈ [λ]ℵ1 satisfies (1.1) and (1.2). We have to show that I

does not satisfy (1.3).

Let δ = sup(I). Then there is a club C ⊆ δ satisfying (2.6a) and (2.6b).

For n ∈ ω, let

(2.12) En = {β ∈ C : fγ(j) < fβ(j) holds for all γ ∈ C ∩ β and j ≥ n,

n is the minimal number with this property for β}.

By (2.6b), we have

1) After the results in this section has been obtained, the authors learned that
Toshimichi Usuba was also aware of Theorem 2.2 by the same combination of the known
results.
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(2.13) C =
∪̇

n∈ωEn.

Let f : E ∩ I → λ be defined by

(2.14) f(α) =

{
ϕ(fα � (n+ 1)), if α ∈ En

ϕ(∅), if there is no n as above.

Then, we have f(α) ∈ g(α) ∩ α for all α ∈ E ∩ I. For any stationary

S ⊆ E ∩ δ, there is n∗ ∈ ω such that S ∩ En∗ is stationary by (2.13). For

α, α′ ∈ S ∩ En∗ with α < α′ we have fα(n∗) < fα′(n∗) by (2.12). It follows

that f(α) 6= f(α′) for all α, α′ ∈ S ∩ En∗ by the definition (2.14) of f .

This shows that the mapping f as above exemplifies the failure of (1.3)

for this I. (Theorem 2.2)

As we already mentioned in the introduction, FRP is known to be equiv-

alent to many mathematical reflection theorems. Hence the implication of

SSH from FRP suggests that SSH can be also regarded as a reflection theo-

rem. In fact, Rinot [17] as well as the next Theorems 2.3 and 2.4 show that

SSH can be characterized in terms of topological reflection theorems.

The proof of the following theorems is a further development of the idea

of proof of the Theorem in [17] and is also similar but much more involved

than the one for the proof of the implication of SSH from FRP given above.

Let us begin with the definition of the topological notions used in the

next theorem. A topological space X is said to be thin if, for any D ⊆ X,

we have |D | ≤ |D |+. For a cardinal κ, X is said to be < κ-thin if, for any

D ∈ [X]<κ we have |D | ≤ |D |+.

Recall that a topological space X is countably tight if for any Y ⊆ X

and x ∈ X, we have x ∈ Y if and only if there is Y ′ ∈ [Y ]ℵ0 such that

x ∈ Y ′. The density d(X) of a topological space X is the minimal size of

D ⊆ X such that D = X.

Theorem 2.3. The following are equivalent:

(a) SSH.

(b) For any countably tight topological space X, if X is < ℵ1-thin, then

X is thin.

(c) For any countably tight topological space X, if X is < κ-thin for

κ = max{ℵ1, d(X)}, then X is thin.

Proof. (a) ⇒ (b): Assume SSH and suppose that X is a countably tight

< ℵ1-thin topological space.
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Let D ⊆ X. By SSH, there is an H ⊆ [D]ℵ0 of cardinality ≤ |D |+ such

that H is cofinal in [D]ℵ0 with respect to ⊆. By countable tightness, we

have D =
∪
{Y : Y ∈ H}. Since X is < ℵ1-thin, we have |Y | ≤ ℵ1 for all

Y ∈ H. Thus |D | = |
∪
{Y : Y ∈ H} | ≤ |H | · ℵ1 ≤ |D |+.

(b) ⇒ (c) is trivial.

(c) ⇒ (a): Assume ¬SSH. Then by (2.1) there is a singular cardinal

λ of countable cofinality such that pp(λ) > λ+. Let 〈λn : n < ω〉 be an

increasing sequence of regular cardinals cofinal in λ and D an ultrafilter

over ω such that D is disjoint from the ideal Ib(ω) of the bounded subsets

of ω (i.e. D is non-principal) and cf(
∏

i<ω λi, <D) ≥ λ++.

Let κ = λ+. Since κ is regular, we have Eκ+

<κ ∈ I[κ+] by Lemma 4.4 in

[18]. By Lemma 2.3 in [18], this means that there is a sequence ~x = 〈xα :

α < κ+〉 with xα ⊆ α for all α < κ+ and a club C ⊆ κ+ such that

(2.15) for every δ ∈ Eκ+

<κ ∩C, there is a cofinal subset aδ of δ of order type

cf(δ) such that aδ ∩ α = xα for all α ∈ aδ.

We define now a <D increasing sequence 〈fα : α < κ+〉 of elements of∏
i<ω λi inductively as follows: Let f0 ∈

∏
i<ω λi be arbitrary. Suppose that

〈fβ : β < α〉 has been chosen for some α < κ+. Since cf(
∏

i<ω λi, <D) ≥ κ+,

there is some g ∈
∏

i<ω λi such that fβ <D g for all β < α. Let fα ∈
∏

i<ω λi

be defined by

(2.16) fα(n) =

{
sup({fβ(n) : β ∈ xα} ∪ {g(n)}), if |xα | < λn ,

g(n), otherwise.

Since g ≤ fα (coordinatewise), we have fβ <D fα for all β < α.

Fix a one-to-one mapping ψ : ω>λ → λ \ ω1 and let F = {yα : α ∈ C}
where yα = {ψ(fα � n) : n ∈ ω} for α < κ+. Note that F ⊆ [λ \ ω1]

ℵ0 and

hence F ∩ λ = ∅.
Let X be the the Mrówka space over disjoint union of F and λ, that is,

the space X ∪ λ with the topology τ such that each α < λ is isolated and

each y ∈ F has the neighborhood base

By = {{y} ∪ (y \ s) : s ∈ [y]<ℵ0}.

〈X, τ〉 is then first countable and hence countably tight.

We show that 〈X, τ〉 is a counterexample to (c). Note that, for any

A ⊆ λ, we have

(2.17) A = A ∪ {y ∈ F : |A ∩ y | = ℵ0}
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and, for any B ⊆ X, we have

(2.18) λ ∩B = λ ∩B.

In particular, we have λ = X and d(X) = λ. Since λ+ < κ+ = |X | = |λ |,
X is not thin. Thus the following claim establishes that X is a counterex-

ample to (c).

Claim 2.3.1. For every D ∈ [X]<λ we have |D | = |D |.

` Suppose not and let D ∈ [X]<λ be such that |D | > |D |. Since λ∩D =

λ ∩D by (2.18), we have

(2.19) | F ∩D | > |D |.

By (2.17), it follows that |λ ∩D | ≥ ℵ0. Let θ = |D |+. By (2.19), there is

I ∈ [C]θ such that otp(I) = θ and yα ∈ D for all α ∈ I. Let δ = sup(I).

Then cf δ = θ < λ < κ. Since C is closed, we have δ ∈ C. Thus δ ∈ Eκ+

<κ∩C
and there is an aδ as in (2.15) for this δ.

Let jγ ∈ aδ and iγ ∈ I for γ < θ be defined inductively such that

(2.20) jγ0 < iγ0 < jγ1 < iγ1 for all γ0 < γ1 < θ.

In particular we have jγ < iγ < jγ+1 for all γ < θ and hence fjγ <D fiγ <D

fjγ+1 .

Let n∗ ∈ ω be such that λn∗ > θ. Since D is a filter and disjoint from

Ib(ω), for each γ < θ, there is an nγ ∈ ω \ n∗ such that

(2.21) fjγ (nγ) < fiγ (nγ) < fjγ+1(nγ).

For n < ω, let I(n) = {γ < θ : nγ = n}. Then we have θ =
∪

n<ω I(n).

Since cf(θ) = θ > ω, there is n† < ω such that I(n†) is cofinal in θ.

Subclaim 2.3.1.1. 〈fiγ (n
†) : γ ∈ I(n†)〉 is strictly increasing.

` For γ0, γ1 ∈ I(n†) with γ0 < γ1, we have iγ0 < jγ0+1 ≤ jγ1 < iγ1 . Hence,

we have fiγ0
(n†) < fjγ0+1(n

†) and fjγ1
(n†) < fiγ1

(n†).

Thus it is enough to show

(2.22) fjγ0+1(n
†) ≤ fjγ1

(n†).

If γ0 + 1 = γ1, this is trivial. If jγ0+1 < jγ1 , then we have jγ0+1 ∈ aδ ∩ jγ1

by the choice of jγ’s. Since xjγ1
= aδ ∩ jγ1 by (2.15), we have | sjγ1

| ≤
| aδ | = θ < λn∗ ≤ λn† . Thus the first case in (2.16) has been applied when

12



fjγ1
(n†) was defined. In particular, since jγ0 ∈ aδ ∩ jγ1 = xjγ1

, (2.22) holds.

a (Subclaim 2.3.1.1)

Let I ′ = {iγ : γ ∈ I(n†)}. Since I ′ ⊆ I we have {yα : α ∈ I ′} ⊆ D. It

follows by (2.17) that yα∩D is infinite for all α ∈ I ′. Since 〈fα(n†) : α ∈ I ′〉
is strictly increasing sequence of length θ,

{(D ∩ yα) \ {ψ(fα � m) : m < n†} : α ∈ I ′}

is a family of θ many pairwise disjoint infinite subsets of D. This is a

contradiction to |D | < θ. a (Claim 2.3.1)

(Theorem 2.3)

We also obtain the following Theorem 2.4 by almost the same proof as

above.

Let us call a topological space X very thin if, for every D ⊆ X of regular

cardinality |D | = |D | holds. Let us also say that X is < κ-very thin if, for

every D ⊆ X of regular cardinality < κ, |D | = |D | holds.

Note that if a very thin space X is countably tight then we also have

|D | = |D | for all D ⊆ X of cardinality with uncountable cofinality.

Theorem 2.4. The following are equivalent:

(a) SSH.

(b’) For any countably tight topological space X, if X is < ℵ1-very thin,

then X is very thin.

(c’) For any countably tight topological space X, if X is < κ-very thin

for κ = max{ℵ1, d(X)}, then X is very thin.

Theorem in [17] is now almost included in Theorem 2.4.

Corollary 2.5 (A version of (1) ⇔ (4) of Theorem in Rinot [17]). The

following are equivalent:

(a) SSH.

(d) For a countably tight topological space X, if

( cf(d(X)) > ω and |X | > d(X) ) or |X | > d(X)+,

then there is a countable subset D of X such that |D | = |X |.

Proof. “(a) ⇒ (d)” can be shown by the proof of “(a) ⇒ (b)” of Theorem

2.3 with the infinite version of pigeonhole principle.

“(d) ⇒ (a)” follows from “(b’) ⇒ (a)” of Theorem 2.4. (Corollary 2.5)

13



3 Properties of openly generated and ℵ2-openly gen-

erated Boolean algebras

In this section, we consider some results on openly generated and ℵ2-openly

generated Boolean algebras needed in the next section.

Lemma 3.10 and Theorem 3.12 below appeared already in [6]. Under

Axiom R, Theorem 1.6 would immediately follow from these results. How-

ever, for our proof of Theorem 1.6 under FRP, we need apparently some

more structure theory on ℵ2-openly generated Boolean algebras.

[6] provides assertions (Corollary A.4.6 and Theorem A.4.7 in [6]) on ℵ2-

openly generated Boolean algebras beyond our Lemma 3.10 and Theorem

3.12 which could be used for our purpose. Unfortunately, for the proof

of these assertions in [6], a lemma is used which was later proved to be

independent from ZFC (under some large cardinal) and whose proof (see

Theorem 10 in [11]) requires a very weak form of square principle and the

status of this square principle under Axiom R or even FRP is still open (see

also “added in proof” in [10]).

To avoid this problem, we make use of Theorem 3.13 below in the proof

of Theorem 1.6 in Section 4.

For a Boolean algebra B, a mapping f : B → [B]<ℵ0 is called a Freese-

Nation mapping (FN-mapping, for sort) on B if, for any a, b ∈ B with a ≤ b,

there is c ∈ f(a)∩ f(b) such that a ≤ c ≤ b. The following is the essence of

Theorem 3.2, 3.2. We sketch the proof for the convenience of the reader.

Lemma 3.1 (L.Heindorf and L.B. Shapiro [13]). (1) Suppose that B is an

openly generated Boolean algebra with a closed unbounded C ⊆ {C ∈ [B]ℵ0 :

C ≤rc B}. If D ≤ B is such that C ∩ [D]ℵ0 is closed unbounded in [D]ℵ0,

then D ≤rc B.

(2) Suppose that B is a Boolean algebra and f : B → [B]<ℵ0 is an FN-

mapping. If A ≤ B is closed with respect to f then we have A ≤rc B.

(3) Suppose that A ≤rc B and both of A and B have FN-mapping. Then

for any FN-mapping f on A there is an FN-mapping f̃ on B extending f .

Proof. (1): Suppose thatD ≤ B and C∩[D]ℵ0 is closed unbounded in [D]ℵ0 .

IfD ≤¬rc B then there would be a b ∈ B without its lower projection intoD.

Then we can construct a continuously increasing sequence 〈Cα : α < ω1〉
in C ∩ [D]ℵ0 such that 〈pCα(b) : α < ω1〉 is strictly increasing. But this is a

contradiction to Lemma 1.4, (4).
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(2): Suppose that A ≤ B is closed with respect to an FN-mapping

f : B → [B]<ℵ0 . Then, for arbitrary b ∈ B, we have pA(b) =
∑A f(b) ∩A.

(3): Let g : B → [B]<ℵ0 be an FN-mapping. Then the mapping f̃ on B

defined by

f̃(b) =

{
f(b), if b ∈ A;

g(b) ∪ f(pA(b)) ∪ f(qA(b)), otherwise

for b ∈ B is as desired. (Lemma 3.1)

The equivalence of (a), (b), (c) of the following theorem can be proved

using Lemma 3.1, (1), (3) while the implication from (c) to (d) follows from

Lemma 3.1, (2) and the implication from (e) to (a) follows immediately from

the definition of open generatedness.

Theorem 3.2. For a Boolean algebra B, the following are equivalent.

(a) B is openly generated.

(b) (Heindorf and Shapiro [13]) There is a filtration 〈Bα : α < λ〉 of B

with λ = |B | such that, for every α < λ, Bα ≤rc B, |Bα | = |α + ω | and

Bα is openly generated.

(c) (Heindorf and Shapiro [13]) There is a FN-mapping on B.

(d) (Fuchino [6]) For any sufficiently large regular θ and M ≺ H(θ) with

B ∈M , we have B ∩M ≤rc B.

(e) (Fuchino [6]) For any sufficiently large regular θ and countable M ≺
H(θ) with B ∈M , we have B ∩M ≤rc B.

Theorem 3.2, (a)⇔(c) and Lemma 3.1, (3) implies the following:

Theorem 3.3 (Heindorf and Shapiro [13]). Suppose that 〈Bα : α < δ〉
is a continuously increasing sequence of openly generated Boolean algebras

for some limit ordinal δ such that Bα ≤rc Bα+1 for every α < δ. Then

B =
∪

α<δ Bα is also openly generated.

Theorem 3.4 (I. Bandlow, unpublished, see Theorem 2.2.11 in [13]). If

Bn, n ∈ ω are openly generated Boolean algebras such that Bn ≤σ Bn+1 for

all n ∈ ω, then B =
∪

n∈ω Bn is also openly generated.

Proof. We give here a proof using the characterization Theorem 3.2, (a)⇔(e)

of openly generated Boolean algebras.

Let θ be a sufficiently large regular cardinal. It is enough to show that,

for any countable M ≺ H(θ) with B ∈M , we have B ∩M ≤rc B.
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Without loss of generality, we may assume that 〈Bn : n ∈ ω〉 ∈ M .

Suppose that b ∈ B. Then b ∈ Bn∗ for some n∗ ∈ ω. Since Bn∗ is openly

generated and Bn∗ ∈M , b∗ = pBn∗∩M(b) exists by Theorem 3.2, (a)⇔(e).

We show that b∗ = pB∩M(b). Suppose b′ ∈ (B∩M) � b. Since Bn∗ ≤σ B,

there is a countable X ⊆ Bn∗ coinitial in Bn∗ ↑ b′ = {c ∈ Bn∗ : b′ ≤ c}.
We may assume that X ∈ M and hence X ⊆ M by the countability of X.

Since b ∈ Bn∗ ↑ b′, there is b′′ ∈ X ⊆ Bn∗ ∩M such that b′′ ≤ b. Since

b′′ ∈ B ∩M � b, we have b′ ≤ b′′ ≤ b∗. (Lemma 3.4)

The following Lemma should be a folklore:

Lemma 3.5. For a regular cardinal κ and a club C ⊆ [X]κ for a some set

X with κ ⊆ X, there is a mapping f : X<ω → X such that

C(f) = {a ∈ [X]κ : κ ⊆ a and a is closed with respect to f} ⊆ C.

Proof. Let θ be sufficiently large. We may assume that κ < |X |. Let

M = 〈H(θ),∈, X, C,E〉 where E is a well-ordering on H(θ). Let N =

skM(|X |) where skM(·) denotes the Skolem-hull operator corresponding to

the built-in Skolem functions of M. Let ϕ : X → N be a bijection and let

f : N<ω → N code the built-in Skolem functions of M � N and ϕ−1.

Now, identifying 〈N, {ϕ ′′c : c ∈ C}〉 with 〈X,C〉, we can show that this

f is as desired:

Claim 3.5.1. If a ⊆ N is closed with respect to f and κ ⊆ a then a∩X ∈ C

and a = ϕ ′′a ∩X.

` Since a is closed with respect to the Skolem functions, we have a ≺ N

(i.e. M � a ≺ M � N). Since κ ⊆ a, it follows that a ∩X =
∪

(a ∩ C) and

a∩C is upward directed by the elementarity. Thus a∩X ∈ C by closedness

of C. Since a is also closed with respect to ϕ−1, we have a = ϕ ′′a ∩X.

a (Claim 3.5.1)

(Lemma 3.5)

Note that we cannot drop the condition “κ ⊆ a” for an uncountable κ in

general (see Feng [3]).

Lemma 3.6. Suppose that X is a set and κ is a regular cardinal < |X |
and C ⊆ [X]κ is club in [X]κ. Then, for λ = |X |,

C = {Y ∈ [X]<λ : C ∩ [Y ]κ is club in [Y ]κ}

contains a set C ′ such that, for all regular λ′ with κ < λ′ ≤ λ, C ′ ∩ [X]<λ′
is

club in [X]<λ′
.
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Proof. We may assume that κ ⊆ X. By Lemma 3.5, there is a mapping

f : X<ω → X such that

C(f) = {a ∈ [X]κ : κ ⊆ a and a is closed with respect to f} ⊆ C.

Let

C ′ = {Y ∈ [X]<λ : κ ⊆ Y and Y is closed with respect to f}.

Then C ′ ⊆ C and C ′ is as desired. (Lemma 3.6)

Proposition 3.7. Suppose that B is a κ-openly generated Boolean algebra

for a regular cardinal κ. If θ is a sufficiently large regular cardinal and

M ≺ H(θ) is such that B ∈ M and κ ≤ |M | ⊆ M , then B ∩M is also a

κ-openly generated Boolean algebra.

Proof. If |M | ≥ |B | then B ∩ M = B and hence the assertion triv-

ially holds. So we may assume |M | < |B |. Let C = {A ∈ [B]<κ :

A is openly generated}. Since C contains a club subset of [B]<κ, there are

C and C ′ as in Lemma 3.6 for this C. By the elementarity of M , we may

assume that C ′ ∈M . Then we have B ∩M =
∪

C ′ ∩M ∈ C ′. In particular,

B ∩M is κ-openly generated. (Proposition 3.7)

For a Boolean algebra B, X ⊆ B and b ∈ B, let tpX(b) = 〈X � b,X ↑ b〉.
Let us say that B is ω-stable if | {tpX(b) : b ∈ B} | ≤ ℵ0 for all X ∈ [B]ℵ0 .

Note that ω-stability defined here only roughly corresponds to the model

theoretic notion of the ω-stability of structures. Clearly B is ω-stable if

{tpA(b) : b ∈ B} is countable for cofinally many countable A ≤ B (where

“cofinally many” refers to the cofinality in [B]ℵ0 with respect to ⊆). If A ≤
B, A is countable and A ≤rc B then each tpA(b) is decided by 〈pA(b), qA(b)〉
and hence we have | {tpA(b) : b ∈ B} | ≤ ℵ0. Thus:

Lemma 3.8. If a Boolean algebra B is projective then B is ω-stable.

For a Boolean algebra B and X ⊆ B, let X⊥ = {c ∈ B : b · c =

0 for every b ∈ X}. An ideal I on B is said to be regular if (I⊥)⊥ = I.

Note that (X⊥)⊥ ⊇ X holds for any X ⊆ B. In the following, we shall also

simply write I⊥⊥ in place of (I⊥)⊥.

A Boolean algebra B is said to have the Bockstein Separation Property

(BSP for short) if every regular ideal I of B is countably generated, i.e. if

there is always a countable cofinal subset of such I.

Theorem 3.9 (Koppelberg [16]). If a Boolean algebra B is projective then

B has the BSP.
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For a regular uncountable cardinal θ, M ≺ H(θ) is said to be ω-bounding

if for every x ∈ [M ]ℵ0 there is y ∈ [M ]ℵ0 ∩M such that x ⊆ y.

M ≺ H(θ) is said to be H(κ)-like if for any x ∈ [M ]<κ there is N ∈
M ∩ [M ]<κ such that x ⊆ N ≺ M . Clearly, if M is H(ℵ1)-like, then M is

ω-bounding.

Since any internally approachable elementary submodel of H(θ) of car-

dinality ℵ1 is H(ℵ1)-like, there are cofinally many H(ℵ1)-like M ≺ H(θ)

of cardinality ℵ1. More generally, if cf([κ]ℵ0 ,⊆) = κ and θ is a sufficiently

large regular cardinal, then there are cofinally many H(ω1)-like elementary

submodels M ∈ [H(θ)]κ of H(θ).

Lemma 3.10. Suppose that B is an ℵ2-projective Boolean algebra. Then

(1) B satisfies the c.c.c.;

(2) B has the BSP; and

(3) B is ω-stable.

Proof. (1): Suppose that B does not satisfy the c.c.c. and let X ∈ [B+]ℵ1

be pairwise disjoint. By the ℵ2-projectiveness of B, there is A ∈ [B]ℵ1 such

that A ≤ B, X ⊆ A and A is projective. But since A satisfies the c.c.c.

(see the remark after Theorem 1.3) this is a contradiction.

(2): Suppose that I ⊆ B is a regular ideal on B. Let θ be a sufficiently

large regular cardinal and let M ≺ H(θ) be ω-bounding with |M | = ℵ1 and

B, I ∈ M . Then B ∩M is projective and hence has the BSP by Theorem

3.9. Since I∩M is a regular ideal in B∩M , there is a countable X ⊆ I∩M
generating I ∩M . Let x ∈ M be such that x is countable and X ⊆ x ⊆ I.

Then M |= “x generates I”. By elementarity x really generates I.

(3): Suppose that B were not ω-stable. Then there would be X ⊆ [B]ℵ0

and bα ∈ B, α < ω1 such that tpX(bα), α < ω1 are pairwise distinct. Let

A ∈ [B]ℵ1 be such that A ≤ B, A is projective and X ∪ {bα : α < ω1} ⊆
A. Then X and bα, α < ω1 witness that A is not ω-stable. This is a

contradiction to Lemma 3.8. (Lemma 3.10)

Lemma 3.11. Suppose that κ is a cardinal with cf([κ]ℵ0 ,⊆) = κ and θ

is sufficiently large regular cardinal. Then there are cofinally many M ∈
[H(θ)]κ such that M is an H(ℵ1)-like elementary submodel of H(θ).

Proof. For an arbitrary A ∈ [H(θ)]κ we show that there is an H(ℵ1)-like

elementary submodel M of H(θ) such that A ⊆M and |M | = κ.

Let 〈Mα : α < ω1〉, 〈Cα : α < ω1〉 and 〈Dα : α < ω1〉 be defined

inductively such that
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(3.1) A ⊆M0;

(3.2) 〈Mα : α < ω1〉 is an increasing chain;

(3.3) Mα ≺ H(θ) and |Mα | = κ for all α < ω1;

(3.4) Cα ∈ [[Mα]ℵ0 ]κ and Cα is cofinal in [Mα]ℵ0 with respect to ⊆ for all

α < ω1;

(3.5) for all α < ω1, we have Dα ∈ [[H(θ)]ℵ0 ]κ, N ≺ H(θ) for all N ∈ Dα

and if c ∈ Cα then there is some N ∈ Dα with c ⊆ N ;

(3.6) Dα ⊆Mα+1 for all α < ω1.

Let M =
∪

α<ω1
Mα. Then this M is as desired: A ⊆ M by (3.1) and

M ≺ H(θ) by (3.2) and (3.3). Suppose that c ∈ [M ]ℵ0 . Then there is

α < ω1 such that c ∈ [Mα]ℵ0 . By (3.4) and (3.5), there is N ∈ Dα such that

c ⊆ N . By (3.6), N ∈Mα+1 ⊆M . N ≺M by (3.5). Thus M is H(ℵ1)-like.

(Lemma 3.11)

Theorem 3.12. Suppose that B is a c.c.c. ω-stable Boolean algebra with

the BSP. Then, for a sufficiently large regular cardinal θ and ω-bounding

M ≺ H(θ) with B ∈M , we have B ∩M ≤rc B.

Proof. Let B, θ and M be as above. For an arbitrary b ∈ B we show that

qB∩M(b) exists.

Let U be a maximal pairwise disjoint subset of B ∩ M � −b. U is

countable since B satisfies the c.c.c. Since M is ω-bounding, there is S ∈
[M ]ℵ0 ∩M such that U ⊆ S. Let T = {tpB∩S(b) : b ∈ B}. Then T ∈ M .

By ω-stability of B, |T | = ℵ0. It follows that T ⊆ M . In particular,

tpB∩S(b) ∈M . Let b′ ∈M be such that tpB∩S(b′) = tpB∩S(b).

Now, let K = (B ∩ S) � −b = (B ∩ S) � −b′. Then K ∈M and U ⊆ K.

Let J = K⊥ (where the operator ⊥ acts with respect to the Boolean algebra

B). J is a regular ideal on B and J ∈ M . Since B has the BSP, there is

X ∈ [J ]ℵ0 cofinal in J . By elementarity, we may assume that X ∈ M and

hence X ⊆M . Since b ∈ J , there is some d ∈ X such that b ≤ d.

We claim that this d is the upper projection of b onto B ∩M . Suppose

otherwise. Then there would be some c ∈ B ∩ M such that b ≤ c and

d 6≤ c, i.e. d · −c 6= 0. By the maximality of U , and since d · −c ≤ −b,
there is some e ∈ U such that d · −c · e 6= 0. But this is a contradiction to

d ∈ X ⊆ J = K⊥ ⊆ U⊥. (Theorem 3.12)

Theorem 3.13. Suppose that SSH holds. Then every ℵ2-projective Boolean

algebras B have a filtration 〈Bα : α < κ〉 for κ = cf(|B |) such that Bα+1
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is ℵ2-projective and Bα+1 ≤σ B for all α < κ. In particular, we also have

Bα ≤σ B for all limit α < κ of countable cofinality.

Proof. The assertion of the theorem is trivial if |B | ≤ ℵ1. So assume that

|B | ≥ ℵ2. Let θ be a sufficiently large regular cardinal.

Case I . |B | = κ = λ+ and cf(λ) > ω. By SSH, we have cf([λ]ℵ0 ,⊆) =

λ. Hence, by Lemma 3.11, there is an increasing chain 〈Mα : α < κ〉 of

elementary submodels of H(θ) such that

(3.7) B ∈M0;

(3.8) Mα is H(ω1)-like for all α < κ;

(3.9) |Mα | = λ for all α < κ; and

(3.10) B ⊆
∪

α<κMα.

Let Bα = B ∩ (
∪

β<αMβ+1) for α < κ. Then 〈Bα : α < κ〉 is a filtration of

B.

If α < κ is 0 or a successor ordinal, then Bα = B ∩Mα. Bα is then ℵ2-

projective by Proposition 3.7. If α is a limit ordinal, since M =
∪

β<αMβ+1

is an elementary submodel of H(θ), Bα = B ∩M is also ℵ2-projective by

Proposition 3.7.

Thus the filtration 〈Bα : α < κ〉 is as desired.

Case II . |B | > κ. Similarly to Case I.

Case III . |B | = κ = λ+ and cf(λ) = ω. Let λ = supn∈ω λn where

〈λn : n ∈ ω〉 is an increasing sequence of cardinals of cofinality > ω.

For α < κ and n < ω, let Mα,n be defined inductively such that

(3.11) B ∈Mα,0 for all α < κ;

(3.12) Mα,n ≺ H(θ) and |Mα,n | = λn for all α < κ and n < ω;

(3.13) Mα,n is H(ℵ1)-like for all α < κ and n < ω;

(3.14) 〈Mα,n : n ∈ ω〉 is an increasing chain for all α < κ;

(3.15) 〈Mα+1 : α < κ〉 is an increasing chain where

(3.15a) Mα+1 =
∪

n∈ω Mα,n

for α < κ; and

(3.16) B ⊆
∪

α<κMα+1.

The construction of Mα,n’s is possible by SSH and Lemma 3.11.

Let
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(3.17) Mγ =
∪

α<γ Mα+1 for all limit γ < κ

and let Bα = B ∩Mα for all α < κ. Then, by (3.12), (3.15), (3.16) and

(3.17), we have |Bα | ≤ λ for all α < κ and 〈Bα : α < κ〉 is a filtration

of B. By (3.11), (3.13) and Theorem 3.12, we have B ∩Mα,n ≤rc B for

all α < κ and n < ω. It follows by the definition (3.15a) of Mα+1 that

Bα+1 = B ∩Mα+1 =
∪

n∈ω B ∩Mα,n ≤σ B. By the definition of Bα’s and

Proposition 3.7, all of Bα, α < κ are ℵ2-projective. (Theorem 3.13)

4 Openly generated Boolean algebras under FRP

In this section, we prove Theorem 1.6.

The implication “(a) ⇒ (b)” follows from Theorem 3.2, (d) and Lemma

3.1, (2).

The proof of the other implication “(b) ⇒ (a)” is done by induction on

the cardinality of B.

For Boolean algebras of cardinality ≤ ℵ1, the implication clearly holds.

From now on we need the assumption of FRP. Suppose that we have

shown the implication “(b) ⇒ (a)” for all Boolean algebras of cardinality

< λ for some cardinal λ > ℵ1.

Case I : λ is regular. Let B be an ℵ2-projective Boolean algebra of

cardinality λ. Let C ⊆ {C ∈ [B]ℵ1 : C is projective} be closed unbounded

in [B]ℵ1 . By Theorem 3.13, there is a filtration 〈Bα : α < λ〉 of B such

that all Bα, α < λ are ℵ2-projective and Bα ≤σ B for all α ∈ λ \Eκ
>ω. Note

that we may apply Theorem 3.13 here by Theorem 2.2. By the induction

hypothesis, it follows that all Bα, α < λ are openly generated.

Suppose, toward a contradiction, that B were not openly generated.

Claim 4.0.1. E = {α ∈ Eλ
ω : Bα ≤¬rc B} is stationary in λ.

` Otherwise, there is a closed unbounded C ⊆ λ such that, for every

α ∈ C ∩ Eλ
ω, we have Bα ≤rc B. But then, by the c.c.c. of B, we can show

that Bα ≤rc B for all α ∈ C \ Eλ
ω as well and it follows that B is openly

generated by Theorem 3.3. This is a contradiction to the assumption on B.

a (Claim 4.0.1)

We may assume that (the underlying set of) B is λ. By thinning out

the stationary set E, we may also assume that (the underlying set of) Bα

is α for all α ∈ E.

For each α ∈ E, we have Bα ≤σ B. So let ηα ∈ B and ηα
n ∈ Bα,

n ∈ ω, be such that the ideal Bα � ηα is not generated by a single element
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but {ηα
n : n ∈ ω} generates it. Let g : E → [λ]ℵ0 be defined by g(α) =

{ηα} ∪ {ηα
n : n ∈ ω} for α ∈ E. By (the principle shown in Proposition

1.1 to be equivalent to) FRP, there is I ∈ C such that (1.1), (1.2) and (1.3)

hold for I with the E and g as above.

Since I ∈ C, I (as a subalgebra of B) is openly generated. On the other

hand, by Lemma 1.2, I has a filtration 〈Iξ : ξ < ω1〉 such that

S = {ξ ∈ ω1 : sup(Iξ) ∈ I and {ηsup(Iξ)
n : n ∈ ω} ⊆ Iξ}

is stationary. Since ηsup(Iξ) ∈ I for ξ ∈ S∩I, it follows that {ξ ∈ ω1 : Iξ ≤¬rc

I} ⊇ S is also stationary. On the other hand, since I is openly generated,

the filtration 〈Iξ : ξ < ω1〉 has a continuous subsequence 〈I ′ξ : ξ < ω1〉 such

that I ′ξ ≤rc I for all ξ < ω1 by Theorem 3.2, (b). This is a contradiction.

Case II : λ is singular. Let B be an ℵ2-projective Boolean algebra of

cardinality λ and let µ = cf(λ) < λ. Without loss of generality, ω1 ⊆ B.

Let h : B<ω → B be such that all C ∈ [B]ℵ1 closed with respect to h with

ω1 ⊆ C are projective subalgebras of B.

Let 〈Bα : α < µ〉 be a filtration of B such that ω1 ⊆ B0 and each Bα

is closed with respect to h. Then each Bα is ℵ2-projective and hence, by

the induction hypothesis, openly generated. By Theorem 3.2, (c), there is

an FN-mapping fα : Bα → [Bα]<ℵ0 for each α < µ. Now let 〈Cξ : ξ < µ〉
be another filtration of B such that

(4.1) ω1 ⊆ C0;

(4.2) Cξ is closed with respect to h for all ξ < µ;

(4.3) Cξ is closed with respect to fα, α < µ for all ξ < µ.

By (4.1), (4.2) and the induction hypothesis, all Cξ, ξ < µ are openly

generated.

For ξ < µ and b ∈ B let α0 < µ be such that b ∈ Bαb
. For α ∈ µ \ αb,

let

(4.4) bξα =
∑B (

fα(b) ∩ Cξ � b
)
.

Note that bξα is well-defined since fα(b) is finite.

Claim 4.0.2. For ξ < µ and b ∈ B, 〈bξα : α ∈ µ \ αb〉 is an increasing

sequence cofinal in Cξ � b.

` Suppose αb ≤ α0 < α1 < µ. Since bξα0
≤ b, there is c ∈ fα1(b

ξ
α0

)∩ fα1(b)

such that bξα0
≤ c ≤ b. Since bξα0

∈ Cξ by (4.4), we have fα1(b
ξ
α0

) ⊆ Cξ by

22



(4.3). Hence c ∈ Cξ � b. By (4.4) with α = α1, it follows hat c ≤ bξα1
. Thus

bξα0
≤ bξα1

.

Now, suppose that c ∈ Cξ � b. Let α∗ ∈ µ \ αb be such that c ∈ Bα∗ .

Then there is d ∈ fα∗(c) ∩ fα∗(b) such that c ≤ d ≤ b. By (4.3) and since

c ∈ Cξ, we have d ∈ Cξ. Thus, by (4.4), we have c ≤ d ≤ bξα∗ . This shows

that {bξα : α ∈ µ \ α0} is cofinal in Cξ � b. a (Claim 4.0.2)

Case IIa : µ = ω. By Claim 4.0.2, Cξ ≤σ B for all ξ < µ. By Bandlow’s

Theorem 3.4, it follows that B is openly generated.

Case IIb : µ > ω. In this case, we have the following:

Claim 4.0.3. Cξ ≤rc B for all ξ < µ.

` Otherwise, 〈bξα : α ∈ µ\αb〉 would be strictly increasing for some b ∈ B.

Since B satisfies the c.c.c., this is a contradiction. a (Claim 4.0.3)

By Theorem 3.3, it follows that B is openly generated.

(Theorem 1.6)

A Boolean algebra B is said to be L∞,ℵ2-projective if B |= ψ holds

for any L∞,ℵ2-sentence ψ which holds in all projective Boolean algebras.

Similarly to [5] we obtain now under FRP the following:

Theorem 4.1. Assume FRP. Then every L∞,ℵ2-projective Boolean algebra

is openly generated.

In [5] a counterexample to the assertion of Theorem 4.1 is constructed

under the existence of non-reflecting stationary set in Eκ
ω for some regular

κ. This shows that the assertion of Theorem 4.1 above implies ORP.

Problem 1. Does the assertion of Theorem 4.1 imply FRP?

In the next section we show that the assertion of Theorem 1.6 implies

and hence is equivalent to FRP.

5 Implication of FRP from the assertion of Theorem

1.6

As we already mentioned in Section 2, it is shown in [12, Theorem 2.5]

that the negation of FRP is equivalent to the existence of a regular κ > ℵ1

satisfying ADS−(κ). That is, such κ that there is a stationary S ⊆ Eκ
ω and

an almost essentially disjoint g : S → [κ]ℵ0 with
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(5.1) g(α) ⊆ α and otp(g(α)) = ω for all α ∈ S.

In [12, Lemma 2.3] it is shown that we may assume that g as above is a

ladder system on S, that is, in addition to (5.1), we may also assume that

g(α) is a cofinal subset of α for all α ∈ S.

Proposition 5.1. Suppose that S ⊆ Eκ
ω is a stationary set for a regular

cardinal κ ≥ ℵ2 and g : S → [κ]ℵ0 is an almost essentially disjoint ladder

system. Then there is a Boolean algebra B of cardinality κ such that

(5.2) B is not openly generated but

(5.3) B is λ-openly generated for all regular λ ≤ κ.

Proof. Let S and g be as above. Without loss of generality, we may assume

that g(α) consists of successor ordinals for all α ∈ S.

Let D = {α + 1 : α < κ} and let X = {cα : α ∈ S ∪ D} where cα,

α ∈ S ∪ D are pairwise distinct constant symbols. Let <B be the partial

ordering on X defined by

(5.4) cα <B cβ if and only if α ∈ D, β ∈ S and α ∈ g(β)

for cα, cβ ∈ X.

Let B be the Boolean algebra generated from X freely except <B. That

is, B = FrX/I<B
where I<B

is the ideal on FrX generated from {cα · −cβ :

α, β ∈ S ∪D, cα <B cβ}.
We show that this B satisfies (5.2) and (5.3). Note that elements of B

can be represented uniquely by a term t in reduced disjunctive normal form

built up from some elements of X. In the following we always identify such

terms t with elements of B they represent. In particular, we consider X as

a subset of B.

For t ∈ B, let

C(t) = {cα : cα appears in t}.

Claim 5.1.1. B |= (5.2), i.e., B is not openly generated.

` Otherwise there would be a FN-mapping f : B → [B]<ℵ0 . Let f0 : X →
[X]<ℵ0 be defined by f0(cα) =

∪
{C(t) : t ∈ f(cα)}.

By Fodor’s Lemma, there is a stationary S ′ ⊆ S such that

f0(cα) ∩ {cβ : β < α} ⊆ {cβ : β < δ∗}
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for some fixed δ∗ < κ for all α ∈ S ′. By a further application of Fodor’s

Lemma, we obtain a stationary set S ′′ ⊆ S ′ such that the first element in

g(α) above δ∗ is some fixed β∗ < κ for all α ∈ S ′′. Let α∗ ∈ S ′′ be such

that f0(cβ∗) ⊆ {cβ : β < α∗}. Since β∗ ∈ g(α∗) we have cβ∗ <B cα∗ . Then

f0(cβ∗) ∩ f0(cα∗) ⊆ δ∗. It follows that f(cβ∗) ∩ f(cα∗) cannot contain an

element interpolating cα∗ and cβ∗ with respect to the ordering ≤B. This is

a contradiction. a (Claim 5.1.1)

Claim 5.1.2. B |= (5.3). More specifically, for any Y ∈ [X]<κ, [Y ]B is

openly generated.

` Suppose Y ∈ [X]<κ. Let Ȳ = {α ∈ S ∪D : cα ∈ Y }. Since g is almost

essentially disjoint, there is a regressive h : S∩ Ȳ → κ such that g(α)\h(α),

α ∈ S ∩ Ȳ are pairwise disjoint. Let f0 : Y → [Y ]<ℵ0 be defined by

f0(cα) =


{cα, cβ} if β ∈ S ∩ Ȳ and

α ∈ g(β) \ h(β),

{cα} ∪ ({cβ : β ∈ g(α) ∩ h(α)} ∩ Y ) if α ∈ S ∩ Ȳ ,
{cα} otherwise

for cα ∈ Y .

Clearly f0 is an FN-mapping (for the partial ordering 〈Y,<B � Y 〉). Now

let f : [Y ]B → [[Y ]B]<ℵ0 be defined by

f(t) = [
∪
{f0(c) : c ∈ C(t)} ∪ C(t) ]B

for t ∈ [Y ]B. Then f is an FN-mapping on [Y ]B. a (Claim 5.1.2)

(Proposition 5.1)

Theorem 5.2. The assertion of Theorem 1.6 is equivalent to FRP over

ZFC.

Proof. By Theorem 1.6, Proposition 5.1 and by [12, Theorem 2.5].

(Theorem 5.2)
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