
Reection theorems
on non-existence of

orthonormal bases of pre-Hilbert spaces

Saka�e Fuchino(^<Ln >;)

Graduate School of System Informatics
Kobe University

(?@8MBg3XBg3X1! %7%9%F%`>pJs3X8&5f2J)

http://fuchino.ddo.jp/index-j.html

RIMS Workshop
on In�nite Combinatorics and Forcing Theory

(2016 G/12 7n04 F| (20:46 JST) version)

2016 G/ 11 7n 29 F| (1w 5~ETBg3X ?tM}2r@O8&5f=j)

This presentation is typeset bypLATEX with beamerclass.
These slides are downloadable as

http://fuchino.ddo.jp/slides/RIMS-set-theory-16pf.p df

http://fuchino.ddo.jp/index-j.html
http://fuchino.ddo.jp/slides/RIMS-set-theory-16pf.pdf


Orthonormal bases of a pre-Hilbert space pre-Hilbert spaces (2/12)

I We �x K = R or C (all of the following arguments work for both of
the scalar �elds). In this talk, we work throughout inZFC.

I An inner-product space overK is also called apre-Hilbert space
(over K ).

I For a pre-Hilbert space with the inner product(x; y) 2 K for x,
y 2 X , B � X is orthonormal if (x; x) = 1 and (x; y) = 0 for all
distinct x, y 2 B.

I B � X is anorthonormal basis of X if B is orthonormal and
spans aK -subspace ofX which is dense inX .

If B � X is an orthonormal basis ofX then B is a maximal
orthonormal system ofX .

B If X is not complete the reverse implication is not necessary
true!



Orthonormal bases of a pre-Hilbert space (2/2) pre-Hilbert spaces (3/12)

If B � X is an orthonormal basis ofX then B is a maximal
orthonormal system ofX .

B If X is not complete the reverse implication is not necessary
true!

Example 1. Let X be the sub-inner-product-space of`2(! + 1)
spanned byf e! +1

n : n 2 ! g [ f bg
whereb 2 `2(! + 1) is de�ned by

(1) b(! ) = 1 ;

(2) b(n) = 1
n+2 for n 2 ! .

Then B = f e! +1
n : n 2 ! g is a maximal orthonormal system in

X but it is not a basis ofX .

Notation

I Note that X in Example 1 has an orthonormal basis.



Pre-Hilbert spaces without orthonormal bases pre-Hilbert spaces (4/12)

Lemma 2. (P. Halmos 196?) There are pre-Hilbert spacesX of

::::::::::
dimension@0 and density� for any @0 < � � 2@0.

Proof. Let B be a linear basis (Hamel basis) of the linear space
`2(! ) extendingf e!

n : n 2 ! g. Note that j B j = 2 @0 (Let A be an
almost disjoint family of in�nite subsets of! of cardinality2@0. For
eacha 2 A let ba 2 `2(! ) be s.t. supp(ba) = a. Then
f ba : a 2 Ag is a linearly independent subset of`2(! ) of
cardinality 2@0 ). Notation

Let f : B ! f e�
� : � < � g [ f 0`2(� )g be a surjection s.t.

f (e!
n ) = 0`2(� ) for all n 2 ! . Note that f generates a linear

mapping from the linear spacè2(! ) to a dense subspace of`2(� ).
Let U = fhb; f (b)i : b 2 Bg and X = [ U]`2(! )� `2(� ) . Then this X
is as desired sincefhe!

n ; 0i : n 2 ! g is a maximal orthonormal
system inX while we havecls̀ 2(! )� `2(� ) (X ) = `2(! ) � `2(� ) and
henced(X ) = � . �



Dimension and density of a pre-Hilbert space pre-Hilbert spaces (5/12)

I With practically the same proof, we can also show:

Lemma 3. (A generalization of P. Halmos' Lemma) For any cardi-
nal � and� with � < � � � @0, there are (pathological) pre-Hilbert
spaces of dimension� and density� . �

I The dimension and density of a pre-Hilbert space cannot be more
far apart:

Proposition 4. (D. Buhagiara, E. Chetcutib and H. Weber 2008)
For any pre-Hilbert spaceX , we haved(X ) � j X j � (dim(X))@0.

The proof of Proposition 4.



Pathological pre-Hiblert spaces pre-Hilbert spaces (6/12)

I We call a pre-Hilbert spaceX without any orthonormal bases
pathological .

I If X is pathological thend(X ) > @0

(if d(X ) = @0 we can construct an orthonormal basis by
Gram-Schmidt process).

I There are also pathological pre-Hilbert spacesX with
dim(X) = d(X ) = � for all uncountable� (see Corollary 7 on the
next slide).

B Thus there are non-separable pre-Hilbert spaces without
orthonormal basis in all possible combination of dimensionand
density.



Characterization of pathology pre-Hilbert spaces (7/12)

Lemma 5. Suppose thatX is a pre-Hilbert space with an or-
thonormal basis (i.e. non-pathological) andX is a dense linear
subspace of̀ 2(� ). If � is a large enough regular cardinal, and
M � H (� ) is s.t. X 2 M then X = X # (� \ M) � X # (� n M).

Notation

Theorem 6. Suppose thatX is a pre-Hilbert space andX is a
dense linear subspace of`2(S). Then X is non-pathological if and
only if there is a partitionP � [S]�@ 0 of S s.t. X = � A2P X # A.

Proof. For ) use Lemma 5 (with countableM's) repeatedly. �

Corollary 7. Suppose thatX and Y are pre-Hilbert spaces if one
of them is pathological thenX � Y is also pathological.

Corollary 8. For any uncountable cardinal� , there is a patholo-
gical pre-Hilbert spaceX of dimension and density� .

Proof. Let X0 be Halmos' pre-Hilbert space with density@1. By
Corollary 7,X = X0 � `2(� ) will do. �



Another construction of pathological pre-Hilbert spaces pre-Hilbert spaces (8/12)

Theorem 9. Assume that
:::::::::
ADS� (� ) holds for a regular cardi-

nal � > ! 1. Then there is a pathological linear subspaceX
of `2(� ) dense in`2(� ) s.t. X # � is non-pathological for all
� < � . Furthermore for any regular� < � , f S 2 [� ]� : X #
S is non-pathologicalg contains a club subset of [� ]� .

Remark 10. The theorem above implies that the Fodor-type Re-
ection Principle follows from the global reection of pathology
of pre-Hilbert spaces down to subspaces of density< @2.

Sketch of the proof of Theorem 9: Let hA� : � 2 Ei be an
ADS� (� )-sequence on a stationaryE � E!

� .

I Let hu� : � < � i be a sequence of elements of`2(� ) s.t.
(1) u� = e�

� for all � 2 � n E,
(2) supp(u� ) = A� [ f � g for all � 2 E.

I Let U = f u� : � < � g and X = [ U]`2(� ) .

I This X is as desired.!!!!!!!! �



Singular Compactness pre-Hilbert spaces (9/12)

I The following theorem can be proved analogously to the proofof
the Shelah Singular Compactness Theorem given in [Hodges, 1981]:

Theorem 11. Suppose that� is a singular cardinal andX is a pre-
Hilbert space which is a dense sub-inner-product-space of`2(� ).
If X is pathological then there is a cardinal� 0 < � s.t.

(1) f u 2 [� ]�
+

: X # u is a pathological pre-Hilbert spaceg

is stationary in [� ]�
+

for all � 0 � � < � .



Fodor-tpye Reection Principle pre-Hilbert spaces (10/12)

Theorem 12. TFAE overZFC:

(a)
::::::::::::::::::::::::::::::::::::
Fodor-type Reection Principle (FRP) ;

(b) For any regular� > ! 1 and any linear subspaceX of `2(� )
dense iǹ 2(� ), if X is pathological then
(1) SX = f � < � : X # � is pathologicalg

is stationary in� ;
(c) For any regular� > ! 1 and any dense

sub-inner-product-spaceX of `2(� ), if X is pathological
then
(2) S@1

X = f U 2 [� ]@1 : X # U is pathologicalg

is stationary in[� ]@1.

Proof. \ (a) ) (b) , (c)": By induction ond(X ). Use Theorem 11
for singular cardinal steps.

I \ : (a) ) : (b) ^ : (c)": By Theorem 9 and Theorem 11a (on the
extra slide with the de�nition of FRP). �



FRP is a \mathematical reection principle" pre-Hilbert spaces (11/12)

I The FRP is known to be equivalent to each of the following
\mathematical" assertions:

(A) For every locally countably compact topological spaceX , if all
subspaces ofX of cardinality � @ 1 are metrizable, thenX
itself is also metrizable.

(B) Any uncountable graphG has countable coloring number if all
induced subgraphs ofG of cardinality@1 have countable
coloring number.

(C) For every Boolean algebraB, if there are club many
subalgebras ofB of cardinality@1 which are openly generated
then B itself is also openly generated.



Further reections pre-Hilbert spaces (12/12)

I There are many open problems around the minimal cardinal
numbers� A, � B , � C with the following properties:

(A') For everylocally countablycompact�rst countable topological
spaceX , if all subspaces ofX of cardinality< � A are
metrizable, thenX itself is also metrizable.

(B') Any uncountable graphG has countablecoloringchromatic

number if all induced subgraphs ofG of cardinality< � B have
countablecoloringchromatic number.

(C') For every Boolean algebraB, if there are club many
subalgebras ofB of cardinality< � C which areopenly
generatedfree then B itself is alsoopenlygeneratedfree.

I !{a consis(� A = @2) is still open and is known as Hamburger's
problem. !{b � B > i ! by a theorem of Erd•os and Hajnal.
!{c � C is possibly above a large cardinal (Saharon Shelah should
already know much about it).





In a pre-Hilbert space
a maximal orthonormal system
need not to be an independent basis.

Gr�acies per la seva atenci�o.
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Coloring number of a graph

I A graphE = hE; K i hascoloring number � � 2 Card if there is
a well-orderingv on E s.t. for all p 2 E the set

f q 2 E : q v p and q K pg

has cardinality< � .

I The coloring numbercol(E) of a graphE is the minimal cardinal
among such� as above.

Back



Notation: `2(S) and its standard unit vectors
I For an in�nite set S, let

(1) `2(S) = f u 2 SK :
P

x2 S(u(x))2 < 1g ,

where
P

x2 S(u(x))2 is de�ned assupf
P

x2 A(u(x))2 : A 2 [S]< @0g.

I `2(S) is a/the Hilbert space of densityj S j endowed with a natural
structure of inner product space with coordinatewise addition and
scalar multiplication, the zero element0`2(S) with 0`2(S) (s) = 0 for
all s 2 S, as well as the inner product de�ned by

(2) (u; v) =
P

x2 S u(x)v(x) for u, v 2 `2(S).

I For x 2 S, let eS
x 2 `2(S) be the standard unit vector atx de�ned

by

(3) eS
x (y) = � x;y for y 2 S.

B f eS
x : x 2 Sg is an orthonormal basis of̀2(S). Back



Notation: Support of elements of `2(S) and direct sum of Hilbert spaces
I For a 2 `2(S), the support of a is de�ned by

(1) supp(a) = f x 2 S : a(x) 6= 0g (= f x 2 S : (a; eS
x ) 6= 0g).

B By the de�nition of `2(S), supp(a) is a countable subset ofS for
all a 2 `2(S).

I For any two pre-Hilbert spacesX , Y , the orthogonal direct sum
of X and Y is the direct sumX � Y = fhx; yi : x 2 X ; y 2 Y g of
X and Y as linear spaces together with the inner product de�ned
by (hx0; y0i ; hx1; y1i ) = ( x0; x1) + ( y0; y1) for x0, x1 2 X and y0,
y1 2 Y .

I A sub-inner-product-spaceX0 of a pre-Hilbert spaceX is an
orthogonal direct summand of X if there is a sub-inner-
product-spaceX1 of X s.t. the mapping' : X0 � X1 ! X ;
hx0; x1i 7! x0 + x1 is an isomorphism of pre-Hilbert spaces. If this
holds, we usually identifyX0 � X1 with X by ' as above. Back



Notation: X # S, � i 2 I Xi etc.
I For X � `2(S) and S0 � S, let X # S0 = f u 2 X : supp(u) � S0g.

I For u 2 `2(S), let u # S0 2 `2(S) be de�ned by, forx 2 S,

(u # S0) (x) =

(
u(x) if x 2 S0

0 otherwise.

B Note that X # S0 is not necessarily equal tof u # S0 : u 2 Xg

I A sub-inner-product-spaceX0 of a pre-Hilbert spaceX is an
orthogonal direct summand of X if there is a
sub-inner-product-spaceX1 of X s.t. the mapping
' : X0 � X1 ! X ; hx0; x1i 7! x0 + x1 is an isomorphism of
pre-Hilbert spaces. If this holds, we usually identifyX0 � X1 with X
by ' as above.

I For pairwise orthogonal linear spacesXi , i 2 I of X , we denote
with � X

i2 I Xi the maximal linear subspaceX 0 of X s.t. X 0 contains
� i 2 I Xi as a dense subset ofX 0. Thus, we haveX = � X

i2 I Xi if
� i 2 I Xi is dense inX . If it is clear in whichX we are working we
drop the superscriptX and simply write� i 2 I Xi . Back



Dimension of a pre-Hilbert space

I Let X be a pre-Hilbert space. By Bessel's inequality, all maximal
orthonormal system ofX have the same cardinality.

B This cardinality is called thedimension of X and denoted by
dim(X).

I dim(X) � d(X ).

I Note that, if dim(X) < d(X ), then X cannot have any
orthonormal basis.

Back



The proof of Proposition 4.

Proposition 4. (D. Buhagiara, E. Chetcutib and H. Weber 2008)
For any pre-Hilbert spaceX , we haved(X ) � j X j � (dim(X))@0.

Proof. Let X be a pre-Hilbert space with
d(X ) = � � � = dim( X). Wlog we may assume thatX is a dense
subspace of̀ 2(� ) and � � @ = 0 .

I Let B = hb � : � < � i be a maximal orthonormal system inX and
D =

S
f supp(b � ) : � < � g. By the assumption we havej D j = � .

I For any distincta0, a1 2 X we havea0 � D 6= a1 � D.

I Then ' : `2(D) ! X de�ned by
' (c) =(

the uniquea 2 X s.t. c = a � D; if there is sucha 2 X ;

0; otherwise

is well de�ned and surjective. Thus

I d(X ) � j X j � j `2(D) j = (dim( X))@0. �

Back



ADS� (� ) and ADS� (� )-sequence

I For a regular cardinal� , ADS� (� ) is the assertion that there is a
stationary setE � E!

� and a sequencehA� : � 2 Ei s.t.

(1) A� � � and ot(A� ) = ! for all � 2 E;

(2) for any � < � , there is a mappingf : E \ � ! � s.t.
f (� ) < sup(A� ) for all � 2 E \ � and A� n f (� ), � 2 E \ �
are pairwise disjoint.

I We shall callhA� : � 2 Ei as above anADS� (� )-sequence.

B Note that it follows from(1) and (2) that A� , � 2 E are pairwise
almost disjoint.

Back



FRP

(FRP) For any regular� > ! 1, any stationaryS � E!
� and any

mappingg : S ! [� ]@0, there is� � 2 E! 1
� s.t.

(*) � � is closed w.r.t.g (that is, g(� ) � � � for all � 2 S \ � � )
and, for anyI 2 [� � ]@1 closed w.r.t.g, closed in� � w.r.t. the
order topology and withsup(I ) = � � , if hI� : � < ! 1i is a
�ltration of I then sup(I� ) 2 S and g(sup(I� )) \ sup(I� ) � I�
hold for stationarily many� < ! 1

Theorem 11a (S.F., H.Sakai and L.Soukup) TFAE overZFC:

(a) FRP;

(b) ADS� (� ) does not hold for all regular uncountable� > ! 1.

Back


