On a/the solution of the Continuum Problem — Laver-generic large cardinals and the Continuum Problem

Sakaé Fuchino (渕野 昌)

fuchino@diamond.kobe-u.ac.jp

RIMS 2019 workshop: Set Theory and Infinity 2019年11月23日 (09:24 JST) 版

The most up-to-date version of the following slides is downloadable as: http://fuchino.ddo.jp/slides/RIMS19-11-pf.pdf

The results in the following slides ...

are to be found in the following joint papers with André Ottenbereit Maschio Rodriques and Hiroshi Sakai:

[1] Sakaé Fuchino, André Ottenbereit Maschio Rodriques, and Hiroshi Sakai, Strong downward Löwenheim-Skolem theorems for stationary logics, I, submitted. http://fuchino.ddo.jp/papers/SDLS-x.pdf

[2] _____, Strong downward Löwenheim-Skolem theorems for stationary logics, II — reflection down to the continuum, pre-preprint. http://fuchino.ddo.jp/papers/SDLS-II-x.pdf

[3] _____, Strong downward Löwenheim-Skolem theorems for stationary logics, III — mixed support iteration, in preparation.

[4] _____, Strong downward Löwenheim-Skolem theorems for stationary logics, IV — more on Laver-generically large cardinals, in preparation.

[5] Sakaé Fuchino, and André Ottenbereit Maschio Rodriques, Reflection principles, generic large cardinals, and the Continuum Problem, to appear. http://fuchino.ddo.jp/papers/refl_principles_gen_large_cardinals_continuum_problem-x.pdf The size of the continuum ...

- ▶ is either \aleph_1 or \aleph_2 or very large!
- The consistency of all of the strong reflection principles involved in the statement above are proved by quite similar arguments.
- \triangleright By analysing these proofs, we come to the following:

The size of the continuum ...

▶ is either \aleph_1 or \aleph_2 or very large!

 \triangleright provided that a strong variant of generic large cardinal should exist.

For a class \mathcal{P} of p.o.s, a cardinal κ is a Laver-generically supercompact for \mathcal{P} if, for all regular $\lambda \geq \kappa$ and $\mathbb{P} \in \mathcal{P}$ there is $\mathbb{Q} \in \mathcal{P}$ with $\mathbb{P} \leq \mathbb{Q}$, s.t., for any (V, \mathbb{Q}) -generic \mathbb{H} , there are a inner model $M \subseteq V[\mathbb{H}]$, and an elementary embedding $j : V \to M$ s.t.

(1)
$$\operatorname{crit}(j) = \kappa, \ j(\kappa) > \lambda.$$

(2) $\mathbb{P}, \mathbb{H} \in M,$
(3) $j''\lambda \in M.$

κ is Laver-generically super almost-huge for *P* if (3) above is
 replaced by
 (3)' j"δ ∈ M for all δ < j(κ).
 </p>

The condition $j'' \lambda \in M$ vers. $\lambda M \subseteq M$

Lemma 1. ([2]) Suppose that \mathbb{G} is a (V, \mathbb{P}) -generic filter for a p.o. $\mathbb{P} \in V$ and $j : V \xrightarrow{\prec} M \subseteq V[\mathbb{G}]$ s.t., for cardinals κ , λ in V with $\kappa \leq \lambda$, crit $(j) = \kappa$ and $j''\lambda \in M$.

(1) For any set A ∈ V with V ⊨ | A | ≤ λ, we have j"A ∈ M.
 (2) j ↾ λ, j ↾ λ² ∈ M.

(3) For any $A \in V$ with $A \subseteq \lambda$ or $A \subseteq \lambda^2$ we have $A \in M$.

(4)
$$(\lambda^+)^M \ge (\lambda^+)^{\mathsf{V}}$$
, Thus, if $(\lambda^+)^{\mathsf{V}} = (\lambda^+)^{\mathsf{V}[\mathbb{G}]}$,
then $(\lambda^+)^M = (\lambda^+)^{\mathsf{V}}$.

(5) $\mathcal{H}(\lambda^+)^{\mathsf{V}} \subseteq M$.

(6) $j \upharpoonright A \in M$ for all $A \in \mathcal{H}(\lambda^+)^{\vee}$.

Theorem 2. ([2]) (1) Suppose that ZFC + "there exists a supercompact cardinal" is consistent. Then ZFC + "there exists a Laver-generically supercompact cardinal for σ -closed p.o.s" is consistent as well.

(2) Suppose that ZFC + "there exists a superhuge cardinal" is consistent. Then ZFC + "there exists a Laver-generically super almost-huge cardinal for proper p.o.s" is consistent as well.

(3) Suppose that ZFC + "there exists a supercompact cardinal" is consistent. Then ZFC + "there exists a strongly Laver-generically supercompact cardinal for c.c.c. p.o.s" is consistent as well.

The continuum under Laver-generically supercompact cardinals Laver-gen. large cardinals (6/8)

Proposition 3. ([2]) (1) Suppose that κ is generically measurable by a ω_1 preserving \mathbb{P} . Then $\kappa > \omega_1$.

(2) Suppose that κ is Laver-generically supercompact for ω_1 -preserving \mathcal{P} with $\operatorname{Col}(\omega_1, \{\omega_2\}) \in \mathcal{P}$. Then $\kappa = \omega_2$. Proof

(3) Suppose that \mathcal{P} is a class of p.o.s containing a p.o. \mathbb{P} s.t. any (V, \mathbb{P}) -generic filter \mathbb{G} codes a new real. If κ is a Laver-generically supercompact for \mathcal{P} , then $\kappa \leq 2^{\aleph_0}$. Proof

(4) Suppose that \mathcal{P} is a class of p.o.s s.t. elements of \mathcal{P} do not add any reals. If κ is generically supercompact by \mathcal{P} , then we have $2^{\aleph_0} < \kappa$.

(5) Suppose that κ is Laver-generically supercompact for \mathcal{P} s.t. all $\mathbb{P} \in \mathcal{P}$ are ccc and at least one $\mathbb{P} \in \mathcal{P}$ adds a real. Then $\kappa \leq 2^{\aleph_0}$ holds and (a) SCH holds above $2^{<\kappa}$. (b) For all regular $\lambda \geq \kappa$, there is a σ -saturated normal filter over $\mathcal{P}_{\kappa}(\lambda)$. (6) If κ is tightly Laver-generically superhuge for ccc, then $\kappa = 2^{\aleph_0}$.

+ -versions of MA

For a class \mathcal{P} of p.o.s and cardinals μ , κ ,

$\mathsf{MA}^{+\mu}(\mathcal{P}, < \kappa)$:

For any $\mathbb{P} \in \mathcal{P}$, any family \mathcal{D} of dense subsets of \mathbb{P} with $|\mathcal{D}| < \kappa$ and any family S of \mathbb{P} -names s.t. $|S| \le \mu$ and $\|\vdash_{\mathbb{P}}^{"} S$ is a stationary subset of ω_1 " for all $S \in S$, there is a \mathcal{D} -generic filter \mathbb{G} over \mathbb{P} s.t. $S[\mathbb{G}]$ is a stationary subset of ω_1 for all $S \in S$.

Theorem 4. ([2]) For an arbitrary class \mathcal{P} of p.o.s, if $\kappa > \aleph_1$ is a Laver-generically supercompact for \mathcal{P} , then $\mathsf{MA}^{+\mu}(\mathcal{P}, < \kappa)$ holds for all $\mu < \kappa$.

The trichotomy

Theorem 5. ([2]) Suppose that κ is Laver-generically supercompact cardinal for a class \mathcal{P} of p.o.s.

(A) If elements of \mathcal{P} are ω_1 -preserving and do not add any reals, and $\operatorname{Col}(\omega_1, \{\omega_2\}) \in \mathcal{P}$, then $\kappa = \aleph_2$ and CH holds. Also, $\mathsf{MA}^{+\aleph_1}(\mathcal{P}, <\aleph_2)$ holds.

(B) If elements of \mathcal{P} are ω_1 -preserving and contain all proper p.o.s then PFA^{+ ω_1} holds and $\kappa = 2^{\aleph_0} = \aleph_2$.

(C) If elements of \mathcal{P} are μ -cc for some $\mu < \kappa$ and \mathbb{P} contains a p.o. which adds a reals then κ is fairly large and $\kappa \leq 2^{\aleph_0}$ also $MA^{+\mu}(\mathcal{P}, < \kappa)$. holds for any $\mu < \kappa$.

Thank you for your attention.

We thank you, Daisuke

巨大基数は存在する. Large cardinals exist.

中国 四川省 都江堰景区

Proof of Theorem 2, (2)

Theorem 2, (2) Suppose that ZFC + "there exists a superhuge cardinal" is consistent. Then ZFC + "there exists a Lavergenerically super almost-huge cardinal for proper p.o.s" is consistent as well.

Proof. Starting from a model of ZFC with a superhuge cardinal κ , we can obtain models of respective assertions by iterating in countable support with proper p.o.s κ times along a Laver function for super almost-hugeness (see [Corazza]).

- ► In the resulting model, we obtain Laver-generically super almost-hugeness in terms of proper p.o. Q in each respective inner model *M*[G] of V[G]. The closedness of *M* in V in terms of super almost-hugeness implies that Q is also proper in V[G].
- This shows that κ is Laver-generically super almost-huge of proper p.o.s.

Proof of Proposition 3, (4)

Proposition 3, (4) Suppose that \mathcal{P} is a class of p.o.s s.t. elements of \mathcal{P} do not add any reals. If κ is generically supercompact by \mathcal{P} , then we have $2^{\aleph_0} < \kappa$.

Proof. Suppose that $\kappa \leq 2^{\aleph_0}$ and let $\lambda \geq 2^{\aleph_0}$.

▶ Let $\mathbb{P} \in \mathcal{P}$ be s.t. for some (V, \mathbb{P}) -generic \mathbb{G} with $j, M \subseteq V[\mathbb{G}]$ s.t. $j : V \xrightarrow{\prec} M$, $crit(j) = \kappa, j(\kappa) > \lambda$ and $j''\lambda \in M$.

▶ By elementarity, $M \models "j(\kappa) \le (2^{\aleph_0})^{M}$ ". Thus $(2^{\aleph_0})^V \ge (2^{\aleph_0})^{V[\mathbb{G}]} \ge (2^{\aleph_0})^M \ge j(\kappa) > \lambda \ge (2^{\aleph_0})^V$. This is a contradiction.

うして ふゆ くり くり くし くし

Proof of Proposition 3, (2)

Proposition 3, (2) Suppose that κ is Laver-generically supercompact for ω_1 -preserving \mathcal{P} with $\operatorname{Col}(\omega_1, \{\omega_2\}) \in \mathcal{P}$. Then $\kappa = \omega_2$.

Proof. Suppose that $\kappa \neq \omega_2$. Then, by (1), we have $\kappa > \omega_2$

- ▶ Let $\mathbb{Q} \in \mathcal{P}$ be s.t. $\mathbb{P} \leq \mathbb{Q}$ for $\mathbb{P} = \operatorname{Col}(\omega_1, \{\omega_2\})$ and s.t., for a (V, \mathbb{Q}) -generic \mathbb{H} , there are $M, j \subseteq \mathsf{V}[\mathbb{H}]$ with $j : \mathsf{V} \xrightarrow{\prec} M$, crit $(j) = \kappa$.
- ► By elementarity, $M \models "\underbrace{j((\omega_2)^{\mathsf{V}})}_{=(\omega_2)^{\mathsf{V}}}$ is " ω_2 " ". This is a contradiction

since $\mathbb{H} \cap \mathbb{P} \in M$ collapes $(\omega_2)^{\mathsf{V}}$ to an ordinal of cardinality \aleph_1 .

もどる

Proof of Proposition 3, (1)

Proposition 3, (1) Suppose that κ is generically measurable by a ω_1 preserving \mathbb{P} . Then $\kappa > \omega_1$.

Proof. Suppose that $\kappa \leq \omega_1$. Since $\kappa = \omega$ is impossible, we have $\kappa = \omega_1$.

- ▶ Let \mathbb{P} be an ω_1 preserving p.o. and \mathbb{G} a (V, \mathbb{P})-generic filter with $M, j \subseteq V[\mathbb{G}]$ s.t. $j : V \xrightarrow{\prec} M$, $crit(j) = \kappa$.
- By elementarity we have $M \models "j(\kappa) = \omega_1$ ".
- Thus (ω₁)^V < (ω₁)^M ≤ (ω₁)^{V[G]}. This is a contradiction to the ω₁ preserving of P.

もどる

Proof of Proposition 3, (3)

Proposition 3, (3) Suppose that \mathcal{P} is a class of p.o.s containing a p.o. \mathbb{P} which adds a new real. If κ is a Laver-generically supercompact for \mathcal{P} , then $\kappa \leq 2^{\aleph_0}$.

Proof. Let $\mathbb{P} \in \mathcal{P}$ be s.t. any generic filter over \mathbb{P} codes a new real. Suppose that $\mu < \kappa$. We show that $2^{\aleph_0} > \mu$. Let $\vec{a} = \langle a_{\xi} : \xi < \mu \rangle$ be a sequence of subsets of ω . It is enough to show that \vec{a} does not enumerate $\mathcal{P}(\omega)$.

By Laver-generic supercompactness of κ for P, there are Q ∈ P with P ≤ Q, (V, Q)-generic H, transitive M ⊆ V[H] and j ⊆ M[H] with j : V → M, crit(j) = κ and P, H ∈ M. Since μ < κ, j(a) = a.</p>

▶ Since $\mathbb{H} \in M$ where $\mathbb{G} = \mathbb{H} \cap \mathbb{P}$ and \mathbb{G} codes a new real not in V, we have

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 $M \models ij(\vec{a})$ does not enumerate 2^{\aleph_0} .

► By elementarity, it follows that

 $V \models$ "*a* does not enumerate 2^{\%0}".

Strong Downward Löwneheim-Skolem Theorem for stationary logic

 $\triangleright \mathcal{L}_{stat}^{\aleph_0}$ is a weak second order logic with monadic second-order variables X, Y etc. which run over the countable subsets of the underlying set of a structure. The logic has only the weak second order quantifier "*stat*" and its dual "*aa*" (but not the second-order existential (or universal) quantifiers) with the interpretation:

$$\begin{aligned} \mathfrak{A} &\models \mathsf{stat} \: X \: \varphi(..., \: X) : \Leftrightarrow \\ \{ U \in [A]^{\aleph_0} : \: \mathfrak{A} \models \varphi(..., \: U) \} \text{ is a stationary subset of } [A]^{\aleph_0}. \end{aligned}$$

 $\succ \text{ For } \mathfrak{B} = \langle B, ... \rangle \subseteq \mathfrak{A}, \ \mathfrak{B} \prec_{\mathcal{L}_{stat}^{\aleph_0}} \mathfrak{A} : \Leftrightarrow \\ \mathfrak{B} \models \varphi(a_0, ..., U_0, ...) \Leftrightarrow \mathfrak{A} \models \varphi(a_0, ..., U_0, ...) \text{ for all } \mathcal{L}_{stat}^{\aleph_0} \text{-formula} \\ \varphi = \varphi(x_0, ..., X_0, ...) \text{ and for all } a_0, ... \in B \text{ and for all } \\ U_0, ... \in [B]^{\aleph_0}.$

► $SDLS(\mathcal{L}_{stat}^{\aleph_0}, < \kappa)$: For any structure $\mathfrak{A} = \langle A, ... \rangle$ of countable signature, there is a structure \mathfrak{B} of size $< \kappa$ s.t. $\mathfrak{B} \prec_{\mathcal{L}_{stat}^{\aleph_0}} \mathfrak{A}$.

A weakening of the Strong Downward Löwneheim-Skolem Theorem

 $\succ \text{ For } \mathfrak{B} = \langle B, ... \rangle \subseteq A, \ \mathfrak{B} \prec_{\mathcal{L}_{stat}^{\aleph_0}}^{-} \mathfrak{A} \quad :\Leftrightarrow \\ \mathfrak{B} \models \varphi(a_0, ...) \Leftrightarrow \mathfrak{A} \models \varphi(a_0, ...) \text{ for all } \mathcal{L}_{stat}^{\aleph_0} \text{-formula } \varphi = \varphi(x_0, ...) \\ \underline{\text{without free seond-order variables}} \text{ and for all } a_0, ... \in B.$

SDLS⁻(L^{ℵ0}_{stat}, < κ) :⇔ For any structure 𝔅 = ⟨A,...⟩ of countable signature, there is a structure 𝔅 of size < κ s.t. 𝔅 ≺⁻_{L^{ℵ0}_{stat} 𝔅.}

(もどる)

うして ふゆ くり くり くし くし

Strong Downward Löwneheim-Skolem Theorem for PKL logic

- ▷ \mathcal{L}_{stat}^{PKL} is the weak second-order logic with monadic second order variables X, Y, etc. with built-in unary predicate symbol K. The monadic second order variables run over elements of $\mathcal{P}_{\underline{K}^{\mathfrak{A}}}(A)$ for a structure $\mathfrak{A} = \langle A, \underline{K}^{\mathfrak{A}}, ... \rangle$ where we denote $\mathcal{P}_{S}(T) = \mathcal{P}_{|S|}(T) = \{ u \subseteq T : |u| < |S| \}$. The logic has the unique second order quantifier "stat" (and its dual).
- > The internal interpretation of the quantifier is defined by:

$$\mathfrak{A}\models^{int} stat X \varphi(a_0, ..., U_0, ..., X) :\Leftrightarrow \\ \{U \in \mathcal{P}_{\underline{K}^{\mathfrak{A}}}(A) \cap A : \mathfrak{A}\models^{int} \varphi(a_0, ..., U_0, ..., U)\} \text{ is a stationary} \\ \text{subset of } \mathcal{P}_{\underline{K}^{\mathfrak{A}}}(A) \text{ for } a_0, ...A \text{ and } U_0, ... \in \mathcal{P}_{\underline{K}^{\mathfrak{A}}}(A) \cap A.$$

 $\vdash \text{ For } \mathfrak{B} = \langle B, K \cap B, ... \rangle \subseteq \mathfrak{A} = \langle A, K, ... \rangle, \mathfrak{B} \prec_{\mathcal{L}_{stat}^{PKL}}^{int} \mathfrak{A} : \Leftrightarrow \\ \mathfrak{B} \models^{int} \varphi(a_0, ..., U_0, ...) \Leftrightarrow \mathfrak{A} \models^{int} \varphi(a_0, ..., U_0, ...) \text{ for all} \\ \mathcal{L}_{stat}^{\aleph_0} \text{-formula } \varphi = \varphi(x_0, ...) a_0, ... \in B \text{ and } U_0, ... \in \mathcal{P}_{K \cap B}(B) \cap B.$

Strong Downward Löwneheim-Skolem Theorem for PKL logic (2/2)

► SDLS^{*int*}
$$(\mathcal{L}_{stat}^{PKL}, < \kappa)$$
 :⇔

for any regular $\lambda \geq \kappa$ and a structure $\mathfrak{A} = \langle A, K, ... \rangle$ of countable signature with $|A| = \lambda$ and $|K| = \kappa$. $\langle \mathcal{H}(\lambda), \kappa, \in \rangle$, there is a structure \mathfrak{B} of size $\langle \kappa \text{ s.t. } \mathfrak{B} \prec_{\mathcal{L}_{stat}^{PKL}}^{int} \mathfrak{A}$.

► SDLS^{*int*}₊(\mathcal{L}^{PKL}_{stat} , $< \kappa$) : \Leftrightarrow for any regular $\lambda \ge \kappa$ and a structuer $\mathfrak{A} = \langle A, K, ... \rangle$ of countable signature with $|A| = \lambda$ and $|K| = \kappa$. $\langle \mathcal{H}(\lambda), \kappa, \in \rangle$, there are stationarily many structures \mathfrak{B} of size $< \kappa$ s.t. $\mathfrak{B} \prec_{\mathcal{L}^{PKL}_{rest}}^{int} \mathfrak{A}$.

うして ふゆ く は く は く む く し く し く

tightly Laver generically superhuge cardinals

For a class *P* of p.o.s, a cardinal *κ* is a tightly Laver-generically superhuge for *P* if, for all regular *λ* ≥ *κ* and ℙ ∈ *P* there is ℚ ∈ *P* with ℙ ≤ ℚ, s.t., for any (V, ℚ)-generic 𝔅, there are a inner model *M* ⊆ V[𝔅], and an elementary embedding *j* : V → *M* s.t.

(1)
$$\operatorname{crit}(j) = \kappa, \ j(\kappa) > \lambda.$$

(2) $\mathbb{P}, \mathbb{H} \in M,$
(3) $j''j(\kappa) \in M,$ and
(4) $|\mathbb{Q}| \leq j(\kappa).$

Proposition 3. にもどる

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Diagonal Reflection Principle

• (S. Cox) For a regular cardinal $\theta > \aleph_1$:

 $\mathsf{DRP}(\theta, \mathsf{IC})$: There are stationarily many $M \in [\mathcal{H}((\theta^{\aleph_0})^+)]^{\aleph_1}$ s.t.

- (1) $M \cap \mathcal{H}(\theta)$ is internally club;
- (2) for all $R \in M$ s.t. R is a stationary subset of $[\theta]^{\aleph_0}$,

 $R \cap [\theta \cap M]^{\aleph_0}$ is stationary in $[\theta \cap M]^{\aleph_0}$.

▶ For a regular cardinal $\lambda > \aleph_1$

(*)_{λ}: For any countable expansion $\tilde{\mathfrak{A}}$ of $\langle \mathcal{H}(\lambda), \in \rangle$, if $\langle S_a : a \in \mathcal{H}(\lambda) \rangle$, is a family of stationary subsets of $[\mathcal{H}(\lambda)]^{\aleph_0}$, then there is an internally club $M \in [\mathcal{H}(\lambda)]^{\aleph_1}$ s.t. $\tilde{\mathfrak{A}} \upharpoonright M \prec \tilde{\mathfrak{A}}$ and $S_a \cap [M]^{\aleph_0}$ is stationary in $[M]^{\aleph_0}$, for all $a \in M$.

Proposition 1. *TFAE:* (a) *The global version of Diagonal Reflection Principle of S.Cox for internal clubness (i.e.* DRP(θ , IC) *for all regular* $\theta > \aleph_1$ *) holds.*

(b) (*) $_{\lambda}$ for all regular $\lambda > \aleph_1$ holds.

Diagonal Reflection Principle

- (S. Cox) For a regular cardinal $\theta > \aleph_1$:
 - $\mathsf{DRP}(\theta, \mathsf{IC})$: There are stationarily many $M \in [\mathcal{H}((\theta^{\aleph_0})^+)]^{\aleph_1}$ s.t.
 - (1) $M \cap \mathcal{H}(\theta)$ is internally club;
 - (2) for all $R \in M$ s.t. R is a stationary subset of $[\theta]^{\aleph_0}$, $R \cap [\theta \cap M]^{\aleph_0}$ is stationary in $[\theta \cap M]^{\aleph_0}$.
- ▶ For a regular cardinal $\lambda > \aleph_1$

(*)_{λ}: For any countable expansion $\tilde{\mathfrak{A}}$ of $\langle \mathcal{H}(\lambda), \in \rangle$, if $\langle S_a : a \in \mathcal{H}(\lambda) \rangle$, is a family of stationary subsets of $[\mathcal{H}(\lambda)]^{\aleph_0}$, then there is an internally club $M \in [\mathcal{H}(\lambda)]^{\aleph_1}$ s.t. $\tilde{\mathfrak{A}} \upharpoonright M \prec \tilde{\mathfrak{A}}$ and $S_a \cap [M]^{\aleph_0}$ is stationary in $[M]^{\aleph_0}$, for all $a \in M$.

Proposition 1. TFAE: (a) The global version of Diagonal Reflection Principle of S.Cox for internal clubness (i.e. $DRP(\theta, IC)$ for all regular $\theta > \aleph_1$) holds.

(b) (*)_λ for all regular λ > ℵ₁ holds.
(c) SDLS⁻(L^{ℵ0}_{stat}, < ℵ₂) holds.

Reflection Principles RP??

- The following are variations of the "Reflection Principle" in [Jech, Millennium Book].
 - RP_{IC} For any uncountable cardinal λ , stationary $S \subseteq [\mathcal{H}(\lambda)]^{\aleph_0}$ and any countable expansion \mathfrak{A} of the structure $\langle \mathcal{H}(\lambda), \in \rangle$, there is an internally club $M \in [\mathcal{H}(\lambda)]^{\aleph_1}$ s.t. (1) $\mathfrak{A} \upharpoonright M \prec \mathfrak{A}$; and (2) $S \cap [M]^{\aleph_0}$ is stationary in $[M]^{\aleph_0}$.
 - $\begin{array}{l} \mathsf{RP}_{\mathsf{IU}} \ \ \text{For any uncountable cardinal } \lambda, \ \text{stationary } S \subseteq [\mathcal{H}(\lambda)]^{\aleph_0} \ \text{and} \\ \text{any countable expansion } \mathfrak{A} \ \text{of the structure } \langle \mathcal{H}(\lambda), \in \rangle, \ \text{there is} \\ \text{an internally unbounded } M \in [\mathcal{H}(\lambda)]^{\aleph_1} \ \text{s.t.} \ (1) \ \mathfrak{A} \upharpoonright M \prec \mathfrak{A}; \\ \text{and} \ (2) \ S \cap [M]^{\aleph_0} \ \text{is stationary in } [M]^{\aleph_0}. \end{array}$

Since every internally club M is internally unbounded, we have:

Lemma 1. RP_{IC} implies RP_{IU}.

RP_{IU} is also called Axiom R in Set-Theoretic Topology.

Theorem 2. ([Fuchino, Juhasz etal. 2010]) RP_{IU} implies FRP.

Stationary subsets of $[X]^{\aleph_0}$

- ▶ $C \subseteq [X]^{\aleph_0}$ is club in $[X]^{\aleph_0}$ if (1) for every $u \in [X]^{\aleph_0}$, there is $v \in C$ with $u \subseteq v$; and (2) for any countable increasing chain \mathcal{F} in C we have $\bigcup \mathcal{F} \in C$.
- $\vartriangleright \ S \subseteq [X]^{\aleph_0} \text{ is stationary in } [X]^{\aleph_0} \text{ if } S \cap C \neq \emptyset \text{ for all club } C \subseteq [X]^{\aleph_0}.$
- A set M is internally unbounded if M ∩ [M]^{ℵ₀} is cofinal in [M]^{ℵ₀} (w.r.t. ⊆)
- \triangleright A set *M* is internally stationary if $M \cap [M]^{\aleph_0}$ is stationary in $[M]^{\aleph_0}$
- \triangleright A set *M* is internally club if $M \cap [M]^{\aleph_0}$ contains a club in $[M]^{\aleph_0}$.

"Diagonal Reflection Principle" にもどる

"RP』"にもどる

Fodor-type Reflection Principle (FRP)

- (FRP) For any regular $\kappa > \omega_1$, any stationary $E \subseteq E_{\omega}^{\kappa}$ and any mapping $g : E \to [\kappa]^{\aleph_0}$ with $g(\alpha) \subseteq \alpha$ for all $\alpha \in E$, there is $\gamma \in E_{\omega_1}^{\kappa}$ s.t.
 - (*) for any $I \in [\gamma]^{\aleph_1}$ closed w.r.t. g and club in γ , if $\langle I_{\alpha} : \alpha < \omega_1 \rangle$ is a filtration of I then $\sup(I_{\alpha}) \in E$ and $g(\sup(I_{\alpha})) \subseteq I_{\alpha}$ hold for stationarily many $\alpha < \omega_1$.
- $\succ \mathcal{F} = \langle I_{\alpha} : \alpha < \lambda \rangle \text{ is a filtration of } I \text{ if } \mathcal{F} \text{ is a continuously increasing} \\ \subseteq \text{-sequence of subsets of } I \text{ of cardinality} < |I| \text{ s.t. } I = \bigcup_{\alpha < \lambda} I_{\alpha}.$
- ► FRP follows from Martin's Maximum or Rado's Conjecture. MA⁺(σ-closed) already implies FRP but PFA does not imply FRP since PFA does not imply stationary reflection of subsets of E^{ω₂}_ω (Magidor, Beaudoin) which is a consequence of FRP.
- FRP is a large cardinal property: FRP implies the total failure of the square principle.

Proof of Fact 1

Fact 1. (A. Hajnal and I. Juhász, 1976) For any uncountable cardinal κ there is a non-metrizable space X of size κ s.t. all subspaces Y of X of cardinality $< \kappa$ are metrizable.

Proof.

- Let $\kappa' \ge \kappa$ be of cofinality $\ge \kappa$, ω_1 .
- Dash The topological space $(\kappa'+1,\mathcal{O})$ with

 $\mathcal{O} = \mathcal{P}(\kappa') \cup \{(\kappa' \setminus x) \cup \{\kappa'\} \ : \ x \subseteq \kappa', \ x \text{ is bounded in } \kappa'\}$

is non-metrizable since the point κ' has character $= cf(\kappa') > \aleph_0$. \rhd Any subspace of $\kappa' + 1$ of size $< \kappa$ is discrete and hence metrizable.

もどる

うして ふゆ く は く は く む く し く し く

Proof of Fact 3

▶ It is enough to prove the following:

Lemma 1. (Folklore ?, see [Fuchino, Juhasz etal. 2010]) For a regular cardinal $\kappa \geq \aleph_2$ if, there is a non-reflectingly stationary $S \subseteq E_{\omega}^{\kappa}$, then there is a non meta-lindelöf (and hence non metrizable) locally compact and locally countable topological space X of cardinality κ s.t. all subspace Y of X of cardinality $< \kappa$ are metrizable.

Proof.

- Let $I = \{\alpha + 1 : \alpha < \kappa\}$ and $X = S \cup I$.
- \triangleright Let $\langle a_{\alpha} : \alpha \in S \rangle$ be s.t. $a_{\alpha} \in [I \cap \alpha]^{\aleph_0}$, a_{α} is of order-type ω and cofinal in α . Let \mathcal{O} be the topology on X introduced by letting
 - elements of *I* are isolated; and
 {*a*_α ∪ {α} \ β : β < α} a neighborhood base of each α ∈ *S*.
- ► Then (X, O) is not meta-lindelöf (by Fodor's Lemma) but each α < κ as subspace of X is metrizable (by induction on α).</p>

(ロ) (型) (E) (E) (E) (C)

Coloring number and chromatic number of a graph

► For a cardinal $\kappa \in Card$, a graph $G = \langle G, K \rangle$ has coloring number $\leq \kappa$ if there is a well-ordering \sqsubseteq on G s.t. for all $p \in G$ the set

 $\{q \in G : q \sqsubseteq p \text{ and } q K p\}$

has cardinality $< \kappa$.

もどる

- \triangleright The coloring number col(G) of a graph G is the minimal cardinal among such κ as above.
- The chromatic number chr(G) of a graph G = ⟨G, K⟩ is the minimal cardinal κ s.t. G can be partitioned into κ pieces G = U_{α<κ} G_α s.t. each G_α is pairwise non adjacent (independent).

▷ For all graph G we have $chr(G) \leq col(G)$.

もどる

κ -special trees

For a cardinal κ, a tree T is said to be κ-special if T can be represented as a union of κ subsets T_α, α < κ s.t. each T_α is an antichain (i.e. pairwise incomparable set).

もどる

Stationary subset of E_{ω}^{κ}

For a cardinal κ ,

$$\boldsymbol{E}_{\boldsymbol{\omega}}^{\boldsymbol{\kappa}} = \{ \gamma < \boldsymbol{\kappa} : \operatorname{cf}(\gamma) = \boldsymbol{\omega} \}.$$

- A subset C ⊆ ξ of an ordinal ξ of uncountable cofinality, C is closed unbounded (club) in ξ if (1): C is cofinal in ξ (w.r.t. the canonical ordering of ordinals) and (2): for all η < ξ, if C ∩ η is cofinal in η then η ∈ C.
- $S \subseteq \xi$ is stationary if $S \cap C \neq \emptyset$ for all club $C \subseteq \xi$.
- A stationary S ⊆ ξ if reflectingly stationary if there is some η < ξ of uncountable cofinality s.t.S ∩ η is stationary in η. Thus:

► A stationary $S \subseteq \xi$ if non reflectingly stationary if $S \cap \eta$ is non stationary for all $\eta < \xi$ of uncountable cofinality.

Proof of Theorem 1.

 $\begin{array}{l} \underbrace{\operatorname{CH} \Rightarrow \operatorname{SDLS}(\mathcal{L}^{\aleph_0, ll}, <\aleph_2):}_{\text{signature } L \text{ and underlying set } A, \text{ let } \theta \text{ be large enough and} \\ \widehat{\mathfrak{A}} = \langle \mathcal{H}(\theta), A, \mathfrak{A}, \in \rangle. \text{ where } A = \underline{A}^{\widetilde{\mathfrak{A}}} \text{ for a unary predicate symbol} \\ \underline{A} \text{ and } \mathfrak{A} = \mathfrak{A}^{\widetilde{\mathfrak{A}}} \text{ for a constant symbol } \mathfrak{A}. \text{ Let } \widetilde{\mathfrak{B}} \prec \widetilde{\mathfrak{A}} \text{ be} \\ \text{s.t.} |B| = \aleph_1 \text{ for the underlying set } B \text{ of } \mathfrak{B} \text{ and } [B]^{\aleph_0} \subseteq B. \\ \mathfrak{B} = \mathfrak{A} \upharpoonright \underline{A}^{\widetilde{\mathfrak{B}}} \text{ is then as desired.} \end{array}$

 $\begin{array}{l} \underline{\mathsf{SDLS}(\mathcal{L}^{\aleph_0}, <\aleph_2) \Rightarrow \mathsf{CH}: \text{ Suppose } \mathfrak{A} = \{\omega_2 \cup [\omega_2]^{\aleph_0}, \in\}. \text{ Consider} \\ \hline \mathsf{the } \mathcal{L}^{\aleph_0}\text{-formula } \varphi(X) = \exists x \forall y \ (y \in x \leftrightarrow y \in X). \\ \mathsf{If } \mathfrak{B} = \langle B, ... \rangle \text{ is s.t. } |B| \leq \aleph_1 \text{ and } \mathfrak{B} \prec_{\mathcal{L}^{\aleph_0}}\text{, then for } C \in [B]^{\aleph_0}\text{,} \\ \mathsf{since } \mathfrak{A} \models \varphi(C)\text{, we have } \mathfrak{B} \models \varphi(C)\text{. It dollows that } [B]^{\aleph_0} \subseteq B \\ \mathsf{and } 2^{\aleph_0} \leq (|B|)^{\aleph_0} \leq |B| = \aleph_1. \end{array}$

もどる