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Reflection numbers teflection numbers (2/14)

» For a class C of structures with a notion T, of substructures,
A € C and a cardinal Kk < |A|, let
SC.(A)={BeC:BLCcA, |B|<s}.

We identify elements of C with their underlying sets and consider
SCa(A) C A"

> We assume that S¢, (A) contains a club C [A]<" for all A € C.

» For C as above and a property P, the reflection number of P in
C is defined as:
min{x € Card : for all A€ C, if A~ P then

there are club many B € S¢,(A)
Refl (C, P) = such that B [~ P},

if {k €Card : ---} #0;

otherwise.



Reflection numbers (2/2) tefection numbers (3/14)

» If the property P is hereditary, i.e. if AC; B and B |= P always
impies A |= P then the reflection number can be more simply
represented as:

min{x € Card : for all A€ C if A}~ P then
there is B € S, (A)

Refl (C, P) = such that B [~ P},
if { € Card : ---} #0;

00, otherwise.



Examples of reflection numbers tefection numbers (4/14)

C = trees;
P & special

The assertion Refl (C, P) = N, is known as Rado’s Conjecture.

We shall denote this reflection number with SReflg,40-

N; < Reflrago < 00. V =L (O for class many k) = Reflg,q, = 00.

v vV V. VY

Refl Rago = N2 can be forced starting from a strongly compact
cardinal (Todorcévi¢ 1983).

> NReflRago = N2 implies strong forms of Chang's Conjecture
(Todorgevi¢ 1993, Doebler 2013, S.F.-Sakai-Torres-Usuba o ).

> Refl gago = No implies 280 < R, (Todoréevi¢ 1993).

> NReflrago = N2 implies the Fodor-type Reflection Principle (FRP)
and hence all consequences of FRP like SCH (S.F.-Rinot 2011),
stationarity reflection (of sets of ordinals of countable cofinality)
etc. (S.F.-Sakai-Torres-Usuba ).



Examples of reflection numbers (2/3) reflection numbers (5/14)

C = partial orderings;
P < union of countably many chains (w.r.t. the partial ordering)
» The assertion Refl(C, P) = Ny for these C and P is known as
Galvin’s Conjecture.
> It is still open if Galvin's Conjecture is consistent.
> We shall denote this reflection number with Refl g,yin-
C = graphs;
P & of countable chromatic number
» We shall denote the reflection number $efl (C, P) for these C and
P with Refl .,
» 3, < Refly, (Erdés and Hajnal 1966).

» We have

Refl Rado < Reflgarin < Refl e, < wi-strongly compact cardinal.



Examples of reflection numbers (3/3) reflection numbers (6/14)
ReflRado < Reflgain < Refl ¢ < wi-strongly compact cardinal.

» « is called the wi-strongly compact cardinal if it is the smallest
cardinal x with the property that for any £, ., theory T, whenever
all subtheories of T of size < x are satisfiable (< x-satisfiable) then
T itself is also satisfiable.

C = Boolean algebras;
P & free
> We denote the reflection number S)%f[(C P) for these C and P by
Refl B f2.. Similarly SRefl £ free @nd PRefl 8P for groups and abelian
groups.

free

> Ny < mef free’ 9%ef[free’ mef ?ri[:: <00
> Open. Can Refl §2,, Refl 82, Refl 2P be different?

> Refl &P

> Open? NRefl B2 < w;-strongly compact cardinal ?

free’ %cf[agp < wi-strongly compact cardinal.



Large Continuum reflection numbers (7/14)
» 2% can be consistently “very large” in the following sense:

There is an inner model M with the same cardinals s.t. 2% is a
large cardinal in M.
There is a generic elementary embedding with the critical point
= 2%,
>> This can be forced by starting from a model V' with a vary large
cardinal (e.g. a supercompact cardinal) ~ and then adding x many
reals in a “coherent” way.

> The existence of a certain generic elementary embedding together
with the indestructiblility of the negation of the property involved
implies the inequality Defl < 2% |



Yet another reflection number teflection numbers (8/14)

C = first countable topological spaces;
P = metrizable

» The question about the consistency of PRefl(C, P) = N is known
as Hamburger’'s Problem. This is also a well-known longstanding
open question. We shall call RRefl(C, P) for these C and P the
reflection number of Hamburger's Problem and denote is as
Reflyp-

> Ny < Reflyp < 0o. Reflyp = oo is consistent.
> Refl yp < the wi-strongly compact cardinal (if it exits).
Theorem 0 (Dow-Tall-Weiss 1990). Refl4p < 20 is consistent

with very large continuum. More precisely this holds if strongly
compact many Cohen reals are added.

Remark. In the construction for the theorem above both
Reflyp < 2% and NRefl yp = 2% are possible.



Sketch of a consistency proof of Rado’s Conjecture refection umbers (9/14)
» Suppose that x is strongly compact and P = Col(k, w1 ). We show
that |Fp “Reflrago = N2 7.
» Let G be (P, V)-generic and T € V[G] a tree s.t.
(*) V[G] EVT' € [T]<" is special. Note that (Rp)VI¢] = &,
> We have to show: V[G] |= T is special.
» In V[G], let A\=|T|. Letj: V =5 M be the strongly compact
embedding with j(k) > A. Let P* = j(IP) and let G* be a
(P*, V/)-generic set with G C G*.
> Let j* : V[G] S M[G*]; [a]® — [j(a)]®". Let T* =j*(T) and let
T'best. j*"T C T and T' € [T*["* N M[G*]. Thus
M[G*] = T' € [T*]<"2. By elementarity of j* and (*),
M[G*] = T' is special. Hence V[G*] =" T = T is special.
» By the following Lemma, T is special even in V[G]:

Lemma 1 (Todorevi¢ 1983). For any tree T and o-closed p.o.
Qif |Fo“T is special” then T is special.



Cohen forcing teflection numbers (10/14)

Lemma 1 (Todorevi¢ 1983). For any tree T and o-closed p.o.
Qif |Fg“T is special” then T is special.

Proposition 2. For any tree T and P = Fn(k,2) for any & if
ke “T is special” then T is special.

Proof.
» If k < 2% then P = Fn(k,2) is o-centered and |Fp “ T is special”
clearly implies that T is special.
» For x > 2%, suppose that |Fp “ T is special”. Let
Q = Col(k™, w1).
We have |Fp.g “ T is special” where (NQ isst. Q«xP=Px (NQ

Since |g “IPis o-centered ” it follows that [-g “ T is special 7.
Thus, by Todorcevic’s Lemma 1, T is special. O



Adding strongly compact many Cohen reals telction mumbes (11/14)

Proposition 2. For any tree T and P = Fn(k,2) for any & if
ke “T is special” then T is special.

» Similarly to the consistency proof of Rado’s conjecture, Proposition
2 above can be used to prove:

Theorem 3. If x is a strongly compact cardinal then, letting
P = Fn(A,2) for some A > &, we have |[Fp“Reflgago = &7.
In particular, assertions

“Refl rago = 2% + the continuum is very large” and
“Refl rago < 2% 4 the continuum is very large”
are both consistent.
» Remember Reflgaq, = Ro = 2% < X, (Todorcevic).
Question. (M. Viale) Refl gy = N3 = 2% < R3?



Indesctructible reflection numbers teflection numbers (12/14)

» For a class C of structures and a property P, let us say that A€ C
is indectructibly =P if |Fp“A = —=P” for any o-closed p.o. P.

» For a class C of structures and a property P, the indestructible
reflection number of P in C is defined as:

( min{x € Card : if A € C is indestructively
=P then there are
. club many B € S¢,.(A)
Refl*(C, P) = such that B [~ P},
if { € Card : ---} #0;

o, otherwise.

\

> Let Reflg,in and Refl 7y, be Refl™ variations of NRefl g, and

(-
Pieflenr Refl Gavin < Reflpy
VI VI
> 2Ref[Rado S %ef[Galvm = 9%ef[chr



Further consistency results  Refl i < Refl o, rflection numbers (13/14)

VI VI
> S)Eief[Rado < sReﬂéalvin < 9%Cf[éhr'
» Arguments similar to that of Theorem 3. amounts to the following
theorems:

Theorem 4. For a strongly compact cardinal x and

P = Col(wy, k), we have |Fp“Refl, = No”.

Theorem 5. For a strongly compact cardinal x and P = Fn(), 2)
for A > K, we have |Fp“Refll, <k <A =2%07,

Theorem 6. For a measurable cardinal x and P = Fn(k, 2), we
have

|Fp “for any graph I' of size continuum and uncountable chro-
matic number there exists a subgraph of size < continuum with
uncountable chromatic number”.



Martin’s Axiom tefection numbers (14/14)
» Let ma be the first number of dense sets for which Martin’s Axiom
fails. Thus w; < ma < 2%

Theorem 7. (Baumgartner-Malitz-Reihhardt, 1970) Any tree of
size < ma without uncountable chain is special. O

» Let Tr = {t : tis a strictly increasing sequences in R of successor
length < w;} be considered as a tree with endextension.

Theorem 8. (Todorcevic, 1983) T is not special.
Corollary 9. ma < Reflg,qo-

Theorem 10. (Folklore, (S.F., 1992)) If P has the c.c.c. then, for
any A in an universal algebra C, if |-p “Ais free” then A is free.

Corollary 11. If k is a supercompact cardinal then for the ca-
nonical c.c.c. p.o. P forcing 5 = 2% and ma = 2% (i.e. MA),
b “QReflé.. < 287 for any universal algebra C. In particular
Refl€ o < Refl gaqo is consistent.
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