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Incompleteness of mathematics st el s (2/22)

The 1st Incompleteness Theorem (K. Gdédel, 1931)

For any (concretely given) consistent axiom system, in which the
elementary arithmetic can be developed, there is an assertion in
elementary arithmetic which can neither proved nor disproved from
the axiom system.

The 2nd Incompleteness Theorem (K. Godel, 1931)

In any (concretely given) consistent axiom system T, in which the
elementary arithmetic can be developed, the assertion “T is con-
sistent” (formulated in terms of “coding” of the logical formulas
and proofs in natural numbers) cannot be proved.



Incompleteness of mathematics (2/2) st et el (3/22)

» All (conventional) mathematical theories and their proofs can be
(re)formulated in the (axiomatic) set theory. — At least we do not
know any counter example to this claim.

> Incompleteness Theorems also apply to the axiom system of set
theory (ZFC). Thus:

» Mathematics is not complete. l.e., there are assertions (in the
language of mathematics) which can be neither proved nor
disproved by any conventional mathematical argument.

» There is no ultimate guarantee that mathematics is consistent.
— There are many “partial” guarantees of the consistency of
mathematics!

> For an axiom system T, an assertion ¢ in the language of T is
consistent with 7 if ¢ (the negation of ¢) is not provable from
T. © @ issaid to be independent from T if both ¢ and - are
not provable from T. > Note that we can sometimes prove the
consistency or even independence of some ¢ over T like in the
proof of the Incompleteness Theorems!



Continuum Problem st el et (4/22)
» The arithmetical assertions constructed in the proof of the
Incompleteness Theorems and proved there to be independent form
a given theory were quite “artificial” ones.

» Historically, Continuum Hypothesis is one of the first examples of
“mathematical” assertions proved to be independent from the usual
axiom system of set theory (ZFC).

> A linear ordering C on a class X is said to be well-ordering if
every initial segment of X w.r.t. C is a set and, for any set s C X,
s contains the minimal element w.r.t. C.

> Cardinals (sets representing each possible size of infinite sets) are
well-ordered (according to their size) and they are called
Nog < N <Ny < -0 NWSNUJ+1<
No: the countable cardinal
Ny: the first uncountable cardinal - - -

> The cardinality (the cardinal representing the infinite size) of the
continuum (the set of all real numbers R) is denoted by 2%,



Continuum Problem (2/3) st et el (5/22)

> Cardinals (sets representing each possible size of infinite sets) are
well-ordered (according to their size) and they are called
Nog < Ny <Ny < -0 NWSNW+1 < e
No: the countable cardinal
Ny: the first uncountable cardinal - - -

> The cardinality (the cardinal representing the infinite size) of the
continuum (the set of all real numbers R) is denoted by 2%,

» G. Cantor proved 2% > X; (> RXg) on 7. November 1873.

Continuum Hypothesis. 2% =X,

Theorem. (P. Cohen, 1963) Continuum Hypothesis is indepen-
dent from the standard axiom system of set theory (ZFC).



Continuum Problem (3/3) st et el (6/22)

Continuum Hypothesis. 2% = X;.

Theorem. (P. Cohen, 1963) The Continuum Hypothesis (CH) is
independent from the standard axiom system of set theory (ZFC).

» This result should not be considered as the final solution to the
continuum problem. > It was rather a beginning of a new branch

of mathematics!
> The independency of the Continuum Hypothesis can be interpreted

as it suggests that some axioms of set theory are still missing which
would decide among other things the size of the continuum.

> Today we have several candidates of additional axioms — some of
them imply the Continuum Hypothesis while some other 2% = X,



Set-theoretic multiverse st el s (7/22)

» The independence proof of Cohen introduced the method of
forcing with which we can construct extended models (generic
extensions) of a given model of set theory — Cohen’s independence
proof of CH corresponds to the construction of generic extensions
in which 2% = R; (or 2% £ Xy) holds.

> The method of forcing enables a study of the correlations between
mathematical assertions which are proved to be independent over
ZFC.

> The plenitude of diverse models obtained by the forcing
construction suggests also the vantage point which is recently
named “set-theoretic multiverse” in which we regard the entirety
of the possible models of set theory — the class of set-theoretic
possible worlds — as the ultimate objective of the set theory.



Some examples of independent “mathematical” assertions st enicrsis (8/22)

>

In the rest of the talk, | shall give some known results in
connection with independent mathematical assertions.

» We shall discuss about:

> Whitehead problem (proved to be independent by S. Shelah, 1974)

> The simplicity of the automorphism group of P(N)/fin (proved to

>

be independent by S. Shelah, (D.v.Douwen) and S.F., 1991)

A generalization of Helly's theorem for monotone functions (which
is characterized by a cardinal invariant whose value is independent
— i.e. can not be decided in ZFC, S.F. and Sy. Plewik, 1999)

A reflection theorem of metrizability of locally compact spaces
(proved to be independent by Z. Balogh in 2001, exact set-theoretic
characterization given by S.F., L. Soukup, H. Sakai et al. 2010,
2017)



Whitehead Problem se-teoeic el (9/22)

» For groups A, B, a surjective homomorphism 7 : B — A splits if
there is a homomorphism p: A — B s.t. mop=14.

Fact. A group A is free if and only if every surjective homomor-
phism from a group B to A splits.

> A group A is said to be a Whitehead group if for any surjective
homomorphism 7 : B — A split if Ker(r) = Z.

» By the Fact above every free group is Whitehead.

Are all Whitehead group free?

Theorem. (S.Shelah, 1974) The assertion “all Whitehead group
are free” is independent from ZFC. The assertion is even inde-
pendent from ZFC + CH.

» For more details see e.g.: P.C. Eklof, Whiteheads Problem is
Undecidable, American Math. Monthly, Vol.83, (1979), 775-788.



Simplicity of the automorphism group of P(N)/fin st el (10/22)
» Let ~ be the equivalence relation on P(N) = {X : X C N}
defined by

X~Y & X\Yand Y\ X are finite.

» For each X € P(N), let [X] be its equivalence class modulo ~ and
P(N)/fin = {[X] : X € P(N)}.

» For [X], [Y] € P(N)/fin, let
[X] C*[Y] & X\ is finite.

> C* is well-defined and (P(N)/fin, C*) is a Boolean algebra

corresponding to the Stone-Cech remainder N* = N \ N where gN
denotes the Stone-Cech compactification of the discrete space N.

» For many homogeneous Boolean algebras A it is known that the
automorphism group Aut(A) is simple (e.g. this is the case if A is
o-complete). > Thus the following is a natural question:

Is Auto(P(N)/fin) simple?



Simplicity of the automorphism group of P(N)/fin (2/3) st e el (11/22)

Is Auto(P(N)/fin) simple?

Theorem. (S. Shelah, 1982 + D.v.Douwen, 198?)
It is consistent with ZFC that Aut(P(N)/fin) is not simple.

Theorem. (S.F., 1988)

Aut(P(N)/fin) is simple under CH. Furthermore the assertion
“Aut(P(N)/fin) is simple” is also consistent with —~CH.

» By the theorems above the simplicity of Aut(P(N)/fin) is
independent from ZFC. It is even independent from ZFC + —CH.



Simplicity of the automorphism group of P(N)/fin (3/3) st el (12/22)

>

>

The following are ingredients of the proof of the theorems on the
previous slide:

An automorphism f of P(N)/fin is said to be almost trivial if
there is a bijection f from a cofinite subset N\ sp of N to another
cofinite subset N\ s; of N s.t. ([x]) = [f(x)] for all x € P(N).

S. Shelah proved that it is consistent with ZFC that all
automorphisms of P(N)/fin are almost trivial.

V.Douwen noticed that, if all automorphisms of P(N)/fin are
almost trivial then {f : f : N — N is a bijection} is a normal
subgroup of Aut(P(N)/fin).

(R.D. Anderson 1968) If A is a homogeneous Boolean algebra with
the following property, then Aut(A) is simple: for any ag € A with
0<ap<1landge Aut(A ] ap), there are h, p € Aut(A) s.t.

(a) g € h, (b) supp(h) < —p(ap),

(c) ph(a) = hp(a) for all a < —ap.



A generalization of Helly’s theorem for monotone functions st theretc el (13/22)

Theorem. (E. Helly, 1921)

Any bounded sequence (f, : n € N) of monotone real functions
has a pointwise convergent subsequence (f, : n € /).

» Helly’s Theorem has the following generalization in terms of the
so-called splitting number 5. > The generalization is optimal in
that it characterizes the splitting number.

Generalized Helly’s Theorem. (S.F. and Sy. Plewik, 1999)

For linearly ordered sets X and Y, if Y is sequentially compact
with density strictly less than s, any sequence of monotone func-
tions from X to Y contains a pointwise convergent subsequence.



A generalization of Helly's theorem for monotone functions (2/3) stemicteals (14/22)

Generalized Helly’s Theorem. (S.F. and Sy. Plewik, 1999)

For linearly ordered sets X and Y, if Y is sequentially compact
with density strictly less than s, any sequence of monotone func-
tions from X to Y contains a pointwise convergent subsequence.

» A linearly ordered set X is sequentially compact if any monotone
sequence of elements of X converges in X.

» The density of a linearly ordered set X is the minimal size
(cardinality) of a subset of X which is dense in X.

» A family F of infinite subsets of N is said to be splitting if, for any
infinite x C N, there is a € F s.t. both x Na and x \ a are infinite.

> The splitting number s is the smallest possible cardinality of a
splitting family.
» It is easy to see that N; <5 < 2% Thus, under CH, we have

Ny =5 =2%_ > It is known that each of the equations
Ny =5 < 2% N <5=2% W, <5< 2% s consistent with ZFC.



A generalization of Helly's theorem for monotone functions (3/3) stemicteals (15/22)

Generalized Helly’s Theorem. (S.F. and Sy. Plewik, 1999)

For linearly ordered sets X and Y, if Y is sequentially compact
with density strictly less than s, any sequence of monotone func-
tions from X to Y contains a pointwise convergent subsequence.

> The generalization is optimal in that it characterizes the splitting
number.
> It is easy to see that N; <5 < 2% Thus, under CH, we have

N; =5 =2%_ > |tis known that each of the equations
Ny =5 < 2% Ny <5 =28 8 <5< 2% js consistent with ZFC.

» By the Theorem and the facts above we obtain many independent
assertions like:
For linearly ordered sets X and Y/, if Y is sequentially compact

with density strictly less than 280, any sequence of monotone func-
tions from X to Y contains a pointwise convergent subsequence.



Reflection of non-metrizability st et sl (16/22)

Theorem. (Alan Dow, 1988) If an uncountable compact space
X is non-metrizable then there is a non-metrizable subspace of X
of cardinality N;j.

Very rough sketch of the proof: Take sufficiently closed (more
precisely: internally unbounded) elementary submodel M < H(x)
of cardinality N; with X € M. Then X N M is non metrizable. [

Theorem. (Folklore?) For any regular cardinal  there is a to-
pological space X which is not metrizable but all subspaces of X
of cardinality < x are metrizable.

Proof: Let X =k + 1 where & is discrete and {k + 1\« : @ € K}
forms the nbhd base of . O

Does Dow's Theorem also hold for locally compact spaces?



Reflection of non-metrizability (2/4) steret el (17/2)

Does Dow’s Theorem also hold for locally compact spaces?

Theorem. The assertion “If an uncountable locally compact space
X is non-metrizable then there is a non-metrizable subspace of X
of cardinality

N1" is independent from ZFC. This assertion is independent from
7ZFC + CH but also from ZFC + —CH. Actually this assertion is
consistent with arbitrarily large continuum.

>> Godels model consisting of constructible sets provides a counter
example (Folklore).

> Axiom R (a consequence of Martin's Maximum) implies the
reflection of non-metrizability for locally compact spaces
(Z. Balogh, 2002).

> Cohen's original construction of models for ~CH preserves the
assertion (S.F, L. Soukup et al. 2010).



Reflection of non-metrizability (3/4) stevet el (16/22)

» The reflection (down to size N;) of non-metrizability for locally
compact spaces can be characterized by a set-theoretic principle
called FRP (Fodor-type reflection principle):

FRP: For any regular uncountable x, for any stationary S C
consisting of ordinals of cofinality w and for any g : S — [k]=M°,
there is | € [k]™ s.t.

(1) cf(sup!) = wy

(2) gla) ClforallaelnsS

(3) for any regressive f : SN 1 — k with f(a) € g(a) for all
a € SN, there is £* < k s.t. f~1"{¢*} is stationary in sup(/).



Reflection of non-metrizability (4/4) steret s (19/22)

FRP: For any regular uncountable x, for any stationary S C &
consisting of ordinals of cofinality w and for any g : S — [k]=™e,
there is | € [5]™ s.t.

(1) cf(sup!) = wy
(2) gla) Clforallaeln$s

(3) for any regressive f : SN — k with f(a) € g(«) for all
a € SN, there is £* < k s.t. £ 1"{¢*} is stationary in sup(/).

Theorem. (S.F., I. Juhasz, L. Soukup, Z. Szenttmikléssy and
T. Usuba, 2010)

FRP implies the reflection of non-metrizability of a locally compact
space down to a subspace of cardinality < N;.

Theorem. (S.F., H.Sakai, L.Soukup and T.Usuba) The re-
flection in Theorem 3 implies FRP.



FRP is equivalent to many “mathematical” statements se-teoeic el (20/22)

» FRP is equivalent to the following assertions over ZFC:

> For every uncountable locally compact space X, if X is
non-metrizable then there is a non-metrizable subspace of X of

carinality Nj.

> If an uncountable Ti-space X is not left separated then there is a
subspace of X of cardinality N; which is not left separated.

>> For any graph G if the coloring number of G is uncountable then
there is a subgraph of G of cardinality 8; with uncountable coloring
number.

> If an uncountable Boolean algebra B is not openly generated then
there are stationarily many subalgebras of B of cardinality N; which
are not openly generated (SF+A.Rinot, 2011).



Concluding Remarks st et el (21/22)

» There are “mathematical” assertions which can be proved to be
independent from the set theory (and hence from the
mathematics).

» If a mathematical assertion is proved to be independent form set
theory, it does not necessarily mean a dead end to the theory
around the assertion.

» Independence proofs can help getting deeper mathematical
understanding. They can also contribute to the developments of
theories which themselves do not involve independency.



Thank you for your attention. [



