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Teoria Mnogości to ... Set-theoretic multiverse (2/17)

◮ Set Theory is a study of the (mathematical) infinity.

◮ It is also a study of the foundation of mathematics since (almost?)
all mathematical theories we know and their proofs can be
(re)formulated in the framework of the standard axioms of set
theory:

The Zermelo-Fraenkel set theory with Axiom of Choice
abbreviated as ZFC

⊲ Set Theory can also be a/the foundation of mathematics just
because of the fact that all mathematical theories (that is,
formulation of their theorems and reasoning in these theories) can
be carried out in ZFC.
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Georg Cantor (Saint Petersburg 1845 — 1918 Halle)

... das Wesen der Mathematik
liegt gerade in ihrer Freiheit

[Cantor, 1883].

(... the essence of mathematics
just lies in its freedom

[Cantor, 1883])

◮ Georg Cantor created the Set Theory around 1870.

⊲ On December 7, 1873, Cantor found out that there are several
(actually infinitely many) different “sizes” of infinitude.



Size (cardinality) of infinite sets Set-theoretic multiverse (4/17)
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Two sets (collections of mathema-
tical objects) are considered to be
of the same size (cardinality) if
there is a bijection (1-1 onto map-
ping) of all elements of one set to
all elements of the other set.

The set N of all natural numbers
(N = {0, 1, 2, 3, 4, , ...})
and the set E of all even numbers
(E = {0, 2, 4, 6, 8, ...})
have the same cardinality although
E is a proper subset of N (E $ N) !!!

N E

◮ We call a set countable if it is of the same cardinality with the set
of all natural numbers. So the set of all even numbers is countable
and a similar argument shows that the set of all odd numbers is
countable as well.
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・・・

◮ The examples above rather suggest that all infinite sets might be
countable. But Cantor proved that this is not at all the case:
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Real numbers are uncountable Set-theoretic multiverse (6/17)

◮ Real numbers are the numbers which corresponds to the points on
the real line. We denote with R the set of all real numbers.

⊲ Cantor proved in 1873 that there can be no (1-1 onto) mapping
from N to R which exhaustively enumerate real numbers.

◮ Suppose, toward a contradiction, that there were an enumeration of
all real numbers r0, r1, r2,..., rn,... n ∈ N.

r0 : 2 .4 1 6 1 0 7 3 8 2 5 5 0 3 3 5 6 · · ·
r1 : −562 .4 3 2 8 3 5 8 2 0 8 9 5 5 2 2 5 · · ·
r2 : 1 .9 4 6 2 6 8 6 5 6 7 1 6 4 1 7 8 · · ·
r3 : 0 .0 0 1 1 7 8 2 2 4 2 9
r4 : −1 .5 4 9 0 0 0 1
...

...

⊲ Choosing the smallest out of 1 or 2 which is different from the each of
4, 3, 6, 1, 0,..., we obtain the sequence 1, 1, 1, 2, 1 ,....

◮ The number 0. 1 1 1 2 1 · · · is different from all of r0, r1, r2, r3, r4,....
This is a contradiction.
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◮ Cardinality of infinite sets can be also enumerated transfinitely. The
smallest infinite cardinality, the cardinality of countable sets or
countability, is denoted by ℵ0. The next cardinality is then called
ℵ1, and so on. In this way we obtain a sequence of cardinalities

ℵ0,ℵ1,ℵ2,ℵ3, , ... ℵω,ℵω+1,ℵω+2, ...

◮ The cardinality of the real numbers is often denoted by 2ℵ0 .

◮ The consideration on the last slide shows that 2ℵ0 ≥ ℵ1.

◮ Cantor conjectured that there is no cardinality between ℵ0 and 2ℵ0

and so the equation 2ℵ0 = ℵ1 holds.

⊲ This equation is called the Continuum Hypothesis (Cantor
himself mentioned about „Kontinuumproblem“ since he firmly
believed in the validity of the equation).

◮ Cantor could not solve this problem and it remained unsolved until
a (partial) solution was found in 1960s by Paul Cohen.
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Ernst Zermelo
(Berlin, 1871 — 1953, Freiburg)

In his 1907 paper, Zermelo proposed
an axiomatization of Cantorean set
theory. This system is modified and
extended by some other axioms inclu-
ding the ones Abraham Fraenkel pro-
posed. The final form of the axiom
system based on the first order logic
was established in 1930s and called
now Zermelo-Fraenkel set theory
with Axiom of Choice (ZFC).

◮ It was Nicolas Bourbaki who popularized the idea of set theory as
the foundation of mathematics in 1950s and 1960s. Most of the
members of the Bourbaki group were rather anti-logic and anti-set
theory and, as a result, the roll they prescribed to set theory was
not the “the study of the foundation of mathematics” but rather
“the foundation of mathematics” in the sense of an introductory
course of mathematics.
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◮ The axiomatization of the set theory had the historical background
that it is discovered at the turn of the 20th century that a careless
argument in set theory leads easily to a contradiction. The
set-theorists of the generation next to Cantor felt need to specify
what is the correct reasoning in set theory.

⊲ Form this point of view the consistency proof of the axiom system
of set theory should be a very urgent problem. Zermelo wrote:

Even for the very important consistency of my axioms, I cannot yet
give a strict proof. [Zermelo, 1907]

However ...
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Theorem 1 (The 1st Incompleteness Theorem (Gödel, Rosser
1931/1936))

For any (concretely given) formal axiom system T (over any logic)
in which a large enough fragment of elementary number theory can
be interpreted, if the system is consistent then it is not complete.
That is, there is an assertion in the language of T which is
independent from T i.e. which cannot be proved or negated from T .

Theorem 2 (The 2nd Incompleteness Theorem (Gödel 1931))

For any (concretely given) formal axiom system T (over any logic)
in which a large enough fragment of elementary number theory can
be interpreted, if the system T is consistent then the assertion
consis(ppTqq) in the language of the system which expresses the
consistency of the system is not provable in the system itself.

◮ These theorems also apply to the axiom system ZFC.



There are even mathematical assertions independent from ZFC Set-theoretic multiverse (11/17)

◮ The independent assertion constructed in the proof of Theorem 1 is
rather artificial. However we know today that there are
“mathematical” natural assertions which are independent from ZFC.

Theorem 3 (Gödel, 1940)

If ZF (ZFC without Axiom of Choice) is consistent then ZFC is also
consistent.

Theorem 4 (Cohen, 1963, 1964)

(1) Axiom of Choice is independent over ZF (if ZF is consistent).

(2) Continuum Hypothesis is independent over ZFC (if ZFC is
consistent).



Farther examples of independence from ZF and ZFC Set-theoretic multiverse (12/17)

◮ The following assertions are known to be independent from ZF:

⊲ All vector spaces have linear basis.

⊲ All subsets of real numbers R are Lebesgue measurable.

◮ The following assertions are known to be independent from ZFC:

⊲ All sets of real numbers R of cardinality strictly less than continuum
are null-sets.

⊲ There are uncountable co-analytic sets which do not contain any
perfect set.

⊲ There are projective sets which are non-Lebesgue measurable.

⊲ There is a measure extending the Lebesgue measure defined for all
subsets of the real numbers R.
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◮ The proof of [Gödel, 1940] is obtained by constructing an inner
model (a special kind of submodel) of a model of ZF (the universe
of constructible sets denoted by L (Gödel’s L)). In the consistency
the Axiom of Choice is then proved by showing that L satisfies the
Axiom of Choice.

◮ The proof in [Cohen, 1953, 1954] is done by starting from a model
M of set-theory to construct so-called generic extensions M[G0],
M[G1] of M which are models of the Continuum Hypothesis and
the negation of the Continuum Hypothesis respectively.
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◮ Working with the constructions of different models of set theory for
independence proofs, set theorists obtain more and more the feeling
that what they study in set theory are not phenomena in a single
universe of set theory but rather relationships of many different
universes of set theory constructed by by Gödel’s and Cohen’s
construction methods and others.

◮ The standpoint that we are dealing with the class of universes of
set theory is called set-theoretic multiverse and is getting attention
in recent years.

◮ The terminology of “set-theoretic multiverse” was introduced by
Hugh Woodin who is the champion of the research in Gödel’s
Program. Actually we can discuss about the universe among many
universes of the set-theoretic multiverse which should be the model
of the “correct” axioms extending ZFC.
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◮ There are many new type of problems in set theory which become
first apparent seen from the viewpoint of the set-theoretic
multiverse. Two examples:

⊲ A set theoretic assertion ϕ is called a button if it has the property
that when, it is made true in a generic extension of a universe, then
it remains true in all further generic extensions. Is it possible that all
buttons are pushed in a universe (i.e. all such properties are already
true in a universe without making it true in a generic extension)
⇒ Maximality Principles of Joel Hamkins (e.g. [Hamkins, 2003])

⊲ We call an inner model M of a universe U a ground if U is a
generic extension of M. Is the intersection of all grounds (this is
called the mantle by Hamkins) also a ground? ⇒ Yes if there is a
very large large cardinal (Toshinichi Usuba [Usuba, ∞]).
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◮ The set-theoretic multiverse provides a pluralistic viewpoint to the
Continuum Problem and many other independence results in set
theory.

⊲ It also provides us a possibility to discuss about the significance of
some models (and corresponding axioms of set theory) in the
multiverse.

◮ There are many interesting set-theoretic problems which became
apparent seen from the viewpoint of set-theoretic multiverse.
We are possibly standing right at the beginning of an exciting new
development of set theory.
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◮ “The downward directed grounds hypothesis and large large
cardinals”, by Toshimichi Usuba, to appear in Journal of Symbolic
Logic.

◮ “集合論的多元宇宙” by S.F. and Toshimichi Usuba, a monograph in
preparation.

◮ “On the set-generic multiverse”, by Sy-David Friedman, S.F. and
Hiroshi Sakai, National University of Singapore, Vol.33, Sets and
Computations, eds.: Sy-David Friedman, Dilip Raghavan and Yue
Yang, World Scientific Publishing (March, 2017), 25–44.

◮ “The Set-theoretic multiverse as a mathematical plenitudinous
Platonism viewpoint”, by S.F., Annals of the Japan Association for
the Philosophy of Science, Vol.20 (2012), 49–54.
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