数学と集合論

─ゲーデルの加速定理の視点からの考察 ──

渕 野 昌*

Mathematics and Set Theory: a perspective from Gödel's Speedup Theorem

Sakaé FUCHINO*

Abstract

Since Gödel's Incompleteness Theorems were published in 1931, not a few mathematicians have been trying to do mathematics in a framework as weak as possible to remain in a "safe" terrain. While the Incompleteness Theorems do not offer any direct motivations for exploring the terrae incognitae of the alarmingly general and consistency-wise strong settings like the full ZFC or even ZFC with large large cardinals etc., Gödel's Speedup Theorem, a sort of a variant of the Incompleteness Theorems, in contrast, seems to provide positive reasons for studying mathematics in these powerful extended frameworks in spite of the peril called the (in)consistency strength.

In this article of purely expository character, we will examine a version of the Speedup Theorem with a detailed proof and discuss the impact of the Speedup Theorem on the whole mathematics.

0. はじめに

以下で,ゲーデルの加速定理の数学に与えるインパ クトについて考察する.

本稿は, 少なくとも数学的内容に関しては, 純粋に 解説論文であり、記述の工夫 (そのうちのいくつかは トリヴィアルではない)や,いくつかの指摘(その多 くはトリヴィアルなものである) などを別とすると, 新しい数学的結果は含まれていない。本稿の原稿の一 部は、2017年度第1クオーターに神戸大学で行った 数理論理学特論の講義内容と並行して執筆された. こ の講義の受講者の質問やコメントに感謝する.

本稿の技術的な議論の一部の内容は, 筆者が執筆中 の [渕野, ∞] にも収録されることになる予定である. また、本稿の最後で述べることになる考察は、[渕野、

* 神戸大学大学院システム情報学研究科 E-mail: fuchino@diamond.kobe-u.ac.jp 2016] や [渕野, 2018] の内容と重複するところもある. 本稿の目的とするところの1つは、ゲーデルの加速定 理の証明の細部も検証することで, [渕野, 2016] より 更に緻密な議論を展開することであり、[渕野、2016] では省略していた技術的な細部も述べることで, より 多くの数学者に議論の内容を可読なものにすることで ある.

1. 弱い体系での数学の展開

数理論理学での数学の基礎に関連した研究では,弱 い体系 (例えばペアノ算術の部分体系や二階の算術の 部分体系、弱い集合論など、または、これらの公理系 を,通常の述語論理より弱い論理体系上で展開したと きの体系など)の中でどれだけの数学理論が展開でき るかについて議論されることが少なくない.

ある範囲の数学 M が、ある弱い体系 T の中で既 に展開できることが確認されたとすると、このことの

意義としては、例えば次のようなものが考えられるであろう:

- (1.1) 例えば、ペアノ算術が T より無矛盾性の強さが大きいか等しい 1 ことが知られているような体系のときには、M が T の中で展開できることが示せたとき、M には、少なくともゲンツェンの無矛盾性証明やゲーデルの無矛盾性証明による、体系の無矛盾性の保証が得られることになる。T の無矛盾性の保証は更に強いものになるだろう。
- (1.2) 数学は可述性 (predicativity) を持つものとして展開されるべきである,という哲学的な要請を満たす これは立場としては非常に不透明であるように思える. たとえば,ヴァイルの [Weyl, 1918] での数学の基礎付けはこの方向で理解されるべきなのだろうが,ヴァイル自身は不完全性定理が確立した後に,彼の可述的数学の立場への,不完全性定理の知見から必要となるであろう軌道修正を全くしていないため²,意味のある正しい解釈が何になるのかを見極めることが極めて難しい³.
- (1.3) T がある種の可述的性質を持つことが知られているときには,M の T での証明から,この証明の主張する数学的対象物の構成のためのアルゴリズムが自然に抽出できることがあり,そのことが数学とその応用へのよりスムーズな連携につながる可能性がある.
- (1.4) いずれにしても無くてもよい前提を仮定しないで済ますにこしたことはないだろう

等々.

一般の数学者は、形式化に対する無理解ないし嫌悪 感を持っていることも少なくないので、そのような人 たちにとっては、上で挙げた立場のうち、(1.1) につい ては,このままの形の主張としては共感を持って擁護 することは難しいかもしれない. しかし, 多くの数学 者に見られる, 超限帰納法, 特に超限帰納法と選択公理 を組み合わせることで成立する議論に対する拒絶4は, 形式的な体系に逆翻訳して考えてみると, ツェルメロ =フレンケル集合論 (ZF) での議論ではなく, ZF から 置換公理を除いて得られるツェルメロの集合論 (Z)5 (あるいはその弱い拡張)、またはそのような体系の何 らかの部分体系で数学を展開する, という制限的な枠 組をよしとする立場、と解釈することもできそうに思 える. 一般の数学者のこのような立場に対する可能な 正当化としては、彼等自身が数学の体系に関する精密 な議論を展開することはほとんどないにしても, (1.1) でのような体系の無矛盾性に対しての懸念や,(1.4) の精神に近いものとなるのではないだろうか.

例えば, ヴァイルは, [Weyl, 1946] で,

Like everybody and everything in the world today, we have our "crisis." We have had it for

 $^{^1}$ ここでは、理論 T' が理論 T より無矛盾性の強さ (consistency strength) が大きいか等しいとは、T' の無矛盾証明が与えられたとするとそれを変形して、T の無矛盾証明が得られることとする.

 $^{^2}$ [Weyl, 1918] の日本語訳の脚注のいくつかを参照され

^{3 [}Weyl, 1918] の日本語訳の脚注では、ヴァイルの導入した体系の意義を、ヴァイルの思想の不完全性定理以降の修正版とも言える [Feferman, 2000], [Feferman, 2013] などでのフェファーマンの立場に近い視点から論じたが、フェファーマンの立場での可述性の扱いは、ヴァイルが [Weyl 198] で議論しているような認識論的あるいは存在論的な哲学的要請というより、数学の大きな部分がそこで展開できるような、具合のよい、無矛盾性の強さの小さな体系を見出すための、指針のようなものでしかなくなっているようにも思える.

⁴Bourbaki は 1950 年代終わりまで数学の基礎として ツェルメロの公理系に若干手を加えたような体系を用い ていたが、この体系ではグローバルな(つまりクラスに 対する) 超限帰納法の議論を遂行することはできない. Bourbaki がこの体系で数学の全てが展開できると宣言 するとき、この宣言は、彼の(つまり彼のペンネームの もとに集っていた数学者たちの) 想定した数学には, -般的な形の超限帰納法は含まれていなかったことの証明 と解釈することができるであろう、1960年代以降での 従来の数学の継承でも, 超限帰納法が用いられることは 皆無と言ってよく,選択公理と超限帰納法の組み合わせ で自然に証明できる命題の証明は、 ツォルンの補題の適 用によるアクロバッティックな証明に置き換えられるこ とが慣習となっている. もちろん選択公理とツォルンの 補題との同値性の証明は ZF でなされるので、ツォルン の補題自身は ZC の中には収まっていないのだが、ツォ ルンの補題を適用すべき半順序自体は、超限帰納法の議 論を用いることなく構成されることになるため、全体と して用いられることになる置換公理の範囲は、空でない としてもきわめて限られたものになる.

 $^{^{5}}$ 「ツェルメロの集合論」という呼称は、本来 [Zermelo, 1908] で導入された体系に対するものであるが、今日では、通常、ここでのように、このツェルメロの体系にいくつかの拡張変更を加えることで得られた、選択公理を含むツェルメロ=フレンケル集合論の体系から置換公理を除いた体系を指すことが多い、特に、我々の \mathbf{Z} での無限公理は、[Zermelo, 1908] でのものとは異る.

nearly fifty years. Outwardly it does not seem to hamper our daily work, and yet I for one confess that it has had a considerable practical influence on my mathematical life: it directed my interests to fields I considered relatively "safe,"

. . .

と述べている.

(1.1) に沿った立場としては、基礎の公理の使用を禁止し、選択公理の使用を制限したり、使う論理に制限を加える、という対策を主張するものもあるが、これらの手立ては、[Von Neumann, 1929], [Gödel, 1938], [Gödel, 1940], [Gödel, 1933] などにより、少なくとも、矛盾する体系で議論をしている危険の減少、という意味ではあまり助けにならないことが証明されている

もちろん、上で引用したヴァイルの文章での "crisis" は、ゲーデルの不完全性定理をその背景とするものである 6 .

ここで,不完全性定理が,初等算術を含む任意の具体的に与えられた公理系 8 が完全ではありえず — つ

- 6 歴史的にはこの "crisis" は,集合論の逆理に端を発っするものであったが,集合論の逆理自身は多分上の文章を書いたときのヴァイルの認識⁷とは異なり,1946 年の時点でも,少なくとも 20 世紀初頭に知られていたすべての「逆理」に関しては (不完全性定理により集合論の公理系の無矛盾性という前提は外せないにしても),解消していたと考えてよい.
- 7 実際, ヴァイルは"循環"を解消することを主眼とした [Weyl, 1918] で表明した立場に対する, ゲーデルの不完全性定理以降の結果や公理的集合論での研究結果を踏まえての補正を, 全く行なっていないように思える (このことに関連する議論は, [Weyl 1918] の日本語訳の脚注も参照されたい).

[小平, 1986] には、(separable な) ヒルベルト空間の 基底を取りなおすという小平が論文で用いた議論 (選択公理の弱いヴァージョンが必要となる) について、(上で 引用したような危惧から) 「用いない形に書き直した方がよい」とヴァイルに忠告された、という逸話が述べられている.

8「具体的に与えられた公理系」とは、論理式がそれに含まれるかどうかを判定するアルゴリズムが存在する — つまり帰納的な、記号の有限列の集まりとなっているような公理系のことである.実は、ここでの"帰納的な"を"原始帰納的な"に変えても扱える公理系の範囲は本質的に変らないことが知られている.例えば、[菊池, 2014] 定理 5.6.16.を参照.

この「具体的に与えられた公理系」も含め、以下、「具体的に与えられた \dots 」と言ったときには、常に、我々は超数学で議論をしていて \dots " は実際に (仮想の) 紙の上に書かれた記号の有限列や、ここでの T でのよう

まり、その公理系の言語で具体的に与えることのできるある特定の命題に対し、もし、その命題かその否定の少なくとも1つがこの公理系から証明できたとすると、その証明から出発してこの公理系からの矛盾の証明が作れてしまうことが示せる(第1不完全性定理)⁹ 一同様の公理系の無矛盾性がこの公理系自身から証明できない—この公理系からの演繹としてコードできるようなメタな立場での無矛盾性証明があったとすれば、それを用いてこの公理系からの矛盾の証明が作れてしまう(第2不完全性定理)¹⁰ — としても、そのこと自体は、我々が数学を展開するための枠組として用いている体系が矛盾していることを示しているわけでは全くない、ということは改めて強調しておく必要がありそうに思える.

そうだとしても、不完全性定理自身は、数学をできるだけ弱い体系で展開すること、に対する積極的な反論とはなってはおらず、ヴァイルの言明の例でのように、むしろそのことを奨励してしまう結果に至る、高所恐怖症や閉所恐怖症などともある種の類似性を持つような種類の恐怖感の要因にさえなり得る.

これに対し、不完全性定理の証明のヴァリエーションによって得られる¹¹、ゲーデルの加速定理 ([Gödel, 1936] で表明されている定理とその幾つかの variants) は、数学を、強い (正確には、無矛盾性の強さのより大きな) 体系の中で研究すること (あるいは ― 少なくとも ― 研究してみること) の意義に対する積極的な論拠を与えるものである、と解釈することが可能である.

以下で扱かうことになる本稿でのゲーデルの加速定 理のヴァリアントは、

(1.5) $T \ \ \, \subset T' \ \ \,$ を第 2 不完全性定理の適用可能な理論として,T' は T より無矛盾性の強さが大きいか等しく (例えば, $T \subseteq T'$ のときに T' の無矛盾性の強さは T より大きいか等しくなる) $consis(\lceil T \rceil)$ が T' で証明でき

な外延の確定したそのような記号列の範疇, 記号の有限列の有限列などであることにする. 超数学については, 以下の脚注 14 を参照されたい.

 $^{^9}$ ここであげた第 1 不完全性定理は,J.B. Rosser により 拡張された,"Gödel-Rosser の定理" と呼ばれるものの ヴァリアントである.

 $^{^{10}}$ 後出の定理 $^{2.2}$ とその後に述べた注意を参照されたい. 11 実際,我々がここで考察することになるゲーデルの加速 定理のヴァリアント (定理 $^{2.2}$) は第 2 不完全性定理を 系として導く (第 4 節の最後を参照).

るときには,Tの定理で,T'では実行可能 (feasible) な証明が存在するが,Tでの証明 の複雑さはすべて物理的な可能性の範囲を超えてしまうようなものが存在する

というものである 12 . このことは,T で展開できる理論が数学である,という (1.1) でのような視点を固持したとしても,T で展開される数学を前進させるだけのためにも,これより無矛盾性の強さの大きい何等かの T の拡張 T' での数学の展開を研究してみることが不可欠であることを示唆している,と言えるだろう.

このことについては、以下で関連する数学的細部の 展開を細査した後、第5節で更に議論したいと思う.

2. 準備

ここでは、自然数の概念が (von Neumann の順序数 の定義の特別な場合として) 導入できる程度以上の強 さを持つ (弱い) 集合論の体系とその様々な拡張を扱か う (これらの拡張の中には 通常の集合論の公理系 ZFC やこれに更に様々な巨大基数の存在公理や Martin's Maximum など知られている強い公理のいくつかを付 け加えて得られる体系なども含まれる). 無限公理を 仮定しない理論も同様に扱かうことも可能であるが, 簡単のために、ここで扱かうもののうち base theory として機能すべき一番弱い体系 T_0 は、すでに無限公 理を含むものとし、特に、自然数の全体の集合 ω の 存在がこの公理系で証明できるものとする. 更に, 以 下の議論で T_0 で成り立つと述べられている、ツェル メロの集合論 Z の帰結のすべてを実際に導くことが でき、「有限の立場」で許容された論法に対応する V_{ω} の要素に関する形式的証明をすべて可能とするような Z の公理をすべて含んでいるものとする.

また、この体系では、体系の保守拡大を伴なう定数記号の導入を随時行ない、体系で一意の存在の保証されるオブジェクトのうち必要となるものについては、すべて対応する定数記号 (例えば空集合を表わす' \emptyset ')が言語に含まれており、二つの集合に対しその順序対を対応させるクラス関数や、二つの集合に対しそれらの和集合を対応させるクラス関数などの関数記号 (それぞれ' $\{\cdot,\cdot\}$ ', $\cdot\cdot$ \cup ·'で表わす)も適切に導入されて

いるものとする. そのような言語をここでは \mathcal{L}^* と呼ぶことにする 13 .

 \mathcal{L}^* では,(超数学で 14) 与えられた具体的な自然数に対して,対応する ω の要素を表現する \mathcal{L}^* -項が求められる.例えば,数 0,1,2,... に対し, \emptyset , $\{\emptyset\}$, $\{\emptyset,\{\emptyset\}\}$, ... が対応する \mathcal{L}^* -項となる.

与えられた自然数 n に対し、対応する集合を表わす \mathcal{L}^* -項 (およびその項の表わす集合) を \underline{n} で表わすことにする。例えば $\underline{2}$ は表現 $\{\emptyset, \{\emptyset\}\}$ である。自然数 ℓ, m, n, \ldots が具体的に与えられたとき、 T_0 はこれらの数についての (超数学で判定可能な) 性質をすべて "知っている" ものとする。例えば、

(2.1) $\ell+m=n$ が成り立っているなら、対応する \mathcal{L}^* -文 $\underline{\ell}+\underline{m}\equiv\underline{n}$ が T_0 から証明でき — つまり

 $T_0 \vdash \underline{\ell} + \underline{m} \equiv \underline{n}$

となり、そうでないときには、 \mathcal{L}^* -文 $\neg \underline{\ell} + \underline{m} \equiv \underline{n}$ が T_0 から証明できる - つまり

 $T_0 \vdash \neg \underline{\ell} + \underline{m} \equiv \underline{n}$

である.

ただし、 ω が \underline{n} たちの全体と一致することを T_0 が "知っている" という保証はないことに注意する:

 $T_0 \vdash \exists x (x \in \omega \land \varphi(x))$

がある \mathcal{L}^* -論理式 $\varphi = \varphi(x)$ に対し成りたったとしても,このことから $T_0 \vdash \varphi(\underline{n})$ となるような具体的な数n が見つかるという究極の保証は必ずしもない.

13 関数記号 ' $\{\cdot,\cdot\}$ ', '· \cup ' を用意することで,任意の \mathcal{L}^* -項 t, t_0, \dots, t_{n-1} (ただし n は超数学で具体的に与えられた数) に対し,t (の表わす集合) の singleton $\{t\}$ は $\{t,t\}$ により表わせ, t_0, \dots, t_{n-1} (の表わす集合たち) をちょうど要素とする集合 $\{t_0, \dots, t_{n-1}\}$ は,例えば,

 $(\{t_0\} \cup (\{t_1\} \cup (\cdots \cup (\{t_{n-2}\} \cup \{t_{n-1}\})\cdots)))$ によって表わせることを注意しておく.

14 ここでは、ごく素朴に、証明の体系の規則に従って(本物の紙の上に書かれた)記号列の操作を行なう作業としての数学を行なっている我々の世界での、この記号の操作としての数学の"数学的"考察のことを超数学(metamathematics)と呼んでいる. 超数学では、例えば、個々の数は、概念ないしは数表記としては存在するが、「自然数の全体」は"言葉の綾"でしかない.

以下で, $n \in \mathbb{N}$ と書いたときには,これは"n を (超数学での) 具体的に与えられた数とする"という表明の略記のことと解釈して, \mathcal{L}^* -論理式としての" $n \in \omega$ "と区別することにする.

¹² ここでの加速定理の説明は、定理の定式化に必要となる 概念がまだ出揃っていないため、大雑把なものにならざ るを得ない. 我々の加速定理のヴァリアントは、厳密に は、以下の定理 3.1 でのように定式化される.

同様に, V_{ω} の具体的な要素は, \mathcal{L}^* -項として書き下す ことができる. ここに, V_{ω} は, $n \in \omega$ に対し, $V_{\emptyset} = \emptyset$, て定義される. V_{ω} が集合となることを示すためには 置換公理が必要となるが (例えば [Mathias, 2001] を 参照), ここでは T_0 は置換公理を全く含んでいない (つまりツェルメロの集合論 Z の部分体系となってい る) ことを仮定しているので, V_{ω} が集合であることを T_0 が導くということを仮定せず, V_{ω} は (定義可能な) クラスとして議論を進めることにする. V. は遺伝的 に有限な集合の全体のなすクラスと一致する. 特に, ある $n \in \omega$ に対し、 $f: n \to V_{\omega}$ とするとき、つま り f を長さ n の V_{ω} の要素の列とするとき, $f \in V_{\omega}$ である. $f(0) \equiv a_0,..., f(n-1) \equiv a_{n-1}$ とするとき, $f = \{\langle 0, a_0 \rangle, ..., \langle n-1, a_{n-1} \rangle\}$ となることに注意す る. ここに $\langle x,y \rangle$ は集合 x,y の順序対で、例えば、 $\langle x, y \rangle = \{x, \{x, y\}\}$ によって与えられているものと する.

超数学での通常の定義をなぞって, \mathcal{L}^* -項の全体に対応する集合 $Trm_{\mathcal{L}^*}\subseteq {}^{\omega>}(\omega\times\omega)$ や \mathcal{L}^* -論理式の全体に対応する集合 $Fml_{\mathcal{L}^*}\subseteq {}^{\omega>}(\omega\times\omega)$, \mathcal{L}^* -文の全体に対応する集合 $Snt_{\mathcal{L}^*}\subseteq {}^{\omega>}(\omega\times\omega)$, が T_0 で導入できる。具体的に与えられた記号列 s に対応する ${}^{\omega>}(\omega\times\omega)$ の要素を表わす ${}^{\mathcal{L}^*}$ -項を「s¬ で表わすことにする。ここでもこれらの集合の導入は自然なやり方で行なわれていて,その結果,(2.1) と同様な状況が成り立っているものとする。例えば,記号列 s が \mathcal{L}^* -論理式になっていれば, $T_0\vdash \lceil s \rceil \in Fml_{\mathcal{L}^*}$ で,そうでなければ $T_0\vdash \neg \lceil s \rceil \in Fml_{\mathcal{L}^*}$ である。

超数学での証明の概念も記号の有限列の有限列 (つまり $^{\omega>}(^{\omega>}(\omega\times\omega))$ の要素)の集合として翻訳できる。超数学での記号の有限列の有限列 \vec{s} に対応する $^{\omega>}(^{\omega>}(\omega\times\omega))$ の要素 (の \mathcal{L}^* -項による表現)も「 \vec{s} っと表わすことにすると,(T_0 で) $\mathcal{P}(Snt_{\mathcal{L}^*})$

から $\mathcal{P}(^{\omega>}(^{\omega>}(\omega\times\omega)))$ への関数 Prf を,公理系 $\tau\in\mathcal{P}(Snt_{\mathcal{L}^*})$ に対し (あらかじめ超数学で固定して おいた) 述語論理の演繹の体系 17 K^* での証明の概念 に対応する τ からの証明の全体 $Prf(\tau)$ を与えるもの とする.

T を超数学で具体的に与えられた言語 \mathcal{L}^* での公理 系とするとき,論理式が T の要素かどうかの原始帰納的な判定条件が存在するが,この判定条件をなぞって, T_0 で,対応する $Snt_{\mathcal{L}^*}$ の部分集合「T」が定義できる.更に,「T」は,それが自然に導入されたときには,

(2.2) すべての具体的に与えられた \mathcal{L}^* -文 φ に対し, φ が T に属すなら,

$$T_0 \vdash \lceil \varphi \rceil \in \lceil \lceil T \rceil \rceil$$

が成り立ち, そうでないなら

$$T_0 \vdash \neg \ulcorner \varphi \urcorner \in \ulcorner \ulcorner T \urcorner \urcorner$$

が成り立つ

を満たす.

上記の関数 $Prf(\cdot)$ は、それが自然に導入されていて、次を満たすものとする:

(2.3) すべての具体的に与えられた \mathcal{L}^* -理論 T と \mathcal{L}^* -文の有限列 \vec{s} について, \vec{s} が T からの証 明となっているときには,

$$T_0 \vdash \lceil \vec{s} \rceil \in Prf(\lceil T \rceil)$$

が成り立ち, そうでないときには,

$$T_0 \vdash \neg \ulcorner \vec{s} \urcorner \in Prf(\ulcorner \ulcorner T \urcorner \urcorner)$$

が成り立つ.

 T_0 で, $\tau \subseteq Snt_{\mathcal{L}^*}$, $\pi \in {}^{\omega >} Snt_{\mathcal{L}^*}$, $\psi \in Snt_{\mathcal{L}^*}$ に対し, " π は文 ψ の理論 τ からの証明となっている" という主張に対応する \mathcal{L}^* -論理式 $proof(\tau, \pi, \psi)$ を

(2.4) $proof(\tau, \pi, \psi) \Leftrightarrow (\pi \in Prf(\tau) \land "\psi は \pi の最後の成分である")$

として導入する.

また, "文 ψ は理論 τ で証明できる" という主張に 対応する \mathcal{L}^* -論理式 $prov(\tau,\psi)$ を,

 $^{^{15}}$ これは $V_{n+1}=\mathcal{P}(V_n)$ として定義しても同じものになることが n に関する $(T_0$ での) 帰納法で示せる.

 $^{^{16}}$ 5 $^{\circ}$ 5 $^{\circ}$ 6 $^{\circ}$ 7 $^{\circ}$ 8 $^{\circ}$ 9 $^{\circ}$

¹⁷ ここでは, [渕野, 2013] で導入したヒルベルト流の演繹の体系で, 演繹定理 (Deduction Theorem) の成り立つようなものを念頭に置いて議論している.

(2.5)
$$prov(\tau, \psi) \Leftrightarrow \exists x \ (x \in {}^{\omega} > Snt_{\mathcal{L}^*} \land proof(\tau, x, \psi))$$

として導入する.

 $\mathcal{L}_{\{\}}$ を定数記号 'Ø' と二変数関数記号 ' $\{\cdot,\cdot\}$ ', '・・・' のみからなる \mathcal{L}^* の部分言語とする. すべての具体的に与えられた V_ω の要素を表現する閉 \mathcal{L}^* -項 t (つまり t の要素のすべてが何かを T_0 で決定できるようなもの)に対し、閉 $\mathcal{L}_{\{\}}$ -項 t_0 で $T_0 \vdash t \equiv t_0$ となるものがとれることに注意する.

 T_0 で、閉 $\mathcal{L}_{\{\}}$ -項全体に対応する ω >($\omega \times \omega$) の部 分集合を $CTrm_{\mathcal{L}_{\{\}}}$ と表わすことにする. ここでも、この集合が自然なやり方で導入されていて、

(2.6) すべての具体的に与えられた記号列 t が閉 \mathcal{L}_{Ω} -項なら、

$$T_0 \vdash \lceil t \rceil \in CTrm_{\mathcal{L}_{\{\}}}$$

が成り立ち, そうでないなら

$$T_0 \vdash \neg \ulcorner t \urcorner \in CTrm_{\mathcal{L}_{f, 1}}$$

が成り立つ

ようになっている,とする.

(2.7) T_0 で、 $x \in V_\omega$ に対し、x を表わす $CTrm_{\mathcal{L}_{\{\}}}$ の標準的な形をしたものが一意に決まる.これを $\lfloor x \rfloor$ と表わすことにする.

対応 $x\mapsto \lfloor x\rfloor$ は、定義域が、 T_0 では集合であることの証明できない V_ω なので、クラス関数である.

具体的に与えられた記号列 s に対する,前出の「s[¬]や,具体的に与えられた数 n に対する数表記 n も,対応する $\omega(\omega \times \omega)$ の要素の表現となっているような,上の (2.7) でと同じ意味での "標準的" な (2.7) でと同じ意味での で標準的" な (2.7) でと同じ意味での (2.9), (2.10) はこのことにより実現される.

述語論理の変数記号を $\{0\} \times \omega$ の要素でコードすることにしたが、 $\langle 0,n \rangle$ に対応する変数記号を x_n で表わすことにして、「論理式 φ の中で束縛されていない変数 x_n が束縛されずに出現している箇所をすべて項 t で置き換えて得られる論理式 $\varphi(t/x_n)$ を得る」という操作に対応する関数

 $Sbst: Fml_{\mathcal{L}^*} \times \omega \times Trm_{\mathcal{L}^*} \to Fml_{\mathcal{L}^*}$

も以下の議論で必要になる.この関数も自然な形で導入されていて,

(2.8) すべての具体的に与えられた \mathcal{L}^* -論理式

$$\varphi = \varphi(..., x_n, ...)$$
 と \mathcal{L}^* -項 t に対し、
$$T_0 \vdash \lceil \varphi(t/x_n) \rceil \equiv Sbst(\lceil \varphi \rceil, \underline{n}, \lceil t \rceil)$$

が成り立つ

ようなものとなっている,とする. また, φ を具体的に与えられた \mathcal{L}^* -論理式で,t を

具体的に与えられた文字列,kを具体的に与えられた数とするとき,「t¬,k は閉 \mathcal{L}_{Ω} -項だが,

$$(2.9) T_0 \vdash \lceil \varphi(\lceil t \rceil / x_n) \rceil \equiv Sbst(\lceil \varphi \rceil, \underline{n}, \lfloor \lceil t \rceil \rfloor),$$

$$(2.10) \quad T_0 \vdash \lceil \varphi(\underline{k}/x_n) \rceil \equiv Sbst(\lceil \varphi \rceil, \underline{n}, \lfloor \underline{k} \rfloor)$$

が常に成り立つように、超数学での操作「 \neg , \cdot と、 \mathcal{L}^* での関数 \cup が、(自然に) 定義されているものとする.

定理 2.1 (Diagonal Lemma, [Carnap, 1934]) 任意の具体的に与えられた \mathcal{L}^* -論理式 ψ に対し,変数 x_0 を含まない \mathcal{L}^* -論理式 σ で,

$$T_0 \vdash (\sigma \leftrightarrow \psi(\lceil \sigma \rceil/x_0))$$

となるものを具体的に作れる.

証明. T_0 で, $f^*: \left(^{\omega>}(\omega \times \omega) \right)^2 \to ^{\omega>}(\omega \times \omega)$ を, s, $t \in ^{\omega>}(\omega \times \omega)$ に対し,

として定義する.

k を x_k が ψ に現れない最初の変数記号となるようなものとして,(超数学で) $Fml_{\mathcal{L}^*}$ の要素を表わす 閉 $\mathcal{L}_{\{\}}$ -項 s^* を

$$(2.12) \quad \lceil \forall x_k \left(f^*(x_0, x_0) \equiv x_k \to \psi(x_k/x_0) \right) \rceil$$

のこととする. σ を \mathcal{L}^* -文

(2.13)
$$\forall x_k (f^*(s^*, s^*) \equiv x_k \to \psi(x_k/x_0))$$

とすると、(2.9) と (2.11)、(2.12) により、

$$(2.14)$$
 $T_0 \vdash f^*(s^*, s^*) \equiv$

$$\forall x_k (f^*(s^*, s^*) \equiv x_k \to \psi(x_k/x_0))$$

となるから,

 $(2.15) \quad T_0 \vdash \forall x_k \left(f^*(s^*, s^*) \equiv x_k \leftrightarrow x_k \equiv \lceil \sigma \rceil \right)$

である. したがって, σ の定義から

(2.16) $T_0 \vdash (\sigma \rightarrow \psi(\lceil \sigma \rceil/x_0))$

である.

逆に,

$$(2.17) \quad (\psi(\lceil \sigma \rceil/x_0) \to (f^*(s^*, s^*) \equiv x_k \to \psi(\lceil \sigma \rceil/x_0)))$$

はトートロジーで, x_k は ψ に現れないから,

(2.18)
$$T_0 \vdash (\psi(\lceil \sigma \rceil/x_0) \rightarrow \forall x_k (f^*(s^*, s^*) \equiv x_k \rightarrow \psi(\lceil \sigma \rceil/x_0)))$$

である. したがって, (2.15) により,

$$(2.19) \quad T_0 \vdash (\psi(\lceil \sigma \rceil/x_0) \to \underbrace{\forall x_k (f^*(s^*, s^*) \equiv x_k \to \psi(x_k/x_0))}_{})$$

となり.

$$(2.20) \quad T_0 \vdash (\psi(\lceil \sigma \rceil/x_0) \to \sigma)$$

 T_0 で、 $\tau \subseteq Snt_{\mathcal{L}^*}$ に対し、" τ が無矛盾である"ということを表現する \mathcal{L}^* -論理式 $consis(\tau)$ を、

$$(2.21) \neg prov(\tau, \lceil \neg \emptyset \equiv \emptyset \rceil)$$

のこととする. ゲーデルの第 2 不完全性定理は我々の議論の枠組では, 以下のような定理として定式化できる:

定理 2.2 (第2 不完全性定理のヴァリアント)

T を T_0 を含む具体的に与えられた \mathcal{L}^* -論理式からなる公理系とするとき,T が無矛盾なら $T \not\vdash consis(\ulcorner T \urcorner)$ である 18 .

実は、2つの不完全性定理は Diagonal Lemma (定理 2.1) から容易に証明できるのだが ([菊池、2014], [渕野、2013] 等を参照) ここでは、定理 2.2 の形の第 2 不完全性定理が、後で証明を与えるゲーデルの加速定理の本稿でのヴァリアント (定理 3.1) の系としても得られることを示す (808 ページを参照).

802 ページで与えた第 2 不完全性定理が、定理 2.2 (の脚注 18 で与えたヴァージョン) から導かれることは、次から容易にわかる: メタな立場 (有限の立場) からの T の無矛盾証明 P があったとすると、 T_0 の選び方から、P を T_0 での証明 P^* に翻訳して、 $T_0 \vdash^{P^*} \neg \exists x \ proof(「T¬¬, x, 「0 <math>\equiv 1$ ¬) とできる. したがって、 $T_0 \vdash consis(「T¬¬)$ 、特に $T \vdash consis(「T¬¬)$

である. 従って, 定理 2.2 により, T は矛盾する.

定理 2.2 の同様な読み下しから, T'を第2不完全性定 理の対象となるような理論として, T' で $consis(\lceil T \rceil)$ が証明できるときには、Tの脚注1で述べたような 意味での、無矛盾性の強さは、T' のそれより大きい か等しくはならないことが分かる: もし T の無矛盾 性の強さが T' のそれより大きいか等しいとすると, その証明を形式化することで、 $T_0 \vdash consis(\lceil T \rceil \rceil) \rightarrow$ $consis(\lceil T' \rceil)$) の証明が得られるが、このことと上の 仮定から, $T' \vdash consis(\lceil T' \rceil)$ の証明が得られてし まい, 定理 2.2 に矛盾するからである. 内容的にはこ こで「無矛盾性の強さ」と言っているのは「矛盾性の 強さ」と言った方が実状にあっているとも言えるのだ が¹⁹,「矛盾性の強さ」という表現の否定的なコノー テーションの故か、「無矛盾性の強さ」(consistency strength)という用語が定着しており、ここでもその 慣習に従うことにする.

3. 加速定理とその限界

 T_0 で, $x \in V_\omega$ のランク rnk(x) を, $x \in V_{n+1}$ となる最小の n として定義する.すべての $n \in \omega$ に対し, $rnk(x) \leq n$ となるような $x \in V_\omega$ は有限個しかなく,n を具体的に与えられた数とするときには,それが n に関して指数関数的に増えてしまう (つまり実際には手におえない) ことには目をつぶることにすると,(つまり理想化された有限の立場では) それらを実際に枚挙することができる.

以上の準備により、我々がここで考察しようとして いる加速定理が、次のように定式化できる:

定理 3.1 (ゲーデルの加速定理のヴァリアント)

T を, T_0 を含む,具体的に与えられた無矛盾な \mathcal{L}^* -理論とする。 $f: \mathbb{N} \to \mathbb{N}$ を任意の再帰関数とすると き, \mathcal{L}^* -論理式 $\varphi = \varphi(x_1)$ で,次の (α) , (β) を満た すようなものが存在する。

 (α) 任意の自然数 n に対し $T \vdash \varphi(\underline{n}/x_1)$ だが、すべての T からの $\varphi(\underline{n})$ の証明 P について

 $^{^{18}}$ より正確には,ここで述べた主張の対偶命題を強めた次が成り立つ: もし $consis(\ulcorner T \urcorner)$ が T で証明できるなら,その証明 P を (-定のアルゴリズムで)編集拡張することで,<math>T からの矛盾の証明が得られる.

 $^{1^9}$ $T' \vdash consis(\lceil T \rceil)$ のときには、定理 2.2 により、T' での、 V_{ω} の first order property に関する定理で、T では証明できないもの(例えば $consis(\lceil T \rceil)$)が存在する。T が T' の部分理論のときには、T' の論理的帰結の全体は T の論理的帰結の全体の真の拡張となっており、その意味で、矛盾している"可能性"は、T が矛盾していることの"可能性"より高いと考えられる。

(3.1) $T_0 \vdash rnk(\lceil P \rceil) \geq f(\underline{n})$ となる.

 (β) $T + consis(\lceil T \rceil) \vdash (\forall x_1 \in \omega) \varphi(x_1)$ である. 特に, $T + consis(\lceil T \rceil)$ では (α) でのような $\varphi(\underline{n}/x_1)$, $n \in \mathbb{N}$ の証明の複雑さの爆発は起こらない²⁰.

定理 3.1 の証明は次節で与えるが、ここでは、その前に、この定理での証明の複雑さの指標が任意に選べるわけではないことを指摘しておきたい。例えば証明の複雑さの指標として証明の長さ(つまり、推論のステップの数、あるいは証明に現れる論理式の数)を選ぶと、この定理は必ずしも成り立たない:次の定理は「菊池、2014]、定理 8.2.9 の (多少の) 改良となっている。以下の定理での理論 T には、何の制限も果されていないことに注意する。

定理 3.2 任意の具体的に与えられた理論 T に対し、T と同じ結論を導く理論 T^* で、 T^* のすべての定理に対し、推論のステップの数が 3 の証明が存在するようなものを具体的に構成することができる.

 T^* の取り方を更に調節すると, T^* は,原始帰納的となっている (つまり,論理式が T^* の要素であるかどうかの原始帰納的な判定アルゴリズムが存在する)ようにもできる.

証明. \mathcal{L} を T の言語とする.

$$(3.2) \qquad \langle \psi_n : n \in \mathbb{N} \rangle$$

を T の定理の再帰的枚挙とする (実は T 自身も再帰的枚挙可能であればよい). 各 $n \in \mathbb{N}$ に対し,

(3.3)
$$\eta_n = \underbrace{\psi_n \wedge \cdots \wedge \psi_n}_{n \text{ in}}$$

(3.4) $T^* = \{\eta_n : n \in \mathbb{N}\} \cup \{(\eta_n \to \psi_n) : n \in \mathbb{N}\}$ とすれば、これが求めるものである.

 T^* が T と同じ結論を導くことは明らかである.

論理式 φ が T^* に属すことは以下のように判定できる: T が (3.3) でのような冗長性を持つある論理式 $\eta=\psi\wedge\cdots\wedge\psi$ に対し, φ が η 自身であるかまたは, $(\eta\to\psi)$ の形をしたものになっているかを調べ

る. そうでなければ、 φ は T^* に属さない.もしそのような形になっていて η に現れる論理式 ψ の繰り返しの数を n として $\psi=\psi_n$ のときには、 φ は T^* に属し、そうでなければ属さない.

 φ を T の (または、同じことだが T^* の) 定理だと すると、 $\varphi = \psi_n$ となる n が存在するから、 φ は T^* からの証明 $\langle \eta_n, (\eta_n \to \psi_n), \psi_n \rangle$ により示される.

定理の後半の主張の証明のためには limitation-0 での η_n の取り方を,

(3.5)
$$\eta_n = \underbrace{\psi_n \wedge \cdots \wedge \psi_n}_{n \text{ if } n \text{ if } n \text{ if } n} \wedge \underbrace{(\psi_n \vee \cdots \vee \psi_n)}_{i(n) \text{ if } n})$$

と変更すればよい. ただし, i(n) は ψ_n が (3.2) のリストの中の n 番目のものになっていることの証明をコードするような数とする.

定理 3.1 で,累積的階層に関するランク rnk を論理式の複雑さとして選んだのは,数学的な記述の座りの良さからだったが,既に注意したように, $|V_n|$, $n \in \mathbb{N}$ の要素の数も爆発的に増加するので,実は,ここでのspeed-up theorem の数学的/哲学的意義の議論のためには少々具合が悪いものになっているとも言える.

以下ではパラメタが 8= magical number 7+1 のときの証明の長さの比較を例として議論するが, V_6 の要素の数は既に宇宙に存在する全原子の総数と想定される数を超えるので, V_8 中を全検索して証明の有無を決定する,という判定法は実行可能なものとなってない.

この意味では,以下での哲学的議論に対して,より 妥当な背景を与える speed-up theorem のヴァリアントは,むしろ,任意の具体的に与えられた証明の並べ上げ $e=\langle P_n:n\in\mathbb{N}\rangle$ に対し, $rnk_e(P)="P=P_n$ となる最初のn"として,証明の複雑さ rnk_e を導入し

(3.1)' $T_0 \vdash rnk_e(\lceil P \rceil) \geq f(\underline{n})$ となる.

で(3.1)を置き換えて得れられる命題であろう。この証明は定理3.1と全く同様に行える。この形のヴァリアントではeが任意であることから,定理は,"どんな論理式の数え上げを工夫しても…"と読み下すことができることになる。

4. 加速定理の証明

加速定理 (定理 3.1) の証明を与える. $\psi = \psi(x_0, x_1)$ を次の \mathcal{L}^* -論理式とする:

 $^{^{20}}$ $T+consis(\lceil T \rceil)$ \vdash^{P_0} $(\forall x_1 \in \omega)$ $\varphi(x_1)$ となる証明 P_0 を固定しておく、任意の自然数 n に対し、表現 \underline{n} の長さの一次関数程度で抑えられる長さの $(\operatorname{rnk}$ に関しても $\operatorname{rnk}(\underline{n})+1$ 程度で抑えられる) 証明 P_1 で、 $T_0 \vdash^{P_1} \underline{n} \in \omega$ となるものがとれるが、 P_1 と P_0 に(証明の体系に依存する固定された数)の推論を付け加えることで、 $T+consis(\lceil T \rceil)$ での $\varphi(\underline{n})$ の証明が得られる。

 $(4.1) x_0 \in Fml_{\mathcal{L}^*}$

$$\wedge \forall p \ (rnk(p) < f(x_1) \rightarrow \neg \ proof (\ulcorner T \urcorner \urcorner, p, Sbst(x_0, 1, \bot x_1 \bot))).$$

Diagonal Lemma (定理 2.1) により, \mathcal{L}^* -論理式 $\varphi = \varphi(x_1)$ で

 $(4.2) T_0 \vdash (\varphi \leftrightarrow \psi(\lceil \varphi \rceil/x_0))$

となるものがとれる. この φ が求めるようなものであることを,以下の補題 4.1,補題 4.2 で示す.

補題 **4.1** 任意の $n \in \mathbb{N}$ に対し, $T \vdash \varphi(\underline{n})$ である. 証明. ある $n \in \mathbb{N}$ に対し, $T \not\vdash \varphi(\underline{n})$ だったとしてみる. このときには,すべての具体的に与えられた \mathcal{L}^* での証明 P に対し, $T \not\vdash^P \varphi(\underline{n})$ だから,特に,すべての $T_0 \vdash rnk(\lceil P \rceil) < f(\underline{n})$ となる証明 P に対し, $T \not\vdash^P \varphi(\underline{n})$ である. したがって,

$$(4.3) T_0 \vdash \forall p(rnk(p) < f(\underline{n}) \to \neg proof(\lceil T \rceil, p, \lceil \varphi(\underline{n}/x_1) \rceil))$$

である. したがって、(2.10) と ψ と φ の定義 (4.1)、(4.2) から, $T \vdash \varphi(\underline{n})$ となってしまう. これは,n の取り方に矛盾である.

次も類似の議論で示せる:

補題 **4.2** 任意の $n \in \mathbb{N}$ に対し, $T_0 \vdash rnk(\lceil P \rceil) < f(\underline{n})$ かつ $T \vdash^P \varphi(\underline{n})$ となるような証明 P は存在しない.

証明. $n \in \mathbb{N}$ と \mathcal{L}^* での証明 P で,

- (4.4) $T_0 \vdash rnk(\lceil P \rceil) < f(n) かつ$
- $(4.5) T \vdash^P \varphi(\underline{n})$

となるものがあったとしてみる. (4.2) と (4.5) から,

 $(4.6) T \vdash \psi(\lceil \varphi \rceil, n)$

が導かれる. ψ の定義 (4.1) により, これは

 $(4.7) T \vdash \lceil \varphi \rceil \in Fml_{\mathcal{L}^*}$

$$\land \forall p \ (rnk(p) < f(\underline{n}) \rightarrow \\ \neg \ proof(\ulcorner T \urcorner, p, Sbst(\ulcorner \varphi \urcorner, \underline{1}, \llcorner \underline{n} \lrcorner)))$$

ということである.

一方, (2.10), (4.4), (4.5) により,

$$(4.8) \quad T \vdash \lceil \varphi \rceil \in Fml_{\mathcal{L}^*} \land rnk(\lceil P \rceil) < f(\underline{n})$$
$$\land proof(\lceil T \rceil \rceil, \lceil P \rceil, Sbst(\lceil \varphi \rceil, \underline{1}, \underline{n}))$$

となるから、T から矛盾が導けてしまうが、これは T が無矛盾である、という仮定に矛盾である。 \square (#80 4.2)

 $T + consis(\lceil T \rceil)$ の枠組では、上の超数学での議論を $T + consis(\lceil T \rceil)$ での議論に翻訳することができる.

以下, $T + consis(\lceil T \rceil)$ で議論する²¹.

(4.2) により、 $(\varphi \leftrightarrow \psi(\lceil \varphi \rceil/x_0))$ の T_0 からの証明 があるが、その 1 つを P_0 とする.

もしある $\mathbf{n} \in \omega$ に対して $\neg \varphi(\mathbf{n})$ が成り立っていたとすると (4.2) により、 $\neg \psi(\lceil \varphi \rceil, \mathbf{n}/x_1)$ である. したがって、ある $rnk(\mathsf{P}) < f(\mathbf{n})$ となる P で

(4.9) $proof(\lceil T \rceil, P, \varphi(n/x_1))$

となるものが存在する. よって, この P と $\lceil P_0 \rceil$ を 用いると,

 $(4.10) \quad \exists Q \; proof(\ulcorner T \urcorner \urcorner, Q, \psi(\ulcorner \varphi \urcorner, \mathsf{n}/x_1))$ であることがわかる.

一方, rnk(P) < f(n) であることと, (4.9) と ψ の 定義 (4.1) により,

 $(4.11) \quad \exists R \ proof(\lceil T \rceil, R, \neg \psi(\lceil \varphi \rceil, \mathsf{n}/x_1))$

だから、(4.10) と (4.11) により、

 $(4.12) \neg consis(\ulcorner T \urcorner \urcorner)$

である. $(T + consis(\ulcorner T \urcorner)$ で議論していたのだったから、)これは矛盾である. したがって、 $\neg \varphi(\mathbf{n})$ ではない. \mathbf{n} は任意だったから $\forall x \in \omega \varphi(x)$ である.

□ (定理 3.1)

第2不完全性定理は,加速定理の系として証明する こともできる.

第2不完全性定理 (定理 2.2) の定理 3.1 からの証明:

T を定理 2.2 でのような理論とする. $f: \mathbb{N} \to \mathbb{N}$ を 十分に速く増加する再帰関数として, $\varphi = \varphi(x_1)$ を T とこの f に対する定理 3.1 でのようなものとする. もし, $consis(\lceil T \rceil)$ が T から証明できるとすると,上での定理 3.1 の証明の後半でのように, $\varphi(\underline{n})$, $n \in \mathbb{N}$ の証明の列で,複雑さが f(n), $n \in \mathbb{N}$ より緩慢に増加するものができてしまい矛盾である22.

²¹ 以下では," $T+consis(\lceil T \rceil)$ " で"日常語によって"議論"しているが,ここで述べることになる 「もしある $\mathbf{n} \in \omega$ に対して $\neg \varphi(\mathbf{n})$ が成り立っていたとすると...」や,「ある $rnk(\mathbf{P}) < f(\mathbf{n})$ となる \mathbf{P} で...」での' \mathbf{n} 'や' \mathbf{P} 'は,超数学の視点から公理系 $T+consis(\lceil T \rceil$)での形式的推論と見たときには,変数記号として表されているものとなっていることに注意する.

²² 匿名の検読者うちの一方から、「 $T \vdash prov(T, \lceil \varphi \rceil) \rightarrow prov(T, \lceil prov(T, \lceil \varphi \rceil) \rceil)$ に対応する議論がどこかで用

5. 無矛盾性の強さの大きい枠組での数学

加速定理 (定理 3.1) に関連する数学的議論の技術 的細部を確認できたので、この定理が"全数学"に対 して持ちうるインパクトについて、更に詳しく議論し てみたいと思う.

理論 T, T' で、 $T_0 \subset T, T'$ となるものについて、

 $(5.1) T' \vdash consis(\ulcorner T \urcorner)$

が成り立つとき, T' は T より大きな無矛盾性の強さを持つことになる 23 .

 \mathcal{L}^* -構造 M で, M での V_α が V での V_α と一致するようなものを V_α -モデルと呼ぶことにする. T_0 を含む理論 T' では,モデル理論(の基礎的部分)が展開できて,述語論理の健全性定理と完全性定理は,T' での理論となる.特に,このことから,T' \vdash $consis(\ulcorner T \urcorner \urcorner)$ と T' \vdash " $\ulcorner T \urcorner \urcorner$ のモデルが存在する"とは同値となる.したがって,"T' \vdash $\ulcorner T \urcorner \urcorner$ の V_α -モデルが存在する"は,"T' は T より無矛盾性の強さが大きい"を拡張する概念になっている.

補題 5.1 関係 (5.1) は推移的である.

証明. $T_0 \subseteq T$, T', T'' を具体的に与えられた \mathcal{L}^* -理論として,

 $(5.2) T' \vdash consis(\ulcorner T \urcorner \urcorner), T'' \vdash consis(\ulcorner T \urcorner \urcorner)$

とする. このとき (T_0 で既に成り立っている) 述語論 理の完全性定理により,

 $(5.3) T'' \vdash \exists M' (M' \models \ulcorner T' \urcorner)$

である. したがって、(5.2) の前半と、M' で成り立っている述語論理の完全性定理により、

 $(5.4) T'' \vdash \exists M' (M' \models \ulcorner T' \urcorner \urcorner)$ $\land M' \models \exists M (M \models \ulcorner T \urcorner \urcorner))$

いられているはずだが、それがどこかが不明である」という趣旨のコメントをいただいた。これは、上での証明の最後の部分での、「T+consis(「 T^{-1}) の枠組では、上の超数学での議論を T+consis(「 T^{-1}) での議論に翻訳することができる。」に続く議論と、定理 2.2 の証明での「定理 3.1 の証明の後半でのように」と書いた、これに対応する議論の部分での議論の中に解消されている。ここでの議論の一般化が $T\vdash prov(T, \lceil \varphi^{-1}) \to prov(T, \lceil prov(T, \lceil \varphi^{-1}) \rceil)$ を示すことになるが、ここでの議論は、この provability predicate の基本性質を用いる議論にはうまく還元できないように思える。

 23 ここでは, T と T' の間の包含関係や, T と T' のそれ ぞれから導ける論理式の全体 Th(T) と Th(T') の間の包含関係は, 仮定していないことに注意する.

このこと(と ⊨ の定義)から,

(5.5) $T'' \vdash \exists M' \exists M (M' \models \ulcorner T' \urcorner \land M \in M' \land M' \models (M \models \ulcorner T \urcorner \urcorner))$

である. T'' の中で議論することにする. M', M を (5.5) でのようなものとして,

 $(5.6) \quad \overline{M} = \{ a \in M' : M' \models a \in M \},\$

(5.7) $\overline{\in} = \{\langle a, b \rangle \in (\overline{M})^2 : M \models M' \models a \in b \}$ とする。このとき, $\overline{M} = \langle \overline{M}, \overline{\in} \rangle$ に対し, $\overline{M} \models \ulcorner T \urcorner$ である。

超数学に視点を戻すと,以上から

 $(5.8) T'' \vdash \exists M (M \models \ulcorner T \urcorner)$

だから,(述語論理の証明の体系の健全性定理から) $T'' \vdash consis(\ulcorner T \urcorner \urcorner)$ である. \Box (編図 5.1)

補題 5.2 α を ω , $\omega+1$, ω_1 など具体的に記述の可能な順序数とする. このとき,

(1) T' \vdash "「T[¬] の V_{α} -モデルが存在する"が成り立つなら,T から証明できる V_{α} の first order properties はすべて,T' でも証明できる.更に,T' で証明できる V_{α} の first order properties の全体は,T で証明できる V_{α} の first order properties の全体の真の拡張となっている.

(2) T' で T の内部モデル M が存在して, $V_{\alpha} \subseteq M$ なら, T から証明できる V_{α} の first order properties はすべて, T' でも証明できる. 更に, T' で証明できる V_{α} の first order properties の全体は, T で証明できる V_{α} の first order properties の全体の真の拡張となっている.

(3) T' で T の内部モデルが存在するときには,T から証明できる V_{ω} の first order properties はすべて T' で証明できる. 更に,T' で証明できる V_{ω} の first order properties の全体は,T で証明できる V_{ω} の first order properties の全体の真の拡張となっている.

証明. α に関する仮定から、" V_{α} " は \mathcal{L}^* の閉項として表現できることに注意する.

(1): T' \circ M \circ \cap T \circ V_{α} - \circ V_{α}

 $(5.9) T' \vdash M \models \ulcorner T \urcorner \urcorner$

により.

(5.10) $T' \vdash M \models "V_{\alpha} \models \lceil \varphi \rceil"$

である. したがって

(5.11) $T' \vdash V_{\alpha} \subseteq M \wedge "M$ は推移的である" を用いると、

(5.12) $T' \vdash V_{\alpha} \models \lceil \varphi \rceil$

が得られる.

 $consis(\lceil T \rceil)$ は、 V_{ω} の first order property として記述できるから、不完全性定理により、 $consis(\lceil T \rceil)$ は、T' で証明できる V_{α} の first order properties に含まれるが、T で証明できる V_{α} の first order properties には含まれない。

- (2): φ を $T \vdash "V_{\alpha} \models \lceil \varphi \rceil$ " となるものとする と, T の公理 $\psi_0,...,\psi_{k-1}$ で, $\psi = \psi_0 \land \cdots \land \psi_{k-1}$ として, $\psi \vdash "V_{\alpha} \models \lceil \varphi \rceil$ " となるものが存在する. $T' \vdash \psi^M$ だから, 以下 (1) の証明と同様に議論して, $T' \vdash V_{\alpha} \models \lceil \varphi \rceil$ が得られる.
- (3): 任意の内部モデル M は V_{ω} を含み、これは、内部モデルの推移性から $(V_{\omega})^{M}$ と一致するから、主張は (2) から導かれる. \square (#89 5.2)

T' が T より無矛盾性の強さが大きいような組 $T_0 \subseteq T$, T' の組の例は多く知られている。例えば

(a) $T = \mathsf{ZC}, T' = \mathsf{ZFC}$

はそのような組の1つである 24 .

また、IC と MC をそれぞれ、到達不可能基数、または可測基数の存在を主張する公理として、MM を Martin's Maximum とすると 25 、

 24 ZC と, ZFC は, それぞれ, ツェルメロの集合論 Z と, ツェルメロ=フレンケルの集合論に選択公理を付け加えて得られる公理系である. ZFC \vdash consis(「ZC「) は, ZFC \circ ω より大きな任意の極限順序数 α で V_{α} \models 「ZC「となることで示される.

選択公理の付加は、ZFC については、[Gödel, 1938], [Gödel, 1940] により、ZF より無矛盾性の強さが大きくならないだけでなく、ZF と無矛盾等価になることが知られている。 Z 上の ZC についての状況は不明だが、Z を多少強めた体系については、やはり選択公理を付け加えても付け加える前と無矛盾等価になることが、ZFでの証明と同様にして示せる。

²⁵ Martin's Maximum (MM) は、マルティンの公理 (Martin's Axioml, MA) を拡張する公理で、マルティンの公理の下でもまだ独立命題となっている多くの数学的主張を決定する。たとえば (1) 連続体の濃度が №2 であることを決定し、(2) チャング仮説、(3) 特異基数仮説などを肯定的に解決する。実は今述べたもののうち (1) と (3) は、Proper Forcing Axiom (PFA) と呼ばれる MA と MM の間に位置する公理から既に導けることが後になって示されているのだが、MM はこれら

- (b) $T = \mathsf{ZFC}, T' = \mathsf{ZFC} + \mathsf{IC},$
- (c) $T = \mathsf{ZFC} + \mathsf{IC}, T' = \mathsf{ZFC} + \mathsf{MC},$
- (d) $T = \mathsf{ZFC} + \mathsf{MC}, T' = \mathsf{ZFC} + \mathsf{MM}$

も,それぞれ T' が T より無矛盾性の強さが大きいような組となっている.(a), (b) では $T\subseteq T'$ で,(c) では, $Th(T)\subseteq Th(T')$ である.ただし Th(T) で T から証明される \mathcal{L}^* -文の全体を表わす.(d) ではこのような包含関係は成り立っていないが,例えば $\alpha=\omega+1$ として,補題 5.2, (2) での状況が成り立つことが知られている. $V_{\omega+1}$ の first order theory は二階の算術(full second order arithmetic)とほぼ同じものになるが,旧来の数学のほとんどすべては二階の算術の弱い部分体系で記述できることが知られている([Feferman, 2013],[Simpson, 1998/2010] 等を参照).したがって,(d) の理論の組でも,通常の数学に関しては T' は T より真に多くの定理を証明するような拡張になっていると言ってよい.

上で挙げた T と T' の例のすべてでは,次の意味でも,T' の無矛盾性の強さは,T より非常に大きなものになっている: T' の超限的な無矛盾性の強さがT より大きいとは,任意の帰納的な順序数 α に対し,理論の列 $\langle T_{\xi}: \xi \leq \alpha \rangle$ で,次の条件を満たすものが存在すること,とする:

- (5.13) $T_0 = T$,
- (5.14) $T_{\alpha} = T',$
- (5.15) すべての $\xi < \xi' \le \alpha$ に対し、 $T_{\xi'}$ は T_{ξ} より無矛盾性の強さが大きい.

上の例での T, T' の組, または, 補題 5.1 により, 上の例での組の連鎖の両端になっているような理論の組T, T' に対して, 補題 5.2 や, 上の超限的な無矛盾性の強さの意味での, 無矛盾性の強さの増大が言える.

このような理論の組 T, T' に対し, 既に見たよう に, Th(T) が Th(T') に含まれていなくても, T' の無矛盾性の強さが T のそれに比べて, 補題 5.2 の意味で大きいなら, 通常の数学の命題については T' は

の主張についても、それらの背後に隠れている、いくつかのもっと強い組合せ原理も導くことが知られている。 筆者が [Fuchino et al, 2010] で導入した Fodor-type Reflection Principle (FRP) は PFA からでは導くことのできないことが知られている MM の帰結の 1 つである ([Fuchino et al., ∞]). ちなみに、MM の帰結のうち (3) 特異基数仮説は FRP と PFA の共通の帰結である.

T より真に多くの定理を証明できる. しかし, T で証 明できる通常の数学の命題についても,T' ではその 証明が物理的に書き出せるのに、T での証明を書き下 すことが物理的に不可能なものが存在することが加速 定理によりわかる. $f: \mathbb{N} \to \mathbb{N}$ を値が爆発的に増大す る帰納的な関数で、例えば、f(8) が宇宙に存在する原 子の数より大きなものになり、しかし f 自身は具体 的な定義が (物理的にも) 書き下せるようなものとす ると, この f と T に対し, 加速定理 (定理 3.1) での ような φ を採ると, $\varphi(8/x_1)$ の T からの証明が存在 することは、この場合には、 φ の組成から超数学での 議論で補題 4.1 でのように示すことができるが、その 証明の複雑さの下限が(3.1)を満たすので, f(8)の値 の大きさから、 $\varphi(8/x_1)$ の証明を実際に書きだすこと は、物理的に不可能である. 一方、第4節の終りで示 したように、T' では、 $\forall x (x \in \omega \rightarrow \varphi(x))$ の実際に 書きだすことのできるような証明が存在するから,こ の証明にいくつかの推論を付け加えることで $\varphi(8/x_1)$ の証明が実際に書き下せる.

もちろん,ここでの φ は人工的に作られた命題であるが,数学で研究の対象となっている未解決問題の 1 つの命題が,この $\varphi(\underline{8}/x_1)$ のような性質を持つものでない,という保証はどこにもないように思える.

ここでの記述は base theory として弱い集合論 T_0 を想定したが、記号の有限列を数としてコードするゲー デル数化のテクニックを用いると、ペアノ算術 (の部 分理論) を base theory として用いることも可能であ る (例えば, [Enderton, 2001] を参照). そのような 設定の下で、ペアノ算術と二階の算術をそれぞれ T と T' と考えたとき, ここでも T' は T より無矛盾性 の強さの大きいものとなっている. 数学的に自然な命 題とみなせる (ペアノ算術での) 定理で、二階の算術 では証明が書き下せるが, ペアノ算術では証明が現実 的な長さにおさまらない、というようなものの例はい くつか知られている. しかし, 集合論の異る体系の間 で,このような振舞いをする命題で,証明の体系には 直接言及しない"数学的な"ものはまだ見出されてい ない, と思う. 集合論上での相対的無矛盾性の活発な 議論が可能になるために 1960 年代の強制法の発見が 必要だったように,このようなものの構成にはまだ新 しい手法の導入が必要とされているのかもしれない.

上の $(a) \sim (d)$ での $T \geq T'$ の組の例では,それぞれに T からは独立だが,T' では証明できる,という種類の命題(で数学的に自然なもの)が多く知られて

いる。例えば,(b) と (c) を組み合わせて,T を ZFC として,T' を ZFC に可測基数の存在の主張を加えたものとすると, $V \neq L$ や,"実数 $0^{\#}$ が存在する"や"すべての実数の Σ_2^1 集合はルベーグ可測になる"などは,T では独立だが 26 ,T' では成り立っているような主張の例となっている 27 .

一般論に戻って, T' で証明された定理 φ が, 後で, T からは独立だということが示されたときには、T で の理論が数学である、という視点に固執する立場 S か らは、 φ は数学的主張ではない、として切り捨ること ができるかもしれない.この場合には、 φ がこの意味 で切り捨てることのできる問題であることを見出すた めに T' での視点が必要になるとしても、ここでの T'の S に対して果す役割は瑣末なものでしかないと評 価することも可能かもしれない. しかし,Tで証明さ れた定理 φ が T 上で加速定理現象の例になっている かもしれない、という可能性は、S の立場を固持する としても, T'での数学の研究を無視することが難し いことを示唆しているように思える. 加速定理現象を 内包している (かもしれない) T での定理が, T でで はなく,T'で楽々と証明されてしまう,ということ が十分に起こり得るからである.

T での定理の T' での証明が軽微な加速しか伴って おらず、この証明を足掛かりとして T での証明が得ら れる、という展開もあり得る. 実際そのような展開と 解釈できる数学上の成果は、素数定理に関する Selberg と Erdős の結果, 更に Cornaros と Dimitracopoulos 結果 ([Avigad, 2003] を参照) をはじめ少なくない. これらの結果は一部の数学者の否定的な評価 (たとえ ば [志村, 2010]) にも関わらず、無矛盾性の強さのよ り弱い (つまり無矛盾である"確率"のより高い) 体系 での証明の発見, また, そのような証明のためのテク ニックの探求、という意味づけからは一定の評価をす べきものであるし、T' が T の保守拡大でない場合に は、そのような証明がTで得られるかどうかさえ、証 明を見付けてみなければ確言できないわけでもある. 経験から, 生身の数学者の心理として, 証明のできる ことの知られている命題の証明は, そうでない場合に 比べて格段に易しい. また, T での証明がその意味が 見にくいものであるのに対して,T'での証明は,そ

 $^{^{26}}$ ちなみに, ZFC + IC でも, これらの命題はまだ独立である.

²⁷ これらの例については, 例えば [Kanamori, 1994/2003] を参照されたい.

の意味が素直に理解できるものになっていて, T' での証明を理解してから T での証明を読むと初めてその数学的に意味するところが把握できる, という流れができることもあり得る.

ZFC と NBG の間でも加速現象が起こることが知られている([Pudlák, 1986]). しかし、上で書いたように、現代の集合論では、集合論の体系内数学と超数学の間を行き来する議論のスタイルが通常となっている. このような議論のスタイルは集合論で相対的無矛盾性の議論をおこなう必要性から不可避であるが、超数学での考察を含む議論を ZFC やその拡張で行うことで、ZFC と NBG の間の加速現象は実質的には回避されていることに注意すべきだろう.

ZFC と NBG の間の加速現象もそうであるが、保守拡 大となっている理論 T, T' の間や2つとも無矛盾性の 強さの低い理論の組での加速現象については, 数学的道 具主義/還元主義 (instrumentalism/reductionism) の観点からの議論が [Caldon, and Ignjatovic, 2005], [Arana, 2017] などで展開されている. このような理 論の組T, T'では、強い理論T'で証明できた場合 には、弱い方の理論 T でも (それが現実的に書き下 せるかどうかは別として)証明が存在する保証がある (ないしは, 実際に書き下すことのできる証明が存在 する可能性がある)が、本論文で問題とした理論の組 では、本節の初めでも見たように2つの理論の間には 超限回の無矛盾性の強さの上昇列が挿入できるような ものになっている. したがって、ここでは T' である 主張が証明されたときにも、それが T 上では独立命 題になっている可能性もあるし, そうでないとしても T では証明を書き下すことが物理的に全くできないよ うな種類の加速現象が起こっている可能性も超限回支 持されている. 本論文で論じたことの一つは, このよ うな状況でも、弱い方の理論 T での状況を見極める ためだけにも T' での研究が不可欠であるという指摘 である. またこのことは, 無矛盾性の強さの異る階層 に属すどの2つの理論の組についても言える:集合論 の研究が初等数論の研究にとって上で述べたような意 味で不可欠であるように, 巨大基数の公理を仮定した 集合論の研究も、ZFC での数学の研究にとって不可欠 であることが主張できる.

「数学」について哲学的な議論をしようとするとき、この議論の対象が、既に得られている数学的知識の集大成、または、そのようなものとして他の科学に応用されるべきものとしての数学なのか、あるいは、自律

的に、または他の科学との相互触発の結果として、動的に発展しつつある、また将来も発展し続けるであろう無限の"生命体"としての数学なのかによって、その議論の展開は全く異るものとなるだろう。研究の前線での、新しい定理を証明してゆく動的な数学に加担していないことの多い哲学者の議論は、前者の保守的な数学観による議論に偏りがちで、その議論の落ちどころも(1.2)、(1.4)などに類する限定的なものになることが多いのではいなだろうか。一方、研究の前線で仕事をしている数学者は、数学に関する哲学的な議論を無用の長物、ないしは数学の研究をやれるだけの能力のない人のやること、と捉えてしまうことが多いのではないかと思う。

1960年代以降の集合論研究では、加速定理現象を直接意識したものではないにしても、(多くの場合は無矛盾性の強さの異る) 異る公理系の体系の間や、集合論の体系の中での議論と超数学との間を、頻繁に往復しながら研究を行なう、というスタイルの数学が恒常的に行なわれるようになってきている。そのような研究の典型的な例として、Saharon Shelah による基数算術 (Cardinal Arithmetic) の理論を挙げることができる²⁸.この理論の本体は ZFC での数学理論である

^{28「}基数算術」はもともとは無限基数の加算,乗算,冪算などの計算則の理論を指す用語であるが,現在では,集合論の研究者の間で"Cardinal Arithmetic"と言ったときには,基数算術に関して Shelah の作り上げた理論やその手法のことを指すことが多い.この理論は現在も爆発的な速度で発展しているが,その20世紀末までの成果については,[Shelah,1994]や[Shelah,1994]への入門書とも言える[Holz etal.,1999]で見ることがで

が、そこでは、もともとは可測基数との関連で導入された超積による論法や、超積を必ずしも超フィルターでないフィルターに一般化した reduced product を用いる論法、強制拡大や、巨大基数の下での状況の知見やそこでの論法のアナロジーによる ZFC での議論などが駆使され、ZFC で成立しうる理論の可能性(のうち人間にとって eligible なもの)の限界への挑戦がなされている。加速定理現象(の、このような研究による回避)が、人間にとっての証明の限界を押し広げてくれる可能性が高いように思える。

集合論の一般位相空間論、代数、解析などへの応用の研究などを除くと、このような集合論の複数の拡張、論理学の積極的な活用や数学と超数学の間の視点を含む研究形態は、集合論以外の数学の研究分野ではまだ見られることの少ないものであるが²⁹、来たる 22世紀の数学の究極の姿の可能性の一つを示しているものとも考えられるだろう。上で議論したような意味での加速定理の解釈が、数学の未来がこのような超数学を内包するスタイルの数学研究に向わざるを得ない、という主張の正統性に対する主要な論拠の一つとなっている、と筆者は考えるものである。

6. 追悼と謝辞

本稿の執筆中に竹内外史先生の訃報に接した. 本論 文の筆者は、彼の同世代の多くの日本人の数理論理学 研究者と同様に, 竹内先生から大きな影響を受けた. 実は、彼は竹内先生から private にも大きな援助をし ていただいているのだが、それにも増して、筆者は、 集合論研究に関し,本稿でも採られている,純粋に形 式的な超数学での視点から(も)集合論の体系を考察 する,という姿勢の妥当性や重要性を,まだ日本で学 部の学生だったころ [Takeuti and Zaring, 1971] や [Takeuti and Zaring 1973] から学んだ. その直後に 書いた筆者の学士論文は,これらの本の基本思想を強 く反映するものとなっていた. 竹内先生の上記の本で の集合論の扱いは、筆者のその後の集合論研究者とし ての人生にも大きな影響を与え続けてきた. その残映 は本稿にも見出されると思う. 御本人に生前直接その ことの感謝をお伝えする機会を永遠に失なってしまっ たのは大変に悲しいことであるが, ここに改めて心か らの追悼の意を記したいと思う.

最後に (but not least),本論文の匿名の検読者の方々には、本論文の初稿を丁寧に読み込んで細部のほころびの指摘や有益なコメントを沢山頂いた.特に、[Arana, 2017]、[Avigad, 2003]、[Pudlák, 1986]等の文献と、それらで展開されている哲学的考察と本論文での文脈との関連性についての議論を行なうことの必要については、検読者のうちの一方から示唆して頂いたものである。このことに感謝する.

文献

- Arana, Andrew (2017), "On the Alleged Simplicity of Impure Proof", in: Kossak, Roman and Ording, Philip (eds.), "Simplicity", Springer,
- Avigad, J. (2003), "Number theory and elementary arithmetic", Philosophia mathematica, Vol.11, 257-284.
- Burgess, J. (2010), "On the outside looking in: a caution about conservativeness", in: Feferman, Solomon, Parsons, Charles and Simpson, Stephen G. (eds.), "Kurt Gödel: Essays for His Centennial", Association for Symbolic Logic.
- Caldon, P. and Ignjatovic, A. (2005), "On mathematical instrumentailsm", The Journal of Symbolic Logic, Vol.70, No.3.
- Carnap, Rudolf (1934), Logische Syntax der Sprache, $Springer\ Verlag,\ Wien.$
- Enderton, Herbert B. (2001), "A Mathematical Introduction to Logic", Second Edition, Academic Press
- Feferman, Solomon (2000), "The significance of Hermann Wey'ls Das Kontinuum", in: *Proof Theory* (V.F. Hendricks et al., eds.), Kluwer Academic Publishers, 179-194.
 - (2013), "How a little bit goes a long way: Predicative foundations of analysis", unpublished note:
- http://math.stanford.edu/~feferman/papers/pfa(1).pdf Fuchino, Sakaé (2012), "The Set-theoretic multiverse as a mathematical plenitudinous Platonism viewpoint", Annals of the Japan Association for the Philosophy of Science, Vol.20, 49-54.
- 渕野 昌 (2013), "現代の視点からの数学の基礎付け", "数とは何かそして何であるべきか" (ちくま学芸文庫, リヒャルト・デデキント著, 渕野 昌 訳・解説) に付録 Cとして収録.

きる.

 $^{^{29}}$ グロタンディエク宇宙を用いる議論は、このようなものの 1 つである、と解釈することも可能かもしれない.

- _____(2016), "集合論 (= 数学) の未解決問題", 現代思想 2016年 10 月臨時増刊号 総特集=未解決問題集, 109-129.
- (2018), "カントルの精神の継承 無限集合の数学 /超数学理論としてのカントルの集合論のその後の発 展と,その「数学」へのインパクト",数学文化, No.29, 26-41.
- (∞) , "強制法 公理的集合論入門", in preparation.
- Fuchino, Sakaé; Juhász, István; Soukup, Lajos; Szent-miklóssy, Zoltán and Usuba, Toshimichi (2010), "Fodor-type Reflection Principle and reflection of metrizability and meta-Lindelöfness", Topology and its Applications Vol.157, 8, 1415–1429.
- Fuchino, Sakaé; Friedman, Sy-David and Sakai, Hiroshi (2017), "On set-generic multiverse", Institute of Mathematical Sciences, National University of Singapore, Vol.33, Sets and Computations, eds.: Sy-David Friedman, Dilip Raghavan and Yue Yang, World Scientific Publishing, 25–44.
- Fuchino, Sakaé; Sakai, Hiroshi; Soukup, Lajos and Usuba, Toshimichi (∞) , "More about Fodor-type Reflection Principle", submitted.
- Gödel, Kurt (1933), "Zur intuitionistischen Arithmetik und Zahlentheorie", Ergebnisse eines mathematischen Kolloquiums 4, 34–38.
- _____ (1936), "Über die Länge von Beweisen",

 Ergebinisse eines mathematischen Kolloquiums
 7, 23–24.
- (1938), "The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis", Proceedings of the National Academy of Sciences of the United States of America, National Academy of Sciences 24 (12), 556–557.
- _____ (1940). "Consistency of the Axion of Choice and of the Generalized Continuum Hypothesis with the Axioms of Set Theory", it Princeton University Press.
- Holz, Michael; Steffens, Karsten and Weitz, E. (1999), "Introduction to Cardinal Arithmetic", Birkhäuser (Basel).
- Kanamori, Akihiro (1994/2003), "The Higher Infinite", $Springer\ Verlag.$
- 菊池 誠 (2014), "不完全性定理", 共立出版.
- 小平 邦彦 (1986), "怠け数学者の記", 岩波書店.
- Mathias, A.R.D. (1992), "The Ignorance of Bourbaki, Mathematical Intelligencer, 14, 4–13.
- (2001), "Slim Models of Zermelo Set

- Theory", *The Journal of Symbolic Logic*, Vol.66, No.2, 487–496.
- von Neumann, John (1929), Über eine Widerspruchsfreiheitsfragen der axiomatischen Mengenlehre, Journal für die reine und angewandte Mathematik (Crelle's Journal), Vol.160, 227–241.
- Pudlák, Pavel (1986), "On the length of proofs of finitistic consistency statements in first order theories", in: Paris, J.B., Wilkie A.J. and Wiliners, G.M. (eds.), "Logic Colloquium '84".
- Shelah, Saharon (1994), Cardinal Arithmetic, Clarendon Press (Oxford).
- 志村 五郎 (2010), "数学をいかに使うか", ちくま学芸文庫. Simpson, Stephen G. (1998), Subsystems of Second Order Arithmetic, Springer-Verlag. 2nd edition: (2010), Cambridge University Press.
- Takeuti, G. and Zaring, W.M. (1970), "Introduction to Axiomatic Set Theory", Springer Verlag.
 - (1973), "Axiomatic Set Theory", Springer Verlag.
- Weyl, Hermann (1918), "Das Kontinuum: kritische Untersuchungen über die Grundlagen der Analysis", Veit und Comp., Leipzig, Reprinted 1987. 2 edn, de Gryter & Co., Berlin, 1932. English translation: The Continuum: A Critical Examination of the Foundation of Analysis, translated by Stephen Pollard and Thomas Bole, Thomas Jefferson University Press: 1987. Corrected republication, Dover 1994. [日本語訳]: "連続体" (日本評論社, ヘルマン・ヴァイル著, 渕野昌, 田中尚夫翻訳/解説 (2016))
 - (1946), "Mathematics and Logic", The American Mathematical Monthly, Vol.53, No.1, 2–13.
- Zermelo, Ernst (1908), "Untersuchungen über die Grundlagen der Mengenlehre I", Mathematische Annalen 65, 261–281. [日本語訳]: "集合論の基礎に関する研究 I" ("数とは何かそして何であるべきか" (ちくま学芸文庫, リヒャルト・デデキント著, 渕野昌 訳・解説 (2013)) に付録 B として収録.)