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The results in the following slides ... Laver-gen. large cardinals (2/8)

are to be found in the following joint papers with André Ottenbereit
Maschio Rodriques and Hiroshi Sakai:

[1] Sakaé Fuchino, André Ottenbereit Maschio Rodriques, and Hiroshi
Sakai, Strong downward Löwenheim-Skolem theorems for stationary
logics, I, submitted. http://fuchino.ddo.jp/papers/SDLS-x.pdf

[2] , Strong downward Löwenheim-Skolem theorems for stationary
logics, II — reflection down to the continuum, pre-preprint.
http://fuchino.ddo.jp/papers/SDLS-II-x.pdf

[3] , Strong downward Löwenheim-Skolem theorems for stationary
logics, III — mixed support iteration, in preparation.

[4] , Strong downward Löwenheim-Skolem theorems for stationary
logics, IV — more on Laver-generically large cardinals, in preparation.

[5] Sakaé Fuchino, and André Ottenbereit Maschio Rodriques, Reflection

principles, generic large cardinals, and the Continuum Problem, to appear.

http://fuchino.ddo.jp/papers/refl_principles_gen_large_cardinals_continuum_problem-x.pdf

http://fuchino.ddo.jp/papers/SDLS-x.pdf
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The size of the continuum ... Laver-gen. large cardinals (3/8)

◮ is either ℵ1 or ℵ2 or very large!

⊲ provided that a reasonable strong reflection principle

with the reflection number either ≤ ℵ1 or < 2ℵ0 should hold.

◮ The consistency of all of the strong reflection principles involved in
the statement above are proved by quite similar arguments.

⊲ By analysing these proofs, we come to the following:



The size of the continuum ... Laver-gen. large cardinals (3/8)

◮ is either ℵ1 or ℵ2 or very large!

⊲ provided that a strong variant of generic large cardinal should exist.

For a class P of p.o.s, a cardinal κ is a Laver-generically super-
compact for P if, for all regular λ ≥ κ and P ∈ P there is Q ∈ P
with P ≤◦ Q, s.t., for any (V,Q)-generic H, there are a inner model
M ⊆ V[H], and an elementary embedding j : V → M s.t.

(1) crit(j) = κ, j(κ) > λ.

(2) P,H ∈ M,

(3) j ′′λ ∈ M.

◮ κ is Laver-generically superhuge for P if (3) above is replaced by
(3)” j ′′j(κ) ∈ M.

◮ κ is Laver-generically super almost-huge for P if (3) above is
replaced by (3)’ j ′′δ ∈ M for all δ < j(κ).



The condition j ′′λ ∈ M vers. λM ⊆ M Laver-gen. large cardinals (4/8)

Lemma 1. ([2]) Suppose that G is a (V,P)-generic filter for a

p.o. P ∈ V and j : V
≺
→ M ⊆ V[G] s.t., for cardinals κ, λ in V

with κ ≤ λ, crit(j) = κ and j ′′λ ∈ M.

(1) For any set A ∈ V with V |= |A | ≤ λ, we have j ′′A ∈ M.

(2) j ↾ λ, j ↾ λ2 ∈ M.

(3) For any A ∈ V with A ⊆ λ or A ⊆ λ2 we have A ∈ M.

(4) (λ+)M ≥ (λ+)V, Thus, if (λ+)V = (λ+)V[G],
then (λ+)M = (λ+)V.

(5) H(λ+)V ⊆ M.

(6) j ↾ A ∈ M for all A ∈ H(λ+)V.



Consistency of Laver-generically supercompact cardinals Laver-gen. large cardinals (5/8)

Theorem 2. ([2]) (1) Suppose that ZFC + “there exists a su-
percompact cardinal” is consistent. Then ZFC + “there exists a
Laver-generically supercompact cardinal for σ-closed p.o.s” is con-
sistent as well.

(2) Suppose that ZFC + “there exists a superhuge cardinal” is
consistent. Then ZFC + “there exists a Laver-generically super
almost-huge cardinal for proper p.o.s” is consistent as well.

Proof

(3) Suppose that ZFC + “there exists a supercompact cardinal” is
consistent. Then ZFC + “there exists a strongly Laver-generically
supercompact cardinal for c.c.c. p.o.s” is consistent as well.



The continuum under Laver-generically supercompact cardinals Laver-gen. large cardinals (6/8)

Proposition 3. ([2]) (1) Suppose that κ is generically measurable
by a ω1 preserving P. Then κ > ω1. Proof

(2) Suppose that κ is Laver-generically supercompact for ω1-
preserving P with Col(ω1, {ω2}) ∈ P . Then κ = ω2. Proof

(3) Suppose that P is a class of p.o.s containing a p.o. P s.t. any
(V,P)-generic filter G codes a new real. If κ is a Laver-generically
supercompact for P , then κ ≤ 2ℵ0 . Proof

(4) Suppose that P is a class of p.o.s s.t. elements of P do not
add any reals. If κ is generically supercompact by P , then we have
2ℵ0 < κ. Proof

(5) Suppose that κ is Laver-generically supercompact for P s.t.
all P ∈ P are ccc and at least one P ∈ P adds a real. Then
κ ≤ 2ℵ0 holds and (a) SCH holds above 2<κ. (b) For all regular
λ ≥ κ, there is a σ-saturated normal filter over Pκ(λ). (6) If κ
is

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

tightly Laver-generically superhuge for ccc , then κ = 2ℵ0 .



+ -versions of MA Laver-gen. large cardinals (7/8)

◮ For a class P of p.o.s and cardinals µ, κ,

MA+µ(P, < κ):

For any P ∈ P , any family D of dense subsets of P with
| D | < κ and any family S of P-names s.t. | S | ≤ µ and
‖–P “ S

∼
is a stationary subset of ω1 ” for all S

∼
∈ S, there is a

D-generic filter G over P s.t. S
∼
[G] is a stationary subset of ω1

for all S
∼

∈ S.

Theorem 4. ([2]) For an arbitrary class P of p.o.s, if κ > ℵ1 is a
Laver-generically supercompact for P , then MA+µ(P, < κ) holds
for all µ < κ.



The trichotomy Laver-gen. large cardinals (8/8)

Theorem 5. ([2]) Suppose that κ is Laver-generically super-
compact cardinal for a class P of p.o.s.

(A) If elements of P are ω1-preserving and do not add any re-
als, and Col(ω1, {ω2}) ∈ P , then κ = ℵ2 and CH holds. Also,
MA+ℵ1(P, <ℵ2) holds.

(B) If elements of P are ω1-preserving and contain all proper p.o.s
then PFA+ω1 holds and κ = 2ℵ0 = ℵ2.

(C) If elements of P are µ-cc for some µ < κ and P contains
a p.o. which adds a reals then κ is fairly large and κ ≤ 2ℵ0 also
MA+µ(P, < κ). holds for any µ < κ.



Thank you for your attention.
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Proof of Theorem 2, (2)

Theorem 2, (2) Suppose that ZFC + “there exists a super-
huge cardinal” is consistent. Then ZFC + “there exists a Laver-
generically super almost-huge cardinal for proper p.o.s” is consis-
tent as well.

Proof. Starting from a model of ZFC with a superhuge cardinal κ,
we can obtain models of respective assertions by iterating in
countable support with proper p.o.s κ times along a Laver function
for super almost-hugeness (see [Corazza]).

◮ In the resulting model, we obtain Laver-generically super
almost-hugeness in terms of proper p.o. Q in each respective inner
model M[G] of V[G]. The closedness of M in V in terms of super
almost-hugeness implies that Q is also proper in V[G].

◮ This shows that κ is Laver-generically super almost-huge of proper
p.o.s. もどる

https://www.jstor.org/stable/pdf/2586614.pdf


Proof of Proposition 3, (4)

Proposition 3, (4) Suppose that P is a class of p.o.s s.t. elements
of P do not add any reals. If κ is generically supercompact by P ,
then we have 2ℵ0 < κ.

Proof. Suppose that κ ≤ 2ℵ0 and let λ ≥ 2ℵ0 .

◮ Let P ∈ P be s.t. for some (V,P)-generic G with j , M ⊆ V[G] s.t.

j : V
≺
→ M, crit(j) = κ, j(κ) > λ and j ′′λ ∈ M.

◮ By elementarity, M |= “ j(κ) ≤ (2ℵ0)M ”. Thus

(2ℵ0)V ≥ (2ℵ0)V [G] ≥ (2ℵ0)M ≥ j(κ) > λ ≥ (2ℵ0)V.

This is a contradiction. もどる



Proof of Proposition 3, (2)

Proposition 3, (2) Suppose that κ is Laver-generically supercom-
pact for ω1-preserving P with Col(ω1, {ω2}) ∈ P . Then κ = ω2.

Proof. Suppose that κ 6= ω2. Then, by (1), we have κ > ω2

◮ Let Q ∈ P be s.t. P ≤◦ Q for P = Col(ω1, {ω2}) and s.t., for a

(V,Q)-generic H, there are M, j ⊆ V[H] with j : V
≺
→ M,

crit(j) = κ.

◮ By elementarity, M |= “ j((ω2)
V)

︸ ︷︷ ︸

=(ω2)V

is “ω2” ”. This is a contradiction

since H ∩ P ∈ M collapes (ω2)
V to an ordinal of cardinality ℵ1.

もどる



Proof of Proposition 3, (1)

Proposition 3, (1) Suppose that κ is generically measurable by
a ω1 preserving P. Then κ > ω1.

Proof. Suppose that κ ≤ ω1. Since κ = ω is impossible, we have
κ = ω1.

◮ Let P be an ω1 preserving p.o. and G a (V,P)-generic filter with

M, j ⊆ V [G] s.t. j : V
≺
→ M, crit(j) = κ.

◮ By elementarity we have M |= “ j(κ) = ω1” .

◮ Thus (ω1)
V < (ω1)

M ≤ (ω1)
V[G]. This is a contradiction to the ω1

preserving of P.
もどる



Proof of Proposition 3, (3)

Proposition 3, (3) Suppose that P is a class of p.o.s contain-
ing a p.o. P which adds a new real. If κ is a Laver-generically
supercompact for P , then κ ≤ 2ℵ0 .

Proof. Let P ∈ P be s.t. any generic filter over P codes a new real.
Suppose that µ < κ. We show that 2ℵ0 > µ. Let ~a = 〈aξ : ξ < µ〉
be a sequence of subsets of ω. It is enough to show that ~a does not
enumerate P(ω).

◮ By Laver-generic supercompactness of κ for P , there are Q ∈ P
with P ≤◦ Q, (V,Q)-generic H, transitive M ⊆ V[H] and j ⊆ M[H]

with j : V
≺
→ M, crit(j) = κ and P,H ∈ M. Since µ < κ, j(~a) = ~a.

◮ Since H ∈ M where G = H ∩ P and G codes a new real not in V,
we have

M |= “ j(~a) does not enumerate 2ℵ0”.

◮ By elementarity, it follows that

V |= “ ~a does not enumerate 2ℵ0”. もどる



Strong Downward Löwneheim-Skolem Theorem for stationary logic

⊲ Lℵ0
stat is a weak second order logic with monadic second-order

variables X , Y etc. which run over the countable subsets of the
underlying set of a structure. The logic has only the weak second
order quantifier “stat” and its dual “aa” (but not the second-order
existential (or universal) quantifiers) with the interpretation:

A |= stat X ϕ(..., X ) :⇔
{U ∈ [A]ℵ0 : A |= ϕ(..., U)} is a stationary subset of [A]ℵ0 .

⊲ For B = 〈B , ...〉 ⊆ A, B ≺
L
ℵ0
stat

A :⇔

B |= ϕ(a0, ...,U0, ...) ⇔ A |= ϕ(a0, ...,U0, ...) for all Lℵ0
stat-formula

ϕ = ϕ(x0, ...,X0, ...) and for all a0, ... ∈ B and for all
U0, ... ∈ [B]ℵ0 .

◮ SDLS(Lℵ0
stat , < κ) :⇔

For any structure A = 〈A, ...〉 of countable signature, there is a
structure B of size < κ s.t. B ≺

L
ℵ0
stat

A. もどる



A weakening of the Strong Downward Löwneheim-Skolem Theorem

⊲ For B = 〈B , ...〉 ⊆ A, B ≺−

L
ℵ0
stat

A :⇔

B |= ϕ(a0, ...) ⇔ A |= ϕ(a0, ...) for all Lℵ0
stat-formula ϕ = ϕ(x0, ...)

without free seond-order variables and for all a0, ... ∈ B .

◮ SDLS−(Lℵ0
stat , < κ) :⇔

For any structure A = 〈A, ...〉 of countable signature, there is a
structure B of size < κ s.t. B ≺−

L
ℵ0
stat

A.

もどる



Strong Downward Löwneheim-Skolem Theorem for PKL logic

⊲ LPKL
stat is the weak second-order logic with monadic second order

variables X , Y , etc. with built-in unary predicate symbol K . The
monadic seond order variables run over elements of P

K
A(A) for a

structure A = 〈A, K A, ...〉 where we denote
PS(T ) = P| S |(T ) = {u ⊆ T : | u | < | S |}. The logic has the
unique second order quantifier “stat” (and its dual).

⊲ The internal interpretation of the quantifier is defined by:

A |=int stat X ϕ(a0, ...,U0, ...,X ) :⇔
{U ∈ P

K
A(A) ∩ A : A |=int ϕ(a0, ...,U0, ...,U)} is a stationary

subset of P
K

A(A) for a0, ...A and U0, ... ∈ P
K

A(A) ∩ A.

⊲ For B = 〈B ,K ∩ B , ...〉 ⊆ A = 〈A,K , ...〉, B ≺int

LPKL
stat

A :⇔

B |=int ϕ(a0, ...,U0, ...) ⇔ A |=int ϕ(a0, ...,U0, ...) for all
Lℵ0
stat-formula ϕ = ϕ(x0, ...) a0, ... ∈ B and U0, ... ∈ PK∩B(B) ∩ B .



Strong Downward Löwneheim-Skolem Theorem for PKL logic (2/2)

◮ SDLSint(LPKL
stat , < κ) :⇔

for any regular λ ≥ κ and a structuer A = 〈A,K , ...〉 of countable
signature with |A | = λ and |K | = κ. 〈H(λ), κ,∈〉, there is a
structure B of size < κ s.t. B ≺int

LPKL
stat

A.

◮ SDLSint
+ (LPKL

stat , < κ) :⇔
for any regular λ ≥ κ and a structuer A = 〈A,K , ...〉 of countable
signature with |A | = λ and |K | = κ. 〈H(λ), κ,∈〉, there are
stationarily many structures B of size < κ s.t. B ≺int

LPKL
stat

A.

もどる



tightly Laver generically superhuge cardinals

◮ For a class P of p.o.s, a cardinal κ is a tightly Laver-generically
superhuge for P if, for all regular λ ≥ κ and P ∈ P there is Q ∈ P
with P ≤◦ Q, s.t., for any (V,Q)-generic H, there are a inner model
M ⊆ V[H], and an elementary embedding j : V → M s.t.

(1) crit(j) = κ, j(κ) > λ.

(2) P,H ∈ M,

(3) j ′′j(κ) ∈ M, and

(4) |Q | ≤ j(κ).
Proposition 3. にもどる もどる



Diagonal Reflection Principle
◮ (S. Cox) For a regular cardinal θ > ℵ1:

DRP(θ, IC): There are stationarily many M ∈ [H((θℵ0)+)]ℵ1 s.t.

(1) M ∩H(θ) is
✿✿✿✿✿✿✿✿✿✿✿✿

internally club ;

(2) for all R ∈ M s.t. R is a stationary subset of [θ]ℵ0 ,
R ∩ [θ ∩M]ℵ0 is stationary in [θ ∩M]ℵ0 .

◮ For a regular cardinal λ > ℵ1

(∗)λ: For any countable expansion Ã of 〈H(λ),∈〉, if
〈Sa : a ∈ H(λ)〉, is a family of stationary subsets of [H(λ)]ℵ0 ,
then there is an internally club M ∈ [H(λ)]ℵ1 s.t. Ã ↾ M ≺ Ã

and Sa ∩ [M]ℵ0 is stationary in [M]ℵ0 , for all a ∈ M.

Proposition 1. TFAE: (a) The global version of Diagonal Reflec-
tion Principle of S.Cox for internal clubness (i.e. DRP(θ, IC) for
all regular θ > ℵ1) holds.

(b) (∗)λ for all regular λ > ℵ1 holds.

もどる



Diagonal Reflection Principle
◮ (S. Cox) For a regular cardinal θ > ℵ1:

DRP(θ, IC): There are stationarily many M ∈ [H((θℵ0)+)]ℵ1 s.t.
(1) M ∩H(θ) is

✿✿✿✿✿✿✿✿✿✿✿✿

internally club ;

(2) for all R ∈ M s.t. R is a stationary subset of [θ]ℵ0 ,
R ∩ [θ ∩M]ℵ0 is stationary in [θ ∩M]ℵ0 .

◮ For a regular cardinal λ > ℵ1

(∗)λ: For any countable expansion Ã of 〈H(λ),∈〉, if
〈Sa : a ∈ H(λ)〉, is a family of stationary subsets of [H(λ)]ℵ0 ,
then there is an internally club M ∈ [H(λ)]ℵ1 s.t. Ã ↾ M ≺ Ã

and Sa ∩ [M]ℵ0 is stationary in [M]ℵ0 , for all a ∈ M.

Proposition 1. TFAE: (a) The global version of Diagonal Reflec-
tion Principle of S.Cox for internal clubness (i.e. DRP(θ, IC) for
all regular θ > ℵ1) holds.

(b) (∗)λ for all regular λ > ℵ1 holds.

(c) SDLS−(Lℵ0
stat , <ℵ2) holds.

もどる



Reflection Principles RP??

◮ The following are variations of the “Reflection Principle” in
[Jech, Millennium Book].

RPIC For any uncountable cardinal λ, stationary S ⊆ [H(λ)]ℵ0 and
any countable expansion A of the structure 〈H(λ),∈〉, there is
an

✿✿✿✿✿✿✿✿✿✿✿✿✿

internally club M ∈ [H(λ)]ℵ1 s.t. (1) A ↾ M ≺ A; and (2)
S ∩ [M]ℵ0 is stationary in [M]ℵ0 .

RPIU For any uncountable cardinal λ, stationary S ⊆ [H(λ)]ℵ0 and
any countable expansion A of the structure 〈H(λ),∈〉, there is
an

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

internally unbounded M ∈ [H(λ)]ℵ1 s.t. (1) A ↾ M ≺ A;
and (2) S ∩ [M]ℵ0 is stationary in [M]ℵ0 .

Since every internally club M is internally unbounded, we have:

Lemma 1. RPIC implies RPIU.

RPIU is also called Axiom R in Set-Theoretic Topology.

Theorem 2. ([Fuchino, Juhasz etal. 2010]) RPIU implies FRP.

もどる



Stationary subsets of [X ]ℵ0

◮ C ⊆ [X ]ℵ0 is club in [X ]ℵ0 if (1) for every u ∈ [X ]ℵ0 , there is v ∈ C

with u ⊆ v ; and (2) for any countable increasing chain F in C we
have

⋃
F ∈ C .

⊲ S ⊆ [X ]ℵ0 is stationary in [X ]ℵ0 if S ∩C 6= ∅ for all club C ⊆ [X ]ℵ0 .

◮ A set M is internally unbounded if M ∩ [M]ℵ0 is cofinal in [M]ℵ0

(w.r.t. ⊆)

⊲ A set M is internally stationary if M ∩ [M]ℵ0 is stationary in [M]ℵ0

⊲ A set M is internally club if M ∩ [M]ℵ0 contains a club in [M]ℵ0 .

“Diagonal Reflection Principle” にもどる “RP??” にもどる



Fodor-type Reflection Principle (FRP)
(FRP) For any regular κ > ω1, any stationary E ⊆ Eκ

ω and any
mapping g : E → [κ]ℵ0 with g(α) ⊆ α for all α ∈ E , there is
γ ∈ Eκ

ω1
s.t.

(*) for any I ∈ [γ]ℵ1 closed w.r.t. g and club in γ, if
〈Iα : α < ω1〉 is a filtration of I then sup(Iα) ∈ E and
g(sup(Iα)) ⊆ Iα hold for stationarily many α < ω1.

⊲ F = 〈Iα : α < λ〉 is a filtration of I if F is a continuously increasing
⊆-sequence of subsets of I of cardinality < | I | s.t. I =

⋃

α<λ Iα.

◮ FRP follows from Martin’s Maximum or Rado’s Conjecture.
MA+(σ-closed) already implies FRP but PFA does not imply FRP
since PFA does not imply stationary reflection of subsets of Eω2

ω

(Magidor, Beaudoin) which is a consequence of FRP.

◮ FRP is a large cardinal property: FRP implies the total failure of the
square principle.

⊲ FRP is known to be equivalent to the reflection of uncountable
coloring number of graphs down to cardinality < ℵ2. もどる



Proof of Fact 1

Fact 1. (A. Hajnal and I. Juhász, 1976) For any uncountable cardi-
nal κ there is a non-metrizable space X of size κ s.t. all subspaces
Y of X of cardinality < κ are metrizable.

Proof.
◮ Let κ′ ≥ κ be of cofinality ≥ κ, ω1.

⊲ The topological space (κ′ + 1,O) with

O = P(κ′) ∪ {(κ′ \ x) ∪ {κ′} : x ⊆ κ′, x is bounded in κ′}

is non-metrizable since the point κ′ has character = cf(κ′) > ℵ0.
⊲ Any subspace of κ′ + 1 of size < κ is discrete and hence metrizable.

�

もどる



Proof of Fact 3
◮ It is enough to prove the following:

Lemma 1. (Folklore ?, see [Fuchino, Juhasz etal.
2010]) For a regular cardinal κ ≥ ℵ2 if, there is
a

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

non-reflectingly stationary S ⊆ Eκ
ω , then there is a non

✿✿✿✿✿✿✿✿✿✿✿✿

meta-lindelöf (and hence non metrizable) locally compact and
locally countable topological space X of cardinality κ s.t. all sub-
space Y of X of cardinality < κ are metrizable.

Proof.
◮ Let I = {α+ 1 : α < κ} and X = S ∪ I .
⊲ Let 〈aα : α ∈ S〉 be s.t. aα ∈ [I ∩ α]ℵ0 , aα is of order-type ω and

cofinal in α. Let O be the topology on X introduced by letting

(1) elements of I are isolated; and

(2) {aα ∪ {α} \ β : β < α} a neighborhood base of each α ∈ S .

◮ Then (X ,O) is not meta-lindelöf (by Fodor’s Lemma) but each
α < κ as subspace of X is metrizable (by induction on α).� もどる



Coloring number and chromatic number of a graph

◮ For a cardinal κ ∈ Card, a graph G = 〈G ,K 〉 has coloring number
≤ κ if there is a well-ordering ⊑ on G s.t. for all p ∈ G the set

{q ∈ G : q ⊑ p and q K p}

has cardinality < κ. もどる

⊲ The coloring number col(G ) of a graph G is the minimal cardinal
among such κ as above.

◮ The chromatic number chr(G ) of a graph G = 〈G ,K 〉 is the
minimal cardinal κ s.t. G can be partitioned into κ pieces
G =

⋃

α<κ Gα s.t. each Gα is pairwise non adjacent (independent).

⊲ For all graph G we have chr(G ) ≤ col(G ).
もどる



κ-special trees
◮ For a cardinal κ, a tree T is said to be κ-special if T can be

represented as a union of κ subsets Tα, α < κ s.t. each Tα is an
antichain (i.e. pairwise incomparable set).

もどる



Stationary subset of Eκ
ω

◮ For a cardinal κ,

Eκ
ω = {γ < κ : cf(γ) = ω}.

◮ A subset C ⊆ ξ of an ordinal ξ of uncountable cofinality, C is closed
unbounded (club) in ξ if (1): C is cofinal in ξ (w.r.t. the canonical
ordering of ordinals) and (2): for all η < ξ, if C ∩ η is cofinal in η

then η ∈ C .

◮ S ⊆ ξ is stationary if S ∩ C 6= ∅ for all club C ⊆ ξ.

◮ A stationary S ⊆ ξ if reflectingly stationary if there is some η < ξ of
uncountable cofinality s.t.S ∩ η is stationary in η. Thus:

◮ A stationary S ⊆ ξ if non reflectingly stationary if S ∩ η is non
stationary for all η < ξ of uncountable cofinality.

もどる



Proof of Theorem 1.
CH ⇒ SDLS(Lℵ0,II , < ℵ2): For a structure A with a countable
signature L and underlying set A, let θ be large enough and

Ã = 〈H(θ),A,A,∈〉. where A = A Ã for a unary predicate symbol

A and A = A
Ã for a constant symbol A. Let B̃ ≺ Ã be

s.t.|B | = ℵ1 for the underlying set B of B and [B]ℵ0 ⊆ B .

B = A ↾ AB̃ is then as desired.

SDLS(Lℵ0 , < ℵ2) ⇒ CH: Suppose A = {ω2 ∪ [ω2]
ℵ0 ,∈}. Consider

the Lℵ0-formula ϕ(X ) = ∃x∀y (y ∈ x ↔ y ε X ).
If B = 〈B , ...〉 is s.t. |B | ≤ ℵ1 and B ≺Lℵ0 , then for C ∈ [B]ℵ0 ,
since A |= ϕ(C ), we have B |= ϕ(C ). It dollows that [B]ℵ0 ⊆ B

and 2ℵ0 ≤ (|B |)ℵ0 ≤ |B | = ℵ1.
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