Rado's conjecture and coloring of graphs

Sakaé Fuchino (渕野 昌)

Graduate School of System Informatics
Kobe University

(神戸大学大学院 システム情報学研究科)

http://kurt.scitec.kobe-u.ac.jp/~fuchino/

Seminar in topology and set thoery

(October 30, 2014 (03:26 JST) version)

2014年10月20日,於 Instytut Matematyki, Uniwersytet Śląski

This presentation is typeset by pLATEX with beamer class.

Reflection principles and refleciton numbers

 \blacktriangleright We consider the following type of statenemts of reflection of properties \mathcal{P} :

For any structure A in the class \mathcal{C} , if the property \mathcal{P} holds in A, then there is a substructure $B \in \mathcal{C}$ of A of cardinality $< \kappa$ s.t. \mathcal{P} holds already in B.

▶ We can also consider the reflection as a compactness statement on $\neg \mathcal{P}$:

For any structure A in the class \mathcal{C} , if the property $\neg \mathcal{P}$ holds in all subustructures $B \in \mathcal{C}$ of A of cardinality $< \kappa$ then $\neg \mathcal{P}$ also holds in A.

- ► The smallest cardinal κ with the property above is denoted by $\mathfrak{Refl}_{\mathcal{P}}(\mathcal{C})$ or simply by $\mathfrak{Refl}_{\mathcal{P}}$ if \mathcal{C} is clear from the context.
- The following slides are update of the slides I used for a talk in Vienna on 22 June 2012.

- ▶ $\mathfrak{Refl}_{\mathsf{Rado}}$ = the minimal κ s.t., for any tree T, if every subset of size $<\kappa$ is special then T is also special
 - = the minimal κ s.t., for any linear ordering L and any family \mathcal{A} of invervals in L, if any subgraph $\langle \mathcal{B}, I_{\mathcal{B}} \rangle$ of intersection graph $\langle \mathcal{A}, I_{\mathcal{A}} \rangle$ of size $< \kappa$ is of countable chromatic number, then $\langle \mathcal{A}, I_{\mathcal{A}} \rangle$ also is of countable chromatic number (S.Todorčević).
- ightharpoonup A subset T' of a tree T is **special** if T' is a union of countably many subsets T'_n , $n \in \omega$ s.t. each T'_n is pairwise incomparable ($\Leftrightarrow \exists$ strictly order preserving $f: T' \to \mathbb{Q}$ (D. Kurepa)).
- \triangleright For $x, y \in \mathcal{A}, x \mid_{\mathcal{A}} y$ if and only if $x \neq y$ and $x \cap y \neq \emptyset$.

Rado conjecture (RC) $\Leftrightarrow \mathfrak{Refl}_{Rado} = \aleph_2$.

Results in this talk are going to be included in a joint paper in preparation with:

Hiroshi Sakai, Victor Torres and Toshimichi Usuba.

- ▶ $\mathfrak{Refl}_{\mathsf{Rado}}$ = the minimal κ s.t., for any tree T, if every subset of size $<\kappa$ is special then T is also special
 - = the minimal κ s.t., for any linear ordering L and any family \mathcal{A} of invervals in L, if any subgraph $\langle \mathcal{B}, I_{\mathcal{B}} \rangle$ of intersection graph $\langle \mathcal{A}, I_{\mathcal{A}} \rangle$ of size $< \kappa$ is of countable chromatic number, then $\langle \mathcal{A}, I_{\mathcal{A}} \rangle$ also is of countable chromatic number (S.Todorčević).
- ▶ $\mathfrak{Refl}_{\mathsf{FRP}} = \mathsf{the \ minimal} \ \kappa \ \mathsf{s.t.}$, for any regular $\lambda \geq \kappa$, stationary $E \subseteq E_\omega^\lambda$ and for any ladder system $g: E \to [\lambda]^{\aleph_0}$, there is $\alpha \in E_{\geq \omega_1}^\lambda \cap E_{<\kappa}^\lambda \ \mathsf{s.t.} \ \{x \in [\alpha]^{\aleph_0} : \sup(x) \in E, \ g(\sup(x)) \subseteq x\}$ is stationary in $[\alpha]^{\aleph_0}$. Notation and Definitions

Rado conjecture (RC) $\Leftrightarrow \mathfrak{Refl}_{\mathsf{Rado}} = \aleph_2$. Fodor-type Reflection Principle (FRP) $\Leftrightarrow \mathfrak{Refl}_{\mathsf{FRP}} = \aleph_2$.

ightharpoonup RC and FRP are consistent with ZFC (under some large cardinal \lessapprox a strongly compact cardinal).

- ▶ \mathfrak{Refl}_{chr} = the minimal κ s.t., for any graph G, if $chr(H) \leq \omega$ for all $H \in [G]^{<\kappa}$ then $chr(G) \leq \omega$.
- ▶ \mathfrak{Refl}_{col} = the minimal κ s.t., for any graph G, if $col(H) \leq \omega$ for all $H \in [G]^{<\kappa}$ then $col(G) \leq \omega$.
- ightharpoonup For a graph $G=\langle G,E\rangle$, $col(\mathbf{G})=$ the minimal cardinal κ s.t. there is a well-ordering \square of G with the property that $|\{y\in G:y\sqsubseteq x,x \ E\ y\}|<\kappa$ for all $x\in G$.
- $ightharpoonup \Re \mathfrak{fl}_{Rado} \leq \Re \mathfrak{fl}_{chr}$ (by Todorčević's characteriziation of $\Re \mathfrak{fl}_{Rado}$).
- ▶ $\beth_{\omega} \leq \mathfrak{Refl}_{chr} \leq \underline{\omega}_{1}$ -strongly compact cardinal.

(Erdős and Hajnal, 1968? + ??).

- $\aleph_1 < \mathfrak{Refl}_{col} = \mathfrak{Refl}_{FRP}$ (to appear in [S.F., H.Sakai, V.Torres and T.Usuba]).
- ▶ $\Re \mathfrak{efl}_{col} = \infty$ is possible (this holds e.g. under V = L).

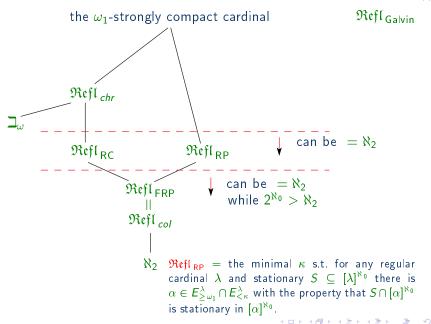
Theorem. (to appear in [S.F., H. Sakai, V. Torres and T. Usuba]) $\mathfrak{Refl}_{FRP} \leq \mathfrak{Refl}_{Rado}$.

Corollary. (1) Rado Conjecture implies Fodor-type Reflection Principle.

(2) $\Re \mathfrak{fl}_{col} \leq \Re \mathfrak{fl}_{chr}$.

Questions.

- $\begin{array}{ll} \rhd \; \Re \mathfrak{sfl}_{col} \leq \; \Re \mathfrak{sfl}_{list_chr} \leq \; \Re \mathfrak{sfl}_{chr} \; ? \quad \begin{array}{ll} \mathsf{No!} : \\ \Re \mathfrak{sfl}_{list_chr} < \; \Re \mathfrak{sfl}_{col} \; \mathrm{is} \; \mathrm{consistent} \; (\mathsf{T. Usuba}). \\ & (\mathsf{It} \; \mathrm{is} \; \mathrm{still} \; \mathrm{open} \; \mathrm{if} \; \Re \mathfrak{sfl}_{list_chr} \; \not \leq \; \Re \mathfrak{sfl}_{chr} \; \mathrm{is} \; \mathrm{consistent} \; \mathrm{with} \; \mathsf{ZFC}) \\ \end{array}$
- \triangleright Is it consistent that $\mathfrak{Refl}_{\mathsf{FRP}} < \mathfrak{Refl}_{\mathsf{Rado}} = \infty$? ($\mathfrak{Refl}_{\mathsf{FRP}} < \mathfrak{Refl}_{\mathsf{Rado}}$ is known to be consistent)
- ▷ Is Galvin conjecture consistent?



Theorem. (to appear in [S.F., H. Sakai, V. Torres and T. Usuba]) $\mathfrak{Refl}_{ERP} \leq \mathfrak{Refl}_{Rado}$.

Proof. Suppose that κ is a regular cardinal $< \mathfrak{Refl}_{\mathsf{FRP}}$. It is enough to show that $\kappa < \mathfrak{Refl}_{\mathsf{Rado}}$ — note that $\mathfrak{Refl}_{\mathsf{FRP}}$ cannot be a successor of a singular cardinal by definition.

▶ By the assumption, there is a regular λ , stationary $E \subseteq E_{\omega}^{\lambda}$ and a ladder system $g: E \to [\lambda]^{\aleph_0}$ s.t.

$$S = \{x \in [\lambda]^{\aleph_0} : \sup(x) \notin x, \ g(\sup(x)) \subseteq x\}$$

is stationary (this is always the case) but

$$S_{\alpha} = \{x \in [\alpha]^{\aleph_0} : \sup(x) \notin x, g(\sup(x)) \subseteq x\}$$

for all $\alpha \in E^{\lambda}_{>\omega_1} \cap E^{\lambda}_{<\kappa}$ is non-stationary.

▶ For $x, y \in S$, let $x \prec y :\Leftrightarrow x \subseteq y$ and $\sup(x) < \sup(y)$.

Proof of the Theorem

$$S = \{x \in [\lambda]^{\aleph_0} : \sup(x) \notin x, g(\sup(x)) \subseteq x\}$$

- ▶ For $x, y \in S$, let $x \prec y :\Leftrightarrow x \subseteq y$ and $\sup(x) < \sup(y)$.
- ▶ Let **T** be the set of all continuously \prec -increasing sequence $t = \langle x_{\alpha} : \alpha < \delta \rangle$ in S of length $< \omega_1$ s.t. $\bigcup_{\alpha < \delta} x_{\alpha} \in S$.
- \triangleright For $t, t' \in T$ let $t <_{\mathsf{T}} t'$ if t' is an end-extension of t.
- ▶ $T = \langle T, <_T \rangle$ above witnesses $\kappa < \Re \mathfrak{fl}_{\mathsf{Rado}}$:

Claim.

- (1) T is not special.
- (2) For every $X \in [S]^{<\kappa}$, $T^X = \{t \in T : \bigcup t \subseteq X\}$ is special.
- (1): Since T is a Baire tree, it is not special.
- (2): By induction on otp(X).

Chromatic number of a graph

▶ For a graph $G = \langle G, E \rangle$ the **chromatic number** chr(G) of G is the minimal cardinal κ s.t. there is a mapping (coloring) $f : G \to \kappa$ s.t., for any adjacent $x, y \in G$, we have always $f(x) \neq f(y)$.

back

Ladder system etc.

- ▶ $\mathfrak{Refl}_{\mathsf{FRP}} = \mathsf{the \ minimal} \ \kappa \ \mathsf{s.t.}, \ \mathsf{for \ any \ regular} \ \lambda \geq \kappa, \ \mathsf{stationary} \ E \subseteq E_\omega^\lambda \ \mathsf{and \ for \ any \ ladder \ system} \ g : E \to [\lambda]^{\aleph_0}, \ \mathsf{there \ is} \ \alpha \in E_{\geq \omega_1}^\lambda \cap E_{<\kappa}^\lambda \ \mathsf{s.t.} \ \{x \in [\alpha]^{\aleph_0} : \sup(x) \in E, \ g(\sup(x)) \subseteq x\} \ \mathsf{is} \ \mathsf{stationary \ in} \ [\alpha]^{\aleph_0}.$
- ightarrow For a cardinal λ and a regular cardinal $\kappa < \lambda$

$$\mathbf{E}_{\kappa}^{\lambda} = \{ \alpha \in \lambda : \operatorname{cf}(\alpha) = \kappa \};$$

 $\mathsf{E}^{\lambda}_{<\kappa}$, $\mathsf{E}^{\lambda}_{\geq\kappa}$ etc. are defined similarly.

 \triangleright For a set X and a cardinal κ

$$[\mathbf{X}]^{\kappa} = \{ x \subseteq X : |x| = \kappa \}.$$

 $[X]^{<\kappa}$, $[X]^{\geq\kappa}$ etc. are defined similarly.

ightharpoonup For $E\subseteq E_{\omega}^{\lambda}$, $g:E\to [\lambda]^{\aleph_0}$ is a **ladder system** if $f(\alpha)$ is a cofinal subset of α of cofinality ω for all $\alpha\in E$.

ω_1 -strongly compact cardinal

- ▶ A cardinal κ is ω_1 -strongly compact if it is the smallest κ with the property that, for any $\mathcal{L}_{\omega_1,\omega}$ theory T, if all subtheories of T of cardinality $<\kappa$ are satisfiable (i.e. T is $<\kappa$ -satisfiable) then T itself is satisfiable.
- $ightharpoonup \mathcal{L}_{\omega_1,\omega}$ is the logic defined similarly to the first order logic but additionally it is also allowed to build a conjunction or disjunction of $<\omega_1$ many formulas.
- ▶ Cf.: A cardinal κ is **strongly compact** if, for any $\mathcal{L}_{\kappa,\kappa}$ theory T, if all subtheories of T of cardinality $<\kappa$ are satisfiable (i.e. T is $<\kappa$ -satisfiable) then T itself is satisfiable.
- \triangleright $\mathcal{L}_{\kappa,\lambda}$ is the logic defined similarly to the first order logic but addictionally it is also allowsed to build a conjunction or disjunction of $<\kappa$ many formulas as well as quantification over a block of $<\lambda$ many formulas.

List chromatic number of a graph

▶ For a graph $G = \langle G, E \rangle$, the **list-chromatic number** of G is defined by:

 $\mathfrak{Refl}_{\mathit{list-chr}} = \mathsf{the} \ \mathsf{minimal} \ \kappa \ \mathsf{s.t.}$ for any graph G, if every subgraph of G of size $< \kappa$ has countable list-chromatic number then G also has countable list-chromatic number.

hack

Galvin's conjecture

▶ $\mathfrak{Refl}_{\mathsf{Galvin}} = \text{ the minimal } \kappa \text{ s.t. for all partial ordering } P, \text{ if every subordering } Q \text{ of cardinality } < \kappa \text{ are union of countably many linear ordered sets, } P \text{ is also a union of countably many linear ordered sets.}$

Galvin's conjecture (GC) $\Leftrightarrow \mathfrak{Refl}_{\mathsf{Galvin}} = \aleph_2$.

▶ We have

ack