Reflection numbers under large continuum

Sakaé Fuchino (渕野 昌)

Graduate School of System Informatics
Kobe University

(神戸大学大学院 システム情報学研究科)

http://fuchino.ddo.jp/index-j.html

Matsuyama TGSA seminar

(17. März 2016 (02:54 JST) version)

2. March 2016, (於 松山)

This presentation is typeset by pLTEX with beamer class.

These slides are downloadable as

http://fuchino.ddo.jp/slides/matsuyama2016-03-pf.pdf

 \blacktriangleright For a class $\mathcal C$ of structures with a notion $\sqsubseteq_{\mathcal C}$ of substructures, $A \in \mathcal{C}$ and a cardinal $\kappa \leq |A|$, let

$$S_{<\kappa}^{\mathcal{C}}(A) = \{ B \in \mathcal{C} : B \sqsubseteq_{\mathcal{C}} A, |B| < \kappa \}.$$

We identify elements of $\mathcal C$ with their underlying sets and consider $S^{\mathcal{C}}_{\kappa}(A) \subset [A]^{<\kappa}$.

- ightarrow We assume that $S^{\mathcal{C}}_{<\kappa}(A)$ contains a club $\subseteq [A]^{<\kappa}$ for all $A\in\mathcal{C}.$
- \blacktriangleright For $\mathcal C$ as above and a property P, the **reflection number of** P **in**

For
$$\mathcal C$$
 as above and a property P , the **reflection number of** P in $\mathcal C$ is defined as:
$$\operatorname{\mathfrak{Mefl}}(\mathcal C,P) = \left\{ \begin{array}{l} \min\{\kappa \in \operatorname{Card} : \text{ for all } A \in \mathcal C, \text{ if } A \not\models P \text{ then} \\ \text{ there are club many } B \in S^{\mathcal C}_{<\kappa}(A) \\ \text{ such that } B \not\models P\}, \\ \text{ if } \{\kappa \in \operatorname{Card} : \cdots\} \neq \emptyset; \\ \infty, \end{array} \right.$$

Reflection numbers (2/2)

▶ If the property P is hereditary, i.e. if $A \sqsubseteq_{\mathcal{C}} B$ and $B \models P$ always implies $A \models P$ then the reflection number can be more simply represented as:

```
\mathfrak{Refl}(\mathcal{C},P) = \left\{ \begin{array}{l} \min\{\kappa \in \mathrm{Card} \, : \, \text{for all } A \in \mathcal{C} \, \text{if } A \not\models P \, \text{then} \\ \text{there is } B \in \mathcal{S}^{\mathcal{C}}_{<\kappa}(A) \\ \text{such that } B \not\models P\}, \\ \text{if } \{\kappa \in \mathrm{Card} \, : \, \cdots \} \neq \emptyset; \\ \infty, \end{array} \right.
```

Examples of reflection numbers

```
C = \text{trees};
P \Leftrightarrow \text{special}
```

- ▶ The assertion $\mathfrak{Refl}(C, P) = \aleph_2$ is known as **Rado's Conjecture**.
- > We shall denote this reflection number with $\mathfrak{Refl}_{\mathsf{Rado}}$.
- $\rhd \ \aleph_1 < \mathfrak{Refl}_{\mathsf{Rado}} \leq \infty. \ V = L \ \big(\Box_\kappa \text{ for class many } \kappa\big) \Rightarrow \mathfrak{Refl}_{\mathsf{Rado}} = \infty.$
- ho $\mathfrak{Refl}_{\mathsf{Rado}} = \aleph_2$ can be forced starting from a strongly compact cardinal (Todorcěvić 1983).
- ho $\Re {\mathfrak {eft}}_{\mathsf{Rado}} = \aleph_2$ implies strong forms of Chang's Conjecture (Todorčević 1993, Doebler 2013, S.F.-Sakai-Torres-Usuba).
- ho $\mathfrak{Refl}_{\mathsf{Rado}} = \aleph_2$ implies $2^{\aleph_0} \leq \aleph_2$ (Todorčević 1993).
- $ightharpoonup \mathfrak{Refl}_{Rado} = \aleph_2$ implies the Fodor-type Reflection Principle (FRP) and hence all consequences of FRP like SCH (S.F.-Rinot 2011), stationarity reflection (of sets of ordinals of countable cofinality) etc. (S.F.-Sakai-Torres-Usuba).

C = partial orderings;

 $P \Leftrightarrow \text{union of countably many chains (w.r.t. the partial ordering)}$

- ▶ The assertion $\mathfrak{Refl}(\mathcal{C}, P) = \aleph_2$ for these \mathcal{C} and P is known as **Galvin's Conjecture**.
- ▷ It is still open if Galvin's Conjecture is consistent.

 $\mathcal{C}=$ graphs;

 $P \Leftrightarrow \text{ of countable chromatic number}$

- We shall denote the reflection number $\mathfrak{Refl}(\mathcal{C},P)$ for these \mathcal{C} and P with \mathfrak{Refl}_{chr}
- ightharpoonup ightharpoonup ightharpoonup ightharpoonup (Erdős and Hajnal 1966).
- ▶ We have

 $\Re \mathfrak{efl}_{\mathsf{Rado}} \leq \Re \mathfrak{efl}_{\mathsf{Galvin}} \leq \Re \mathfrak{efl}_{\mathsf{chr}} \leq \omega_1$ -strongly compact cardinal.

 $\mathfrak{Refl}_{\mathsf{Rado}} \leq \mathfrak{Refl}_{\mathsf{Galvin}} \leq \mathfrak{Refl}_{\mathsf{chr}} \leq \omega_1$ -strongly compact cardinal.

 \blacktriangleright κ is called the ω_1 -strongly compact cardinal if it is the smallest cardinal κ with the property that for any $\mathcal{L}_{\omega_1,\omega}$ theory T, whenever all subtheories of T of size $<\kappa$ are satisfiable ($<\kappa$ -satisfiable) then T itself is also satisfiable.

```
\mathcal{C}= Boolean algebras; P\Leftrightarrow \mathsf{free}
```

- ▶ We denote the reflection number $\mathfrak{Refl}(\mathcal{C}, P)$ for these \mathcal{C} and P by $\mathfrak{Refl}_{\mathsf{free}}^{\mathit{Ba}}$. Similarly $\mathfrak{Refl}_{\mathsf{free}}^{\mathit{gp}}$ and $\mathfrak{Refl}_{\mathsf{free}}^{\mathit{agp}}$ for groups and abelian groups.
- $ho \ \aleph_1 < \mathfrak{Refl}_{\mathsf{free}}^{\mathsf{Ba}}, \ \mathfrak{Refl}_{\mathsf{free}}^{\mathsf{gp}}, \ \mathfrak{Refl}_{\mathsf{free}}^{\mathsf{agp}} \leq \infty$
- \triangleright **Open.** Can $\Re \mathfrak{fl}_{\mathsf{free}}^{\mathsf{Ba}}$ $\Re \mathfrak{fl}_{\mathsf{free}}^{\mathsf{gp}}$ $\Re \mathfrak{fl}_{\mathsf{free}}^{\mathsf{agp}}$ be different?
- $ightharpoonup \Re \mathfrak{fl}_{\mathrm{free}}^{\mathit{gp}}, \ \Re \mathfrak{fl}_{\mathrm{free}}^{\mathit{agp}} \leq \omega_1$ -strongly compact cardinal.
- \triangleright **Open?** $\Re \mathfrak{fl}_{\text{free}}^{Ba} \leq \omega_1$ -strongly compact cardinal?

Large Continuum

 \triangleright 2^{\aleph_0} can be consistently "very large" in the following sense:

There is an inner model M with the same cardinals s.t. 2^{\aleph_0} is a large cardinal in M.

There is a generic elementary embedding with the critical point $=2^{\aleph_0}$.

- ightharpoonup This can be forced by starting from a model V with a vary large cardinal (e.g. a supercompact cardinal) κ and then adding κ many reals in a "coherent" way.
- ightharpoonup The existence of a certain generic elementary embedding together with the indestructiblility of the negation of the property involved implies the inequality $\mathfrak{Refl} \leq 2^{\aleph_0}$!

C = first countable topological spaces;

P = metrizable

- ▶ The question about the consistency of $\mathfrak{Refl}(\mathcal{C},P)=\aleph_2$ is known as **Hamburger's Problem**. This is also a well-known longstanding open question. We shall call $\mathfrak{Refl}(\mathcal{C},P)$ for these \mathcal{C} and P the reflection number of Hamburger's Problem and denote is as \mathfrak{Refl}_{HP} .
- $\rhd\ \aleph_1<\mathfrak{Refl}_{\mathsf{HP}}\leq\infty.\ \mathfrak{Refl}_{\mathsf{HP}}=\infty\ \mathsf{is\ consistent}.$
- ho $\mathfrak{Refl}_{HP} \leq$ the ω_1 -strongly compact cardinal (if it exits).

Theorem 0 (Dow-Tall-Weiss 1990). $\mathfrak{Refl}_{HP} \leq 2^{\aleph_0}$ is consistent with very large continuum. More precisely this holds if strongly compact many Cohen reals are added.

Remark. In the construction for the theorem above both $\mathfrak{Refl}_{HP} < 2^{\aleph_0}$ and $\mathfrak{Refl}_{HP} = 2^{\aleph_0}$ are possible.

Sketch of a consistency proof of Rado's Conjecture reflection numbers (9/14)

- ▶ Suppose that κ is strongly compact and $\mathbb{P} = \operatorname{Col}(\kappa, \omega_1)$. We show that $\Vdash_{\mathbb{P}}$ " $\mathfrak{Refl}_{\mathsf{Rado}} = \aleph_2$ ".
- ▶ Let G be (\mathbb{P}, V) -generic and $T \in V[G]$ a tree s.t. (*) $V[G] \models \forall T' \in [T]^{<\aleph_2}$ is special. Note that $(\aleph_2)^{V[G]} = \kappa$.
- ightharpoonup We have to show: $V[G] \models T$ is special.
- ▶ In V[G], let $\lambda = |T|$. Let $j : V \xrightarrow{\sim} M$ be the strongly compact embedding with $j(\kappa) > \lambda$. Let $\mathbb{P}^* = j(\mathbb{P})$ and let G^* be a (\mathbb{P}^*, V) -generic set with $G \subseteq G^*$.
- ▷ Let $j^*: V[G] \stackrel{\checkmark}{\to} M[G^*]$; $[\underbrace{a}]^G \mapsto [j(\underbrace{a})]^{G^*}$. Let $T^* = j^*(T)$ and let T' be s.t. $j^* "T \subseteq T'$ and $T' \in [T^*]^{\aleph_1} \cap M[G^*]$. Thus $M[G^*] \models T' \in [T^*]^{<\aleph_2}$. By elementarity of j^* and (*), $M[G^*] \models T'$ is special. Hence $V[G^*] \models j "T \cong T$ is special.
- ▶ By the following Lemma, T is special even in V[G]:
 - **Lemma 1** (Todorčević 1983). For any tree T and σ -closed p.o. $\mathbb Q$ if $\Vdash_{\mathbb Q}$ " T is special" then T is special.

Lemma 1 (Todorčević 1983). For any tree T and σ -closed p.o. $\mathbb Q$ if $\Vdash_{\mathbb Q}$ " T is special" then T is special.

Proposition 2. For any tree T and $\mathbb{P}=\operatorname{Fn}(\kappa,2)$ for any κ if $\Vdash_{\mathbb{P}}$ " T is special" then T is special.

Proof.

- ▶ If $\kappa \leq 2^{\aleph_0}$ then $\mathbb{P} = \operatorname{Fn}(\kappa, 2)$ is σ -centered and $\Vdash_{\mathbb{P}}$ " T is special" clearly implies that T is special.
- ► For $\kappa > 2^{\aleph_0}$, suppose that $\Vdash_{\mathbb{P}}$ " T is special". Let $\mathbb{Q} = \operatorname{Col}(\kappa^+, \omega_1)$.

We have $\Vdash_{\mathbb{P}^* \overset{Q}{\sim}}$ " T is special" where $\overset{Q}{\sim}$ is s.t. $\mathbb{Q} * \mathbb{P} \cong \mathbb{P} * \overset{Q}{\sim}$.

Since $\Vdash_{\mathbb{Q}}$ " \mathbb{P} is σ -centered" it follows that $\Vdash_{\mathbb{Q}}$ "T is special".

Thus, by Todorcevic's Lemma 1, T is special.

Adding strongly compact many Cohen reals

Proposition 2. For any tree T and $\mathbb{P}=\operatorname{Fn}(\kappa,2)$ for any κ if $\Vdash_{\mathbb{P}}$ " T is special" then T is special.

► Similarly to the consistency proof of Rado's conjecture, Proposition 2 above can be used to prove:

Theorem 3. If κ is a strongly compact cardinal then, letting $\mathbb{P}=\operatorname{Fn}(\lambda,2)$ for some $\lambda\geq\kappa$, we have $\Vdash_{\mathbb{P}}$ " $\mathfrak{Refl}_{\mathsf{Rado}}=\kappa$ ". In particular, assertions

" $\mathfrak{Refl}_{\mathsf{Rado}} = 2^{\aleph_0}$ + the continuum is very large" and " $\mathfrak{Refl}_{\mathsf{Rado}} < 2^{\aleph_0}$ + the continuum is very large" are both consistent.

▶ Remember $\mathfrak{Refl}_{\mathsf{Rado}} = \aleph_2 \Rightarrow 2^{\aleph_0} \leq \aleph_2$ (Todorcevic).

Question. (M. Viale) $\Re \mathfrak{efl}_{Rado} = \aleph_3 \Rightarrow 2^{\aleph_0} \leq \aleph_3$?

Indesctructible reflection numbers

- \blacktriangleright For a class $\mathcal C$ of structures and a property P, let us say that $A \in \mathcal C$ is **indectructibly** $\neg P$ if $\Vdash_{\mathbb{P}}$ " $A \models \neg P$ " for any σ -closed p.o. \mathbb{P} .
- \blacktriangleright For a class $\mathcal C$ of structures and a property P, the **indestructible**

► Let Refl^{*}_{Galvin} and Refl^{*}_{chr} be Refl^{*} variations of Refl_{Galvin} and Refl chr.

$$\begin{array}{c|c} \mathfrak{Refl}_{\mathsf{Galvin}} \leq \mathfrak{Refl}_{\mathsf{chr}} \\ & \lor \mathsf{I} & \lor \mathsf{I} \\ \mathfrak{Refl}_{\mathsf{Rado}} \leq \mathfrak{Refl}_{\mathsf{Galvin}}^* \leq \mathfrak{Refl}_{\mathsf{chr}}^*. \end{array}$$

 \triangleright

 $\Re \mathfrak{efl}_{\mathsf{Rado}} \leq \Re \mathfrak{efl}_{\mathsf{Galvin}}^* \leq \Re \mathfrak{efl}_{\mathsf{chr}}^*.$

► Arguments similar to that of Theorem 3. amounts to the following theorems:

Theorem 4. For a strongly compact cardinal κ and $\mathbb{P} = \operatorname{Col}(\omega_1, \kappa)$, we have $\Vdash_{\mathbb{P}}$ " $\mathfrak{Refl}_{\mathsf{chr}}^* = \aleph_2$ ".

Theorem 5. For a strongly compact cardinal κ and $\mathbb{P}=\operatorname{Fn}(\lambda,2)$ for $\lambda \geq \kappa$, we have $\Vdash_{\mathbb{P}}$ " $\mathfrak{Refl}_{\mathsf{chr}}^* \leq \kappa \leq \lambda = 2^{\aleph_0}$ ".

Theorem 6. For a measurable cardinal κ and $\mathbb{P}=\operatorname{Fn}(\kappa,2)$, we have

 $\Vdash_{\mathbb{P}}$ "for any graph Γ of size continuum and uncountable chromatic number there exists a subgraph of size < continuum with uncountable chromatic number".

Let \mathfrak{ma} be the first number of dense sets for which Martin's Axiom fails. Thus $\omega_1 \leq \mathfrak{ma} \leq 2^{\aleph_0}$.

Theorem 7. (Baumgartner-Malitz-Reihhardt, 1970) Any tree of size < ma without uncountable chain is special.

▶ Let $T_{\mathbb{R}} = \{t : t \text{ is a strictly increasing sequences in } \mathbb{R} \text{ of successor length } < \omega_1\}$ be considered as a tree with endextension.

Theorem 8. (Todorcevic, 1983) $T_{\mathbb{R}}$ is not special.

Corollary 9. $\mathfrak{ma} < \mathfrak{Refl}_{\mathsf{Rado}}$.

Theorem 10. (Folklore, (S.F., 1992)) If \mathbb{P} has the c.c.c. then, for any A in an universal algebra \mathcal{C} , if $\Vdash_{\mathbb{P}}$ " A is free" then A is free.

Corollary 11. If κ is a supercompact cardinal then for the canonical c.c.c. p.o. \mathbb{P} forcing $\kappa=2^{\aleph_0}$ and $\mathfrak{ma}=2^{\aleph_0}$ (i.e. MA), $\Vdash_{\mathbb{P}}$ " $\mathfrak{Refl}^{\mathcal{C}}_{\mathrm{free}} \leq 2^{\aleph_0}$ " for any universal algebra \mathcal{C} . In particular $\mathfrak{Refl}^{\mathcal{C}}_{\mathrm{free}} < \mathfrak{Refl}_{\mathrm{Rado}}$ is consistent.

