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The results in the following slides ... Lavergen. g cadinels (2/8)

are to be found in the following joint papers with André Ottenbereit
Maschio Rodriques and Hiroshi Sakai:

[1] Sakaé Fuchino, André Ottenbereit Maschio Rodriques, and Hiroshi
Sakai, Strong downward Léwenheim-Skolem theorems for stationary
logics, I, submitted. http://fuchino.ddo.jp/papers/SDLS-x.pdf

2] , Strong downward Léwenheim-Skolem theorems for stationary
logics, Il — reflection down to the continuum, pre-preprint.

http://fuchino.ddo.jp/papers/SDLS-II-x.pdf

3] , Strong downward Lowenheim-Skolem theorems for stationary
logics, Il — mixed support iteration, in preparation.
[4] , Strong downward Lowenheim-Skolem theorems for stationary

logics, IV — more on Laver-generically large cardinals, in preparation.

[5] Sakaé Fuchino, and André Ottenbereit Maschio Rodriques, Reflection
principles, generic large cardinals, and the Continuum Problem, to appear.
http://fuchino.ddo.jp/papers/refl _principles gen large cardinals continuum _problem-x.pdf
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» s either Ny or Ny or very large!

> provided that a reasonable strong reflection principle

with the reflection number either < X; or < 280 should hold.

» The consistency of all of the strong reflection principles involved in
the statement above are proved by quite similar arguments.

> By analysing these proofs, we come to the following:



The size of the continuum ... Lavergen. g cadinels (3/8)
» s either Ny or Ny or very large!

> provided that a strong variant of generic large cardinal should exist.

For a class P of p.o.s, a cardinal « is a Laver-generically super-
compact for P if, for all regular A > x and P € P there is Q € P
with P <€ Q, s.t., for any (V, Q)-generic H, there are a inner model
M C V[H], and an elementary embedding j : V — M s.t.

(1) crit(j) = &, j(K) > A
(2) P,He M,
(3) ;"N e M.

> k is Laver-generically superhuge for P if (3) above is replaced by
(3)" j"j(k) € M.

» « is Laver-generically super almost-huge for P if (3) above is
replaced by  (3)' j”d € M for all § < j(k).
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Lemma 1. ([2]) Suppose that G is a (V,P)-generic filter for a
po.PeVandj:V Ny C V[G] s.t., for cardinals k, A in'V

with k < X\, crit(j) = k and j”"\ € M.

(1) ForanysetAeV withV |= |A| <\, we have j"A e M.
(2) j I A2 e M.

(3) F ranyAEV with AC X\ or AC A2 we have A € M.
(4)

4) (AH)M >(A+) , Thus, if (A\T)V = (\+H)VIE],
then (A\T)M = (AT)V.

(5) H(AT)V € M.
6)j A€M forall Ac H(\T)V.



Consistency of Laver-generically supercompact cardinals — Luegn lagcariat (5/8)

Theorem 2. ([2]) (1) Suppose that ZFC + ‘there exists a su-
percompact cardinal” is consistent. Then ZFC + “there exists a
Laver-generically supercompact cardinal for o-closed p.o.s” is con-
sistent as well.

(2) Suppose that ZFC + ‘there exists a superhuge cardinal” is
consistent. Then ZFC + ‘there exists a Laver-generically super
almost-huge cardinal for proper p.o.s” is consistent as well.

(3) Suppose that ZFC + “there exists a supercompact cardinal” is
consistent. Then ZFC + “there exists a strongly Laver-generically
supercompact cardinal for c.c.c. p.o.s” is consistent as well.
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Proposition 3. ([2]) (1) Suppose that k is generically measurable
by a w1 preserving P. Then k > ws.

(2) Suppose that r is Laver-generically supercompact for wi-
preserving P with Col(wy, {w2}) € P. Then k = w>.

(3) Suppose that P is a class of p.o.s containing a p.o. P s.t. any
(V,IP)-generic filter G codes a new real. If k is a Laver-generically
supercompact for P, then r < 2%0.

(4) Suppose that P is a class of p.o.s s.t. elements of P do not
add any reals. If k is generically supercompact by P, then we have

oM < k.

(5) Suppose that k is Laver-generically supercompact for P s.t.
all P € P are ccc and at least one P € P adds a real. Then
# < 2% holds and (a) SCH holds above 2<*. (b) For all regular
A\ > K, there is a o-saturated normal filter over P ()\).  (6) If k

is tightly Laver-generically superhuge for ccc, then k = 2Ro
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» For a class P of p.o.s and cardinals p, &,

MATH(P, < k):

For any P € P, any family D of dense subsets of P with
| D| < K and any family S of P-names s.t. | S| < p and
lFp* S is a stationary subset of w1” for all S € S, there is a

D-generic filter G over P s.t. S[G] is a stationary subset of wq
forall S € S.

Theorem 4. ([2]) For an arbitrary class P of p.o.s, if K > Yy is a
Laver-generically supercompact for P, then MATH(P, < k) holds
for all 1 < k.
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Theorem 5. ([2]) Suppose that r is Laver-generically super-
compact cardinal for a class P of p.o.s.

(A) If elements of P are wi-preserving and do not add any re-
als, and Col(w1,{w2}) € P, then kK = Ny and CH holds. Also,
MAT1 (P, < X,) holds.

(B) If elements of P are ws-preserving and contain all proper p.o.s
then PFATY holds and k = 280 = Ny,

(C) If elements of P are p-cc for some u < k and P contains
a p.o. which adds a reals then k is fairly large and k. < 2%° also
MATH(P, < k). holds for any i1 < k.
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Proof of Theorem 2, (2)

Theorem 2, (2) Suppose that ZFC + “there exists a super-
huge cardinal” is consistent. Then ZFC + “there exists a Laver-
generically super almost-huge cardinal for proper p.o.s" is consis-
tent as well.

Proof. Starting from a model of ZFC with a superhuge cardinal &,
we can obtain models of respective assertions by iterating in
countable support with proper p.o.s x times along a Laver function
for super almost-hugeness (see [Corazzal).

In the resulting model, we obtain Laver-generically super
almost-hugeness in terms of proper p.o. Q in each respective inner
model M[G] of V[G]. The closedness of M in V in terms of super
almost-hugeness implies that Q is also proper in V[G].

This shows that « is Laver-generically super almost-huge of proper

p-o-s.


https://www.jstor.org/stable/pdf/2586614.pdf

Proof of Proposition 3, (4)

Proposition 3, (4) Suppose that P is a class of p.o.s s.t. elements
of P do not add any reals. If x is generically supercompact by P,
then we have 2% < g,

Proof. Suppose that x < 2% and let \ > 2%

» Let P € P be s.t. for some (V,P)-generic G with j, M C V[G] s.t.
J V3 M, crit(j) =k, j(k) > Xand j”\ € M.
» By elementarity, M = j(k) < (2%)M”. Thus
(2%0)V > (2X) VI > (%)M > j(k) > A > (2%)Y.

This is a contradiction. LY



Proof of Proposition 3, (2)

Proposition 3, (2) Suppose that  is Laver-generically supercom-
pact for wy-preserving P with Col(wy, {wz}) € P. Then xk = wy.

Proof. Suppose that x # w,. Then, by (1), we have k > w»

> Let Q € P bes.t. P<Q for P= Col(wy, {w2}) and s.t., for a
(V,Q)-generic H, there are M, j C V[H] with j : V aNyy
crit(j) = k.
» By elementarity, M = j((w2)V) is “wy" 7. This is a contradiction
——

=(w2)V

since HNP € M collapes (w2)V to an ordinal of cardinality N;.

LD



Proof of Proposition 3, (1)

Proposition 3, (1) Suppose that x is generically measurable by
a wj preserving P. Then xk > ws.

Proof. Suppose that x < w;. Since k = w is impossible, we have
K = W1i.

» Let P be an w; preserving p.o. and G a (V,P)-generic filter with
M,j C V[G] st.j: V3 M, crit(j) = x.
» By elementarity we have M =% j(k) = w1”.

» Thus (w1)Y < (w1)™ < (w1)VICl. This is a contradiction to the w;
preserving of P.
525



Proof of Proposition 3, (3)

Proposition 3, (3) Suppose that P is a class of p.o.s contain-
ing a p.o. P which adds a new real. If x is a Laver-generically
supercompact for P, then r < 2%,

Proof. Let P € P be s.t. any generic filter over P codes a new real.
Suppose that ;1 < k. We show that 2%0 > . Let &= (a¢ : & < p)
be a sequence of subsets of w. It is enough to show that 3 does not
enumerate P(w).

» By Laver-generic supercompactness of « for P, there are Q € P
with P < Q, (V,Q)-generic H, transitive M C V[H] and j C M[H]
with j -V = M, crit(j) = x and P,H € M. Since p1 < k, j(3) = 4.

» Since H € M where G = HNP and G codes a new real not in V,
we have

M = j(3) does not enumerate 280",

» By elementarity, it follows that

V [=“ 3 does not enumerate 280", L%



Strong Downward Léwneheim-Skolem Theorem for stationary logic

> L2 s a weak second order logic with monadic second-order
variables X, Y etc. which run over the countable subsets of the
underlying set of a structure. The logic has only the weak second
order quantifier “stat” and its dual “aa" (but not the second-order
existential (or universal) quantifiers) with the interpretation:

A Estat X p(..., X) &
{U € [A® : 2 = (..., U)} is a stationary subset of [A]%°.

> For B=(B,..) CA B < x A &

B = o(ap, ..., Up,...) & A= o(ao, ..., U, ...) for all £52,-formula
» = ¢(xo0, ..., Xo, ...) and for all ag, ... € B and for all
Uo, ... € [B]No.

» SDLS(LNe, <k) &=
For any structure 20 = (A, ...) of countable signature, there is a

structure B of size <k s.t. B < xo A HE5
stat



A weakening of the Strong Downward Léwneheim-Skolem Theorem

> ForB8=(B,..) CA B <;N0 A &

stat

B = o(ap, ...) < A= o(ap, ...) for all £52,-formula ¢ = ¢(xo, ...)
without free seond-order variables and for all ag, ... € B.

» SDLS™ (LM, <k) &
For any structure 20 = (A, ...) of countable signature, there is a
structure B of size <k s.t. B < 2.

stat

LD



Strong Downward Léwneheim-Skolem Theorem for PKL logic

> LEKL is the weak second-order logic with monadic second order
variables X, Y, etc. with built-in unary predicate symbol K. The
monadic seond order variables run over elements of PKm( ) for a
structure 2 = (A, KQL .) where we denote
Ps(T) —73|5|(T) = {u CT:|ul<|S|} The logic has the

unique second order quantifier “stat” (and its dual).
> The internal interpretation of the quantifier is defined by:

A ="t stat X ¢(ag, ..., Ug, ..., X) &
{UePra(A)NA : AEM p(ag, ..., U, ..., U)} is a stationary
subset of P, u(A) for ag,...A and Up, ... € P,a(A) NA.

> For B =(B,KNB,..) CA=(AK,..), B <" A &

stat

B =" p(ag, ..., U, ...) & A =M p(ag, ..., Uy, ...) for all
L0 ~formula ¢ = ¢(xo, ...) ag, ... € B and Uy, ... € Pxns(B) N B.



Strong Downward Loéwneheim-Skolem Theorem for PKL logic (2/2)

» SDLS™(LEKL < k) e
for any regular A > x and a structuer 2l = (A, K, ...) of countable
signature with |A| =X and | K| = k. (H(\),k > there is a
structure B of size < k s.t. B 4’[’:’5,3(#
» SDLS™(LEKE < k) &
for any regular A > « and a structuer 20 = (A, K|, ...) of countable
signature with |A| = X and | K| = k. (H()\), K, €), there are
stationarily many structures B of size < k s.t. B <2’,§KL 2.

stat

LD



tightly Laver generically superhuge cardinals

» For a class P of p.o.s, a cardinal x is a tightly Laver-generically
superhuge for P if, for all regular A > x and P € P there is Q € P
with P < Q, s.t., for any (V, Q)-generic H, there are a inner model
M C V[H], and an elementary embedding j : V — M s.t.

(1

) crit(j) = &, j(k) > A
(2) P,H € M,
(3)4"
(4) [Q

j(k) € M, and

| < (k).
525



Diagonal Reflection Principle
» (S.Cox) For a regular cardinal 6 > Ny:
DRP(6,1C): There are stationarily many M € [H((6%) )™ s.t.

(1) MNH(0) is internally club;
(2) for all R € M s.t. R is a stationary subset of [0]™°,
R N[0 N M]%e is stationary in [0 N M]%e.

» For a regular cardinal A > Ny

(¥)x: For any countable expansion 2 of (H()), €), if
(S, 1 a€ H(N)), is a family of stationary subsets of [H(\)]™e,
then there is an internally club M € [H(\)]¥ s.t. 2 | M < 2
and S, N [M]0 is stationary in [M]*°, for all a € M.

Proposition 1. TFAE: (a) The global version of Diagonal Reflec-
tion Principle of S.Cox for internal clubness (i.e. DRP(6,1C) for
all regular 6 > X1) holds.

(b) (%) for all regular X > ¥ holds.

HY5



Diagonal Reflection Principle
» (S.Cox) For a regular cardinal 6 > Ny:
DRP(6,1C): There are stationarily many M € [H((6%))]** s.t.
(1) MOH(6) is internally club;
(2) for all R € M s.t. R is a stationary subset of [¢]™°,
RN [0 N M]Re is stationary in [0 N M]Ye.

» For a regular cardinal A > N3

(¥)x: For any countable expansion 2l of (#H()), €), if
(S5, 1 a€ H(N)), is a family of stationary subsets of [’H()\)]NO,
then there is an internally club M € [H(A\)]* s.t. 2 | M < A
and S, N [M]%0 is stationary in [M]*°, for all a € M.

Proposition 1. TFAE: (a) The global version of Diagonal Reflec-
tion Principle of S.Cox for internal clubness (i.e. DRP(0,IC) for
all regular 6 > N;) holds.

(b) (*) for all regular \ > ¥y holds.
(¢) SDLS™(LY,, < Np) holds.

HY5



Reflection Principles RP+,

» The following are variations of the “Reflection Principle” in
[Jech, Millennium Book].

RP|c For any uncountable cardinal ), stationary S C [H(\)]* and
any countable expansion 2 of the structure (H(\), €), there is
an internally club M € [H(A\)]™ s.t. (1) 24 | M < 2; and (2)
S N [M]%e is stationary in [M]%°.

RPyy For any uncountable cardinal ), stationary S C [H(A)]*° and
any countable expansion 2 of the structure (H(\), €), there is

an internally unbounded M € [H(A)]M s.t. (1) A [ M < 2;
and (2) S N [M]% is stationary in [M]%o.

Since every internally club M is internally unbounded, we have:

Lemma 1. RP\c implies RPy.

RPy is also called Axiom R in Set-Theoretic Topology.

Theorem 2. ([Fuchino, Juhasz etal. 2010]) RPy implies FRP.

HY5



Stationary subsets of [X]%°
» C C [X]Mis club in [X]M if (1) for every u € [X]™°, thereis v € C
with v C v; and (2) for any countable increasing chain F in C we
have |J F € C.

> S C [X]Y is stationary in [X]¥ if SN C # 0 for all club C C [X]Me.

» A set M is internally unbounded if M N [M]®¢ is cofinal in [M]%
(w.r.t. Q)

> A set M is internally stationary if M N [M]™ is stationary in [M]"0

> A set M is internally club if M N [M]X contains a club in [M]%o.

“Digorl el Prvcl” 1= % ¥ %




Fodor-type Reflection Principle (FRP)
(FRP) For any regular k > w1, any stationary E C E/ and any
mapping g : E — [s]™ with g(a) C a for all a € E, there is
v € EJ st
(*) for any I € [y]™ closed w.r.t. g and club in v, if
(I © o < w1) is a filtration of | then sup(/,) € E and
g(sup(ly)) C I hold for stationarily many o < wj.

> F = (lp : a < \) is a filtration of / if F is a continuously increasing
C-sequence of subsets of / of cardinality < |/|s.t. | =], ) la-

» FRP follows from Martin's Maximum or Rado’s Conjecture.
MA™ (o-closed) already implies FRP but PFA does not imply FRP
since PFA does not imply stationary reflection of subsets of E%>
(Magidor, Beaudoin) which is a consequence of FRP.

» FRP is a large cardinal property: FRP implies the total failure of the
square principle.

> FRP is known to be equivalent to the reflection of uncountable
coloring number of graphs down to cardinality < N». 5%



Proof of Fact 1

Fact 1. (A.Hajnal and |. Juhasz, 1976) For any uncountable cardi-
nal k there is a non-metrizable space X of size k s.t. all subspaces
Y of X of cardinality < r are metrizable.

Proof.
» Let k' > K be of cofinality > k, ws.
> The topological space (' + 1, O) with
O =P(K)U{(K\x)U{K'} : x C K, xis bounded in £’}
is non-metrizable since the point v’ has character = cf(x’) > No.
> Any subspace of k' + 1 of size < & is discrete and hence metrizable.
O



Proof of Fact 3

It is enough to prove the following:

Lemma 1. (Folklore 7, see [Fuchino, Juhasz etal.
2010])  For a regular cardinal v > No if, there is
a non-reflectingly stationary S C ES;, then there is a non
_meta-lindeléf (and hence non metrizable) locally compact and
locally countable topological space X of cardinality k s.t. all sub-
space Y of X of cardinality < r are metrizable.

Proof.

Let /={a+1:a<k}and X =SUI.

Let (a, : @ € S) best. a, € [INa]®, a, is of order-type w and
cofinal in av. Let O be the topology on X introduced by letting

(1) elements of / are isolated; and

(2) {an U{a}\ B : B < a} a neighborhood base of each o € S.

Then (X, O) is not meta-lindelof (by Fodor's Lemma) but each
« < K as subspace of X is metrizable (by induction on «).(J



Coloring number and chromatic number of a graph

For a cardinal x € Card, a graph G = (G, K) has coloring number
< k if there is a well-ordering C on G s.t. for all p € G the set

{¢ge G :gCpand gK p}

has cardinality < k. 5%

The coloring number col(G) of a graph G is the minimal cardinal
among such x as above.

The chromatic number chr(G) of a graph G = (G, K) is the
minimal cardinal x s.t. G can be partitioned into x pieces
G = U,<r Ga s.t. each G, is pairwise non adjacent (independent).

For all graph G we have chr(G) < col(G).
L¥%



r-special trees
» For a cardinal «, a tree T is said to be s-special if T can be
represented as a union of x subsets T,, a@ < K s.t. each T, is an
antichain (i.e. pairwise incomparable set).
PED



Stationary subset of E
For a cardinal &,

ES={v <k cf(y) =w}

A subset C C £ of an ordinal £ of uncountable cofinality, C is closed
unbounded (club) in £ if (1): C is cofinal in £ (w.r.t. the canonical
ordering of ordinals) and (2): for all n < &, if C N is cofinal in n
then n € C.

S C € is stationary if SN C # () for all club C C &.

A stationary S C & if reflectingly stationary if there is some 1 < £ of
uncountable cofinality s.t.S N7 is stationary in 7. Thus:

A stationary S C £ if non reflectingly stationary if S N7 is non
stationary for all 7 < & of uncountable cofinality.
HED



Proof of Theorem 1.
CH = SDLS(L¥/I| < R,): For a structure 21 with a countable
signature L and underlying set A, let ¢ be large enough and
A = (H(0),A A, €). where A= Am for a unary predicate symbol
A and 2 = gllﬁ for a constant symbol 2(. Let B < A be
s.t.| B| = N; for the underlying set B of B and [B]* C B.
B = A% is then as desired.

SDLS(L®0, < Np) = CH: Suppose 2l = {wy U [wp]™, €}. Consider
the £Y0-formula ¢(X) = IxVy (y € x <+ y £ X).

If B =(B,..)isst. | B| <¥; and B <, then for C € [B]™,
since 2 |= ¢(C), we have B |= ¢(C). It dollows that [B]* C B
and 2% < (| B|)Y < |B| = ;.

LED



