Topological Characterization of Shelah's Strong Hypothesis and Fodor-type Reflection Principle 渕野 昌 (Sakaé Fuchino) #### 神戸大学大学院 システム情報学研究科 fuchino@diamond.kobe-u.ac.jp http://kurt.scitec.kobe-u.ac.jp/~fuchino/ (November 27, 2010 (15:28 JST) version) ### 東北大学 ロジック セミナー での講演 July 23, 2010. 15:30 ~ 17:[12][0-9] This presentation is typeset by pLATEX with beamer class. # Axiomatist reading of "Reverse Mathematics" Top. char. of SSH and FRP (2/21) A "reverse" reading of Reverse Mathematics' philosophy in a broad sense from axiomatist point of view: A (combinatorial) principle may be considered as prominent if it is equivalent to many "natural" "mathematical" statements over a base theory. ## Axiomatist reading of "Reverse Mathematics" Top. char. of SSH and FRP (2/21) A "reverse" reading of Reverse Mathematics' philosophy in a broad sense from axiomatist point of view: A (combinatorial) principle may be considered as prominent if it is equivalent to many "natural" "mathematical" statements over a base theory. ### Axiomatist reading of "Reverse Mathematics" Top. char. of SSH and FRP (2/21) A "reverse" reading of Reverse Mathematics' philosophy in a broad sense from axiomatist point of view: A (combinatorial) principle may be considered as prominent if it is equivalent to many "natural" "mathematical" statements over a base theory. - Well-ordering theorem - ▶ Zorn's lemma - ▶ Existence of a basis to each vector space - Tychonoff's theorem etc. - ▶ There exists an inaccessible cardinal with tree property. - ▶ There exists an inaccessible cardinal κ s.t. $\mathcal{L}_{\kappa,\omega}$ satisfies the Weak Compactness Theorem. - ▶ There exists a Π_1^1 -indescribable cardinal. etc. - ▶ Well-ordering theorem - ▶ Zorn's lemma - ▶ Existence of a basis to each vector space - Tychonoff's theorem etc. - ▶ There exists an inaccessible cardinal with tree property. - ▶ There exists an inaccessible cardinal κ s.t. $\mathcal{L}_{\kappa,\omega}$ satisfies the Weak Compactness Theorem. - ▶ There exists a Π_1^1 -indescribable cardinal. etc. - ▶ Well-ordering theorem - ▶ Zorn's lemma - Existence of a basis to each vector space - ▶ Tychonoff's theorem etc. - ▶ There exists an inaccessible cardinal with tree property. - ▶ There exists an inaccessible cardinal κ s.t. $\mathcal{L}_{\kappa,\omega}$ satisfies the Weak Compactness Theorem. - ▶ There exists a Π_1^1 -indescribable cardinal. etc. - ▶ Well-ordering theorem - ▶ Zorn's lemma - ▶ Existence of a basis to each vector space - Tychonoff's theorem etc. - ▶ There exists an inaccessible cardinal with tree property. - ▶ There exists an inaccessible cardinal κ s.t. $\mathcal{L}_{\kappa,\omega}$ satisfies the Weak Compactness Theorem. - ▶ There exists a Π_1^1 -indescribable cardinal. etc. - ▶ Well-ordering theorem - ▶ Zorn's lemma - ▶ Existence of a basis to each vector space - ▶ Tychonoff's theorem etc. - ▶ There exists an inaccessible cardinal with tree property. - ▶ There exists an inaccessible cardinal κ s.t. $\mathcal{L}_{\kappa,\omega}$ satisfies the Weak Compactness Theorem. - ▶ There exists a Π_1^1 -indescribable cardinal. etc. - ▶ Well-ordering theorem - ▶ Zorn's lemma - ▶ Existence of a basis to each vector space - ▶ Tychonoff's theorem etc. - ▶ There exists an inaccessible cardinal with tree property. - ▶ There exists an inaccessible cardinal κ s.t. $\mathcal{L}_{\kappa,\omega}$ satisfies the Weak Compactness Theorem. - ▶ There exists a Π_1^1 -indescribable cardinal. etc. - ▶ Well-ordering theorem - ▶ Zorn's lemma - ▶ Existence of a basis to each vector space - ▶ Tychonoff's theorem etc. - ▶ There exists an inaccessible cardinal with tree property. - ▶ There exists an inaccessible cardinal κ s.t. $\mathcal{L}_{\kappa,\omega}$ satisfies the Weak Compactness Theorem. - ▶ There exists a Π_1^1 -indescribable cardinal. etc. - ▶ Well-ordering theorem - ▶ Zorn's lemma - ▶ Existence of a basis to each vector space - ▶ Tychonoff's theorem etc. - ▶ There exists an inaccessible cardinal with tree property. - ▶ There exists an inaccessible cardinal κ s.t. $\mathcal{L}_{\kappa,\omega}$ satisfies the Weak Compactness Theorem. - ▶ There exists a Π_1^1 -indescribable cardinal. etc. - ▶ Well-ordering theorem - ▶ Zorn's lemma - ▶ Existence of a basis to each vector space - ▶ Tychonoff's theorem etc. - ▶ There exists an inaccessible cardinal with tree property. - ▶ There exists an inaccessible cardinal κ s.t. $\mathcal{L}_{\kappa,\omega}$ satisfies the Weak Compactness Theorem. - ▶ There exists a Π_1^1 -indescribable cardinal. etc. There can be also the following variation of the "reverse" reading of Reverse Mathematics' philosophy in a broader sense from axiomatist point of view: A (combinatorial) principle may be considered as prominent if it is <u>equiconsistent</u> to many "natural" "mathematical" statements over a base theory. There can be also the following variation of the "reverse" reading of Reverse Mathematics' philosophy in a broader sense from axiomatist point of view: A (combinatorial) principle may be considered as prominent if it is <u>equiconsistent</u> to many "natural" "mathematical" statements over a base theory. $$1+1=2$$ The assertion (axiom) "there exists a weakly compact cardinal" is equi-consistent with the following statements over ZFC: - There is no ω_2 -Aronszajn tree (J.H. Silver, W.J. Mitchell 1972/73) - ▶ Every stationary set $S \subseteq E_{\omega_0}^{\omega_2}$ reflects at almost all $E_{\omega_1}^{\omega_2}$ (M. Magidor 1982), $$1+1=2$$ The assertion (axiom) "there exists a weakly compact cardinal" is equi-consistent with the following statements over ZFC: - ► There is no ω_2 -Aronszajn tree (J.H. Silver, W.J. Mitchell 1972/73) - ▶ Every stationary set $S \subseteq E_{\omega_0}^{\omega_2}$ reflects at almost all $E_{\omega_1}^{\omega_2}$ (M. Magidor 1982), $$ightharpoonup 1 + 1 = 2.$$ The assertion (axiom) "there exists a weakly compact cardinal" is equi-consistent with the following statements over ZFC: - There is no ω_2 -Aronszajn tree (J.H. Silver, W.J. Mitchell 1972/73) - ▶ Every stationary set $S \subseteq E_{\omega_0}^{\omega_2}$ reflects at almost all $E_{\omega_1}^{\omega_2}$ (M. Magidor 1982), $$ightharpoonup 1 + 1 = 2.$$ The assertion (axiom) "there exists a weakly compact cardinal" is equi-consistent with the following statements over ZFC: - ► There is no ω_2 -Aronszajn tree (J.H. Silver, W.J. Mitchell 1972/73) - ▶ Every stationary set $S \subseteq E_{\omega_0}^{\omega_2}$ reflects at almost all $E_{\omega_1}^{\omega_2}$ (M. Magidor 1982), $$1+1=2.$$ The assertion (axiom) "there exists a weakly compact cardinal" is equi-consistent with the following statements over ZFC: - ► There is no ω_2 -Aronszajn tree (J.H. Silver, W.J. Mitchell 1972/73) - ▶ Every stationary set $S \subseteq E_{\omega_0}^{\omega_2}$ reflects at almost all $E_{\omega_1}^{\omega_2}$ (M. Magidor 1982), $$ightharpoonup 1 + 1 = 2.$$ The assertion (axiom) "there exists a weakly compact cardinal" is equi-consistent with the following statements over ZFC: - ► There is no ω_2 -Aronszajn tree (J.H. Silver, W.J. Mitchell 1972/73) - ▶ Every stationary set $S \subseteq E_{\omega_0}^{\omega_2}$ reflects at almost all $E_{\omega_1}^{\omega_2}$ (M. Magidor 1982), 1+1=2 The assertion (axiom) "there exists a weakly compact cardinal" is equi-consistent with the following statements over ZFC: - ► There is no ω_2 -Aronszajn tree (J.H. Silver, W.J. Mitchell 1972/73) - ▶ Every stationary set $S \subseteq E_{\omega_0}^{\omega_2}$ reflects at almost all $E_{\omega_1}^{\omega_2}$ (M. Magidor 1982), ightharpoonup 1 + 1 = 2. The assertion (axiom) "there exists a weakly compact cardinal" is equi-consistent with the following statements over ZFC: - ► There is no ω_2 -Aronszajn tree (J.H. Silver, W.J. Mitchell 1972/73) - ▶ Every stationary set $S \subseteq E_{\omega_0}^{\omega_2}$ reflects at almost all $E_{\omega_1}^{\omega_2}$ (M. Magidor 1982), - Every stationary set $S\subseteq E^{\omega_2}_{\omega_0}$ reflects at almost all $E^{\omega_2}_{\omega_1}$ (M. Magidor 1982), - lacksqress For regular κ and $\lambda>\kappa$, $m{\mathcal{E}}_{\kappa}^{\lambda}=\{lpha<\lambda\,:\,\mathrm{cf}(lpha)=\kappa\}.$ - ▶ A stationary set $S \subseteq \lambda$, S reflects at $\alpha < \lambda$ if $S \cap \alpha$ is stationary in α . - "stationary set $S\subseteq E_{\omega_0}^{\omega_2}$ reflects at almost all $E_{\omega_1}^{\omega_2}$ " means here that there is a closed unbounded $C\subseteq \lambda$ s.t. $$\{lpha\in {\sf E}_{\omega_1}^{\omega_2}\,:\,{\sf S}\ {\sf reflects}\ {\sf at}\ lpha\}\supseteq{\sf C}\cap {\sf E}_{\omega_1}^{\omega_2}.$$ - Every stationary set $S\subseteq E^{\omega_2}_{\omega_0}$ reflects at almost all $E^{\omega_2}_{\omega_1}$ (M. Magidor 1982), - ▶ For regular κ and $\lambda > \kappa$, $E_{\kappa}^{\lambda} = \{\alpha < \lambda : \operatorname{cf}(\alpha) = \kappa\}$. - ▶ A stationary set $S \subseteq \lambda$, S reflects at $\alpha < \lambda$ if $S \cap \alpha$ is stationary in α . - "stationary set $S\subseteq E_{\omega_0}^{\omega_2}$ reflects at almost all $E_{\omega_1}^{\omega_2}$ " means here that there is a closed unbounded $C\subseteq \lambda$ s.t. $$\{ lpha \in {\it E}_{\omega_1}^{\omega_2} \,:\, {\it S} \ {\it reflects} \ {\it at} \ lpha \} \supseteq {\it C} \cap {\it E}_{\omega_1}^{\omega_2}.$$ - Every stationary set $S\subseteq E^{\omega_2}_{\omega_0}$ reflects at almost all $E^{\omega_2}_{\omega_1}$ (M. Magidor 1982), - ▶ For regular κ and $\lambda > \kappa$, $E_{\kappa}^{\lambda} = \{\alpha < \lambda : \operatorname{cf}(\alpha) = \kappa\}$. - ▶ A stationary set $S \subseteq \lambda$, S reflects at $\alpha < \lambda$ if $S \cap \alpha$ is stationary in α . - "stationary set $S \subseteq E_{\omega_0}^{\omega_2}$ reflects at almost all $E_{\omega_1}^{\omega_2}$ " means here that there is a closed unbounded $C \subseteq \lambda$ s.t. $$\{lpha\in {\it E}_{\omega_1}^{\omega_2}\,:\, {\it S} \ {\it reflects} \ {\it at} \ lpha\}\supseteq {\it C}\cap {\it E}_{\omega_1}^{\omega_2}.$$ - Every stationary set $S\subseteq E^{\omega_2}_{\omega_0}$ reflects at almost all $E^{\omega_2}_{\omega_1}$ (M. Magidor 1982), - ▶ For regular κ and $\lambda > \kappa$, $E_{\kappa}^{\lambda} = \{\alpha < \lambda : \operatorname{cf}(\alpha) = \kappa\}$. - ▶ A stationary set $S \subseteq \lambda$, S reflects at $\alpha < \lambda$ if $S \cap \alpha$ is stationary in α . - "stationary set $S\subseteq E_{\omega_0}^{\omega_2}$ reflects at almost all $E_{\omega_1}^{\omega_2}$ " means here that there is a closed unbounded $C\subseteq \lambda$ s.t. $$\{lpha\in {\it E}_{\omega_1}^{\omega_2}\,:\, {\it S} \ {\it reflects} \ {\it at} \ lpha\}\supseteq {\it C}\cap {\it E}_{\omega_1}^{\omega_2}.$$ Fodor-type Reflection Principle (FRP) is the principle which asserts that the following $FRP(\kappa)$ holds for all regular uncountable κ : **FRP**(κ): For any stationary $S \subseteq E_{\omega}^{\kappa} = \{\alpha < \kappa : \operatorname{cf}(\alpha) = \omega\}$ and $g: S \to [\kappa]^{\leq \aleph_0}$ there is $I \in [\kappa]^{\aleph_1}$ such that - ▶ $g(\alpha) \subseteq I$ for all $\alpha \in I \cap S$; - ▶ for any regressive $f: S \cap I \to \kappa$ s.t. $f(\alpha) \in g(\alpha)$ for all $\alpha \in S \cap I$, there is $\xi^* < \kappa$ s.t. $f^{-1}{}^{II} \{\xi^*\}$ is stationary in sup(I). Remark. By the last " \triangleright ", S reflects at $\sup(I)$. Fodor-type Reflection Principle (FRP) is the principle which asserts that the following $FRP(\kappa)$ holds for all regular uncountable κ : **FRP**(κ): For any stationary $S \subseteq E^{\kappa}_{\omega} = \{\alpha < \kappa : \operatorname{cf}(\alpha) = \omega\}$ and $g: S \to [\kappa]^{\leq \aleph_0}$ there is $I \in [\kappa]^{\aleph_1}$ such that - ▶ $g(\alpha) \subseteq I$ for all $\alpha \in I \cap S$; - ▶ for any regressive $f: S \cap I \to \kappa$ s.t. $f(\alpha) \in g(\alpha)$ for all $\alpha \in S \cap I$, there is $\xi^* < \kappa$ s.t. $f^{-1} {}'' \{ \xi^* \}$ is stationary in sup(I). Remark. By the last " \triangleright ", S reflects at $\sup(I)$. Fodor-type Reflection Principle (FRP) is the principle which asserts that the following $FRP(\kappa)$ holds for all regular uncountable κ : **FRP**(κ): For any stationary $S \subseteq E_{\omega}^{\kappa} = \{ \alpha < \kappa : \mathrm{cf}(\alpha) = \omega \}$ and $g: S \to [\kappa]^{\leq \aleph_0}$ there is $I \in [\kappa]^{\aleph_1}$ such that - $ightharpoonup \operatorname{cf}(I) = \omega_1;$ - ▶ $g(\alpha) \subseteq I$ for all $\alpha \in I \cap S$; - ▶ for any regressive $f: S \cap I \to \kappa$ s.t. $f(\alpha) \in g(\alpha)$ for all $\alpha \in S \cap I$, there is $\xi^* < \kappa$ s.t. $f^{-1} {}'' \{ \xi^* \}$ is stationary in sup(I). Remark. By the last " \triangleright ", S reflects at $\sup(I)$. - ► FRP follows from RP. - (F., Juhász, Soukup, Szentmiklóssy and Usuba, 2010) - **RP**: For any cardinal λ of cofinality $> \omega_1$ and stationary $S \subseteq [\lambda]^{\aleph_0}$, there is an $I \in [\lambda]^{\aleph_1}$ s.t. - \blacktriangleright $\omega_1 \subseteq I$ - $lacksquare S\cap [I]^{leph_0}$ is stationary in $[I]^{leph_0}$. - $\blacktriangleright [X]^{\kappa} = \{ x \subseteq X : |x| = \kappa \}.$ - ▶ $C \subseteq [X]^{\kappa}$ is closed unbounded if C is cofinal in $[X]^{\kappa}$ w.r.t. \subseteq and closed w.r.t. union of \subseteq -chain of length $\leq \kappa$. - ▶ $S \subseteq [X]^{\kappa}$ is stationary if $S \cap C \neq \emptyset$ holds for any closed unbounded $C \subseteq [X]^{\kappa}$. ► FRP follows from RP. (F., Juhász, Soukup, Szentmiklóssy and Usuba, 2010) - ightharpoonup cf(I) = ω_1 ; - $lacksquare S\cap [I]^{leph_0}$ is stationary in $[I]^{leph_0}$. - $\blacktriangleright [X]^{\kappa} = \{ x \subseteq X : |x| = \kappa \}.$ - ▶ $C \subseteq [X]^{\kappa}$ is closed unbounded if C is cofinal in $[X]^{\kappa}$ w.r.t. \subseteq and closed w.r.t. union of \subseteq -chain of length $\leq \kappa$. - ▶ $S \subseteq [X]^{\kappa}$ is stationary if $S \cap C \neq \emptyset$ holds for any closed unbounded $C \subseteq [X]^{\kappa}$. ► FRP follows from RP. (F., Juhász, Soukup, Szentmiklóssy and Usuba, 2010) - \blacktriangleright $\omega_1 \subseteq I$; - ightharpoonup cf(I) = ω_1 ; - ▶ $S \cap [I]^{\aleph_0}$ is stationary in $[I]^{\aleph_0}$. - $\blacktriangleright [X]^{\kappa} = \{ x \subseteq X : |x| = \kappa \}.$ - ▶ $C \subseteq [X]^{\kappa}$ is closed unbounded if C is cofinal in $[X]^{\kappa}$ w.r.t. \subseteq and closed w.r.t. union of \subseteq -chain of length $\leq \kappa$. - ▶ $S \subseteq [X]^{\kappa}$ is stationary if $S \cap C \neq \emptyset$ holds for any closed unbounded $C \subseteq [X]^{\kappa}$. ► FRP follows from RP. (F., Juhász, Soukup, Szentmiklóssy and Usuba, 2010) - \blacktriangleright $\omega_1 \subseteq I$; - ightharpoonup cf(I) = ω_1 ; - ▶ $S \cap [I]^{\aleph_0}$ is stationary in $[I]^{\aleph_0}$. - $\blacktriangleright [X]^{\kappa} = \{ x \subseteq X : |x| = \kappa \}.$ - ▶ $C \subseteq [X]^{\kappa}$ is closed unbounded if C is cofinal in $[X]^{\kappa}$ w.r.t. \subseteq and closed w.r.t. union of \subseteq -chain of length $\leq \kappa$. - ▶ $S \subseteq [X]^{\kappa}$ is stationary if $S \cap C \neq \emptyset$ holds for any closed unbounded $C \subseteq [X]^{\kappa}$. ► FRP follows from RP. (F., Juhász, Soukup, Szentmiklóssy and Usuba, 2010) - \blacktriangleright $\omega_1 \subseteq I$; - ightharpoonup cf(I) = ω_1 ; - ▶ $S \cap [I]^{\aleph_0}$ is stationary in $[I]^{\aleph_0}$. - $\blacktriangleright [X]^{\kappa} = \{ x \subseteq X : |x| = \kappa \}.$ - ▶ $C \subseteq [X]^{\kappa}$ is closed unbounded if C is cofinal in $[X]^{\kappa}$ w.r.t. \subseteq and closed w.r.t. union of \subseteq -chain of length $\leq \kappa$. - ▶ $S \subseteq [X]^{\kappa}$ is stationary if $S \cap C \neq \emptyset$ holds for any closed unbounded $C \subseteq [X]^{\kappa}$. ► FRP follows from RP. (F., Juhász, Soukup, Szentmiklóssy and Usuba, 2010) **RP**: For any cardinal λ of cofinality $> \omega_1$ and stationary $S \subseteq [\lambda]^{\aleph_0}$, there is an $I \in [\lambda]^{\aleph_1}$ s.t. - $\blacktriangleright \ \omega_1 \subseteq I;$ - ightharpoonup cf(I) = ω_1 ; - ▶ $S \cap [I]^{\aleph_0}$ is stationary in $[I]^{\aleph_0}$. - $\blacktriangleright [X]^{\kappa} = \{ x \subseteq X : |x| = \kappa \}.$ - ▶ $C \subseteq [X]^{\kappa}$ is closed unbounded if C is cofinal in $[X]^{\kappa}$ w.r.t. \subseteq and closed w.r.t. union of \subseteq -chain of length $\leq \kappa$. - ▶ $S \subseteq [X]^{\kappa}$ is stationary if $S \cap C \neq \emptyset$ holds for any closed unbounded $C \subseteq [X]^{\kappa}$. Martin's Maximum $$\Rightarrow$$ MA⁺(σ -closed) \Rightarrow Axiom R \Rightarrow RP \Rightarrow FRP \uparrow The consistency of this principle follows from Con(ZFC+ there exists a supercompact cardinal) The last implication is irreversible !!! ▶ RP implies $2^{\aleph_0} \le \aleph_2$ while FRP is compatible with arbitrary (consistent) size of the continuum. Martin's Maximum $$\Rightarrow$$ MA⁺(σ -closed) \Rightarrow Axiom R \Rightarrow RP \Rightarrow FRP The consistency of this principle follows from Con(ZFC+ there exists a supercompact cardinal content of the consistency this principle follows from the consistency of The last implication is irreversible !!! ▶ RP implies $2^{\aleph_0} \le \aleph_2$ while FRP is compatible with arbitrary (consistent) size of the continuum. Martin's Maximum $$\Rightarrow$$ MA⁺(σ -closed) \Rightarrow Axiom R \Rightarrow RP \Rightarrow FRP The consistency of this principle follows from Con(ZFC+ there exists a supercompact cardin The last implication is irreversible !!! ▶ RP implies $2^{\aleph_0} \le \aleph_2$ while FRP is compatible with arbitrary (consistent) size of the continuum. Martin's Maximum $$\Rightarrow$$ MA⁺(σ -closed) \Rightarrow Axiom R \Rightarrow RP \Rightarrow FRP The consistency of this principle follows from $Con(\mathrm{ZFC}+\ there\ exists\ a\ supercompact\ cardinal$ The last implication is irreversible !!! ▶ RP implies $2^{\aleph_0} \le \aleph_2$ while FRP is compatible with arbitrary (consistent) size of the continuum. Martin's Maximum $$\Rightarrow$$ MA⁺(σ -closed) \Rightarrow Axiom R \Rightarrow RP \Rightarrow FRP The consistency of this principle follows from Con(ZFC+ there exists a supercompact cardinal The last implication is irreversible !!! ▶ RP implies $2^{\aleph_0} \le \aleph_2$ while FRP is compatible with arbitrary (consistent) size of the continuum. Martin's Maximum $$\Rightarrow$$ MA⁺(σ -closed) \Rightarrow Axiom R \Rightarrow RP \Rightarrow FRP The consistency of this principle follows from Con(ZFC+ there exists a supercompact cardinal The last implication is irreversible !!! ▶ RP implies $2^{\aleph_0} \le \aleph_2$ while FRP is compatible with arbitrary (consistent) size of the continuum. Martin's Maximum $$\Rightarrow$$ MA⁺(σ -closed) \Rightarrow Axiom R \Rightarrow RP \Rightarrow FRP \uparrow The consistency of this principle follows from Con(ZFC+ there exists a supercompact cardinal) The last implication is irreversible !!! ▶ RP implies $2^{\aleph_0} \le \aleph_2$ while FRP is compatible with arbitrary (consistent) size of the continuum. Martin's Maximum $$\Rightarrow$$ MA⁺(σ -closed) \Rightarrow Axiom R \Rightarrow RP \Rightarrow FRP \uparrow The consistency of this principle follows from Con(ZFC+ there exists a supercompact cardinal) ### The last implication is irreversible !!! ▶ RP implies $2^{\aleph_0} \le \aleph_2$ while FRP is compatible with arbitrary (consistent) size of the continuum. Martin's Maximum $$\Rightarrow$$ MA⁺(σ -closed) \Rightarrow Axiom R \Rightarrow RP \Rightarrow FRP The consistency of this principle follows from Con(ZFC+ there exists a supercompact cardinal) The last implication is irreversible !!! ▶ RP implies $2^{\aleph_0} \le \aleph_2$ while FRP is compatible with arbitrary (consistent) size of the continuum. FRP is equivalent to the following assertion over ZFC: - ightharpoonup A topological space X is countably compact if every countable open cover of X has a finite subcover. - ▶ A topological space X is locally countably compact if every point has a closed neighborhood which is countably compact. - ▶ X is $\leq \kappa$ -metrizable for a cardinal κ if every subspace Y of X of size $\leq \kappa$ is metrizable. - \blacktriangleright There are at least 4 other statements in topology known to be equivalent to FRP. FRP is equivalent to the following assertion over ZFC: - ightharpoonup A topological space X is countably compact if every countable open cover of X has a finite subcover. - ▶ A topological space X is locally countably compact if every point has a closed neighborhood which is countably compact. - ▶ X is $\leq \kappa$ -metrizable for a cardinal κ if every subspace Y of X of size $\leq \kappa$ is metrizable. - ► There are at least 4 other statements in topology known to be equivalent to FRP. FRP is equivalent to the following assertion over ZFC: - ightharpoonup A topological space X is countably compact if every countable open cover of X has a finite subcover. - ▶ A topological space X is locally countably compact if every point has a closed neighborhood which is countably compact. - ▶ X is $\leq \kappa$ -metrizable for a cardinal κ if every subspace Y of X of size $\leq \kappa$ is metrizable. - ▶ There are at least 4 other statements in topology known to be equivalent to FRP. FRP is equivalent to the following assertion over ZFC: - ightharpoonup A topological space X is countably compact if every countable open cover of X has a finite subcover. - ▶ A topological space X is locally countably compact if every point has a closed neighborhood which is countably compact. - ▶ X is $\leq \kappa$ -metrizable for a cardinal κ if every subspace Y of X of size $\leq \kappa$ is metrizable. - ► There are at least 4 other statements in topology known to be equivalent to FRP. FRP is equivalent to the following assertion over ZFC: - ightharpoonup A topological space X is countably compact if every countable open cover of X has a finite subcover. - ▶ A topological space X is locally countably compact if every point has a closed neighborhood which is countably compact. - ▶ X is $\leq \kappa$ -metrizable for a cardinal κ if every subspace Y of X of size $\leq \kappa$ is metrizable. - \blacktriangleright There are at least 4 other statements in topology known to be equivalent to FRP. ▶ For an infinite graph $G = \langle G, \mathcal{E} \rangle$, the coloring number of G (col(G)) is defined as $$col(G) = \min\{\mu :$$ there is a well-ordering \prec of G s.t. $|\{y \in G : y \prec x \text{ and } \{x,y\} \in \mathcal{E}\}| < \mu \text{ for all } x \in G\}$ Theorem 2 (F., Sakai, Soukup and Usuba, preprint (201?)) FRP is equivalent to the following assertion over ZFC. For any infinite graph $G = \langle G, \mathcal{E} \rangle$, if every subgraph H of G of cardinality $\leq \aleph_1$ satisfies $col(H) \leq \aleph_0$ then $col(G) \leq \aleph_0$. ▶ For an infinite graph $G = \langle G, \mathcal{E} \rangle$, the coloring number of G (col(G)) is defined as $$\begin{split} col(G) &= \min\{\mu : \\ & \text{there is a well-ordering } \prec \text{ of } G \text{ s.t.} \\ &|\{y \in G : y \prec x \text{ and } \{x,y\} \in \mathcal{E}\}| < \mu \text{ for all } x \in G\}. \end{split}$$ Theorem 2 (F., Sakai, Soukup and Usuba, preprint (201?)) FRP is equivalent to the following assertion over ZFC: ``` For any infinite graph G = \langle G, \mathcal{E} \rangle, if every subgraph H of G of cardinality \leq \aleph_1 satisfies col(H) \leq \aleph_0 then col(G) \leq \aleph_0. ``` ▶ For an infinite graph $G = \langle G, \mathcal{E} \rangle$, the coloring number of G (col(G)) is defined as $$col(G) = min\{\mu :$$ there is a well-ordering \prec of G s.t. $|\{y \in G : y \prec x \text{ and } \{x,y\} \in \mathcal{E}\}| < \mu \text{ for all } x \in G\}.$ Theorem 2 (F., Sakai, Soukup and Usuba, preprint (201?)) FRP is equivalent to the following assertion over ZFC: For any infinite graph $G = \langle G, \mathcal{E} \rangle$, if every subgraph H of G of cardinality $\leq \aleph_1$ satisfies $col(H) \leq \aleph_0$ then $col(G) \leq \aleph_0$. ▶ A Boolean algebra B is openly generated if there is a mapping $f: B \to [B]^{<\aleph_0}$ s.t., for any $b, c \in B$ with $b \le c$, there is $d \in f(b) \cap f(c)$ s.t. $b \le d \le c$. # Theorem 3 (F. and Rinot, submitted (201?)) FRP is equivalent to the following assertion over ZFC : For any Boolean algebra B, if there are closed-unboundedly many openly generated subalgebras C of B of cardinality $\leq \aleph_1$ then B is openly generated. ▶ The proof of this theorem uses the fact that FRP implies Shelah's Strong Hypothesis (SSH) ▶ A Boolean algebra B is openly generated if there is a mapping $f: B \to [B]^{<\aleph_0}$ s.t., for any $b, c \in B$ with $b \le c$, there is $d \in f(b) \cap f(c)$ s.t. $b \le d \le c$. Theorem 3 (F. and Rinot, submitted (201?)) FRP is equivalent to the following assertion over ZFC: For any Boolean algebra B, if there are closed-unboundedly many openly generated subalgebras C of B of cardinality $\leq \aleph_1$ then B is openly generated. ► The proof of this theorem uses the fact that FRP implies Shelah's Strong Hypothesis (SSH) ▶ A Boolean algebra B is openly generated if there is a mapping $f: B \to [B]^{<\aleph_0}$ s.t., for any $b, c \in B$ with $b \le c$, there is $d \in f(b) \cap f(c)$ s.t. $b \le d \le c$. # Theorem 3 (F. and Rinot, submitted (201?)) FRP is equivalent to the following assertion over ZFC: For any Boolean algebra B, if there are closed-unboundedly many openly generated subalgebras C of B of cardinality $\leq \aleph_1$ then B is openly generated. ► The proof of this theorem uses the fact that FRP implies Shelah's Strong Hypothesis (SSH) ▶ A Boolean algebra B is openly generated if there is a mapping $f: B \to [B]^{\leq \aleph_0}$ s.t., for any $b, c \in B$ with $b \leq c$, there is $d \in f(b) \cap f(c)$ s.t. $b \leq d \leq c$. # Theorem 3 (F. and Rinot, submitted (201?)) FRP is equivalent to the following assertion over ZFC: For any Boolean algebra B, if there are closed-unboundedly many openly generated subalgebras C of B of cardinality $\leq \aleph_1$ then B is openly generated. ► The proof of this theorem uses the fact that FRP implies Shelah's Strong Hypothesis (SSH) \blacktriangleright If we drop "locally" from the assertion above, we obtain a theorem in ZFC: ## Theorem 4 (Alan Dow, 1988) For a countably compact topological space X, if X is $\leq \aleph_1$ -metrizable then X is metrizable \triangleright " $\leq \aleph_1$ " cannot be replaced by " $\leq \aleph_0$ ": \blacktriangleright If we drop "locally" from the assertion above, we obtain a theorem in ZFC: Theorem 4 (Alan Dow, 1988) For a countably compact topological space X, if X is $\leq \aleph_1$ -metrizable—then—X is metrizable $hd ``\leq leph_1"$ cannot be replaced by " $\leq leph_0"$: \blacktriangleright If we drop "locally" from the assertion above, we obtain a theorem in ZFC: Theorem 4 (Alan Dow, 1988) For a countably compact topological space X, if X is $\leq \aleph_1$ -metrizable—then—X is metrizable $hd ``\leq leph_1"$ cannot be replaced by " $\leq leph_0"$: \blacktriangleright If we drop "locally" from the assertion above, we obtain a theorem in ZFC: ## Theorem 4 (Alan Dow, 1988) For a countably compact topological space X, if X is $\leq \aleph_1$ -metrizable then X is metrizable. > " $\leq \aleph_1$ " cannot be replaced by " $\leq \aleph_0$ ": ▶ If we drop "locally" from the assertion above, we obtain a theorem in ZFC: # Theorem 4 (Alan Dow, 1988) For a countably compact topological space X, if X is $\leq \aleph_1$ -metrizable then X is metrizable. \triangleright " $\leq \aleph_1$ " cannot be replaced by " $\leq \aleph_0$ ": ▶ If we drop "locally" from the assertion above, we obtain a theorem in ZFC: ## Theorem 4 (Alan Dow, 1988) For a countably compact topological space X, if X is $\leq \aleph_1$ -metrizable then X is metrizable. \triangleright " $\leq \aleph_1$ " cannot be replaced by " $\leq \aleph_0$ ": #### Claim 4.1 ω_1 with the canonical order topology is countably compact. Proof. Suppose that O_k , $k \in \omega$ are open subsets of ω_1 s.t. (1) $$\omega_1 = \bigcup_{k \in \omega} O_k$$. We show first that $\omega_1 \setminus O_k$ is bounded for some $k \in \omega$. Suppose otherwise. Then $\omega_1 \setminus O_k$, $k \in \omega$ are all closed and unbounded. It follows that $\omega_1 \setminus \bigcup_{k \in \omega} O_k = \bigcap_{k \in \omega} (\omega_1 \setminus O_k)$ is also closed and unbounded; hence non empty in particular. This is a contradiction to (1). We may assume that $\omega_1 \setminus O_0$ is bounded. Assume now, toward a contradiction, that $\bigcup_{k < i} O_k \neq \omega_1$ for all $i \in \omega$. For $i \in \omega$ let $\alpha_i < \omega_1$ be s.t. $$\alpha_i \in \omega_1 \setminus \bigcup_{k < i} O_k$$ but $(\alpha_i, \omega_1) \subseteq \bigcup_{k < i} O_k$. Then $\langle \alpha_i : i \in \omega \rangle$ is decreasing and it is strictly decreasing at infinitely many places. A contradiction. #### Claim 4.2 ω_1 with the canonical order topology is first countable. **Proof.** For $\alpha \in \omega_1$, if α is a successor ordinal then α is an isolated point. Otherwise α has the countable neighborhood base: $$\{(\beta,\alpha+1):\beta<\alpha\}.$$ ### Claim 4.3 ω_1 with the canonical order topology is $\leq \aleph_0$ -metrizable. Proof. For any countable $Y\subseteq\omega_1$, there is $\alpha<\omega_1$ s.t. $Y\subseteq\alpha$. But since α (with its canonical order) is an order preserving embedding of α into \mathbb{R} , α is metrizable and hence also Y. ### Claim 4.4 ω_1 with the canonical order topology is not metrizable. Proof. Suppose that there is a metric d which induces the order topology of ω_1 . For all $\alpha \in Lim(\omega_1)$, let $n_{\alpha} \in \omega \setminus \{0\}$ be s.t. $$B_d(\alpha, \frac{2}{n_\alpha}) \subseteq \alpha + 1 = (-1, \alpha + 1)$$ and $\beta_\alpha < \alpha$ be s.t. $$\beta_{\alpha} \in B_d(\alpha, \frac{1}{n_{\alpha}}).$$ By Fodor's lemma there is $n^* \in \omega$ and $\beta^* < \omega_1$ s.t. $$S = \{ \alpha \in Lim(\omega_1) : n_\alpha = n^* \text{ and } \beta_\alpha = \beta^* \}$$ is stationary and hence, in particular, infinite. Let α_0 , $\alpha_1 \in S$ be s.t. $\alpha_0 < \alpha_1$. Then we have $$d(\alpha_0,\alpha_1) \leq d(\alpha_0,\beta^*) + d(\beta^*,\alpha_1) \leq \frac{1}{n_{\alpha_0}} + \frac{1}{n_{\alpha_1}} = \frac{2}{n^*}.$$ Thus, $\alpha_1 \in B_d(\alpha_0, \frac{2}{n^*}) = B_d(\alpha_0, \frac{2}{n_{\alpha_0}}) \subseteq \alpha_0 + 1$. This is a contradiction. For a <u>locally</u> countably compact topological space X, if X is $\leq \aleph_1$ -metrizable then X is metrizable. - ▶ If we assume V = L (the axiom asserting that the set-theoretic universe consists of constructible sets in the sense of Gödel) then the assertion above is false. - ▶ Zoltan Balogh (posth. 2002) showed that Axiom R (recall that principle is e.g. a consequence of Martin's Maximum) implies the assertion above (Balogh's metrization theorem). For a <u>locally</u> countably compact topological space X, if X is $\leq \aleph_1$ -metrizable then X is metrizable. - ▶ If we assume V = L (the axiom asserting that the set-theoretic universe consists of constructible sets in the sense of Gödel) then the assertion above is false. - ▶ Zoltan Balogh (posth. 2002) showed that Axiom R (recall that principle is e.g. a consequence of Martin's Maximum) implies the assertion above (Balogh's metrization theorem). For a <u>locally</u> countably compact topological space X, if X is $\leq \aleph_1$ -metrizable then X is me<u>trizable</u>. - ▶ If we assume V = L (the axiom asserting that the set-theoretic universe consists of constructible sets in the sense of Gödel) then the assertion above is false. - ▶ Zoltan Balogh (posth. 2002) showed that Axiom R (recall that principle is e.g. a consequence of Martin's Maximum) implies the assertion above (Balogh's metrization theorem). For a <u>locally</u> countably compact topological space X, if X is $\leq \aleph_1$ -metrizable then X is metrizable. - ▶ If we assume V = L (the axiom asserting that the set-theoretic universe consists of constructible sets in the sense of Gödel) then the assertion above is false. - ▶ Zoltan Balogh (posth. 2002) showed that Axiom R (recall that principle is e.g. a consequence of Martin's Maximum) implies the assertion above (Balogh's metrization theorem). - \blacktriangleright The proof of the equivalence of FRP with the assertion on openly generated Boolean algebras used the fact that FRP implies Shelah's Strong Hypothesis (SSH) - ▶ Shelah's Strong Hypothesis (SSH) is the principle equivalent to the assertion: For every cardinal κ we have $\mathrm{cf}([\kappa^+]^{\aleph_0},\subseteq)=\kappa^+$ where - $ho \kappa^+$ denotes the successor cardinal of κ . $ho \operatorname{cf}(A, \leq)$ for a partial ordering $\langle A, \leq \rangle$ is the smallest cardinality of $B \subseteq A$ cofinal in A (i.e., $\forall x \in A \exists y \in B(x \leq y)$). - ▶ "Shelah's Strong Hypothesis" is actually not so strong! It is merely slightly stronger than "Singular Cardinal Hypothesis" (SCH). Theorem 5 (F. and Rinot, submitted (201?)) FRP implies SSH. In particular, FRP implies SCH. - ▶ The proof of the equivalence of FRP with the assertion on openly generated Boolean algebras used the fact that FRP implies Shelah's Strong Hypothesis (SSH) - ▶ Shelah's Strong Hypothesis (SSH) is the principle equivalent to the assertion: For every cardinal κ we have $\mathrm{cf}([\kappa^+]^{\aleph_0},\subseteq)=\kappa^+$ where - $\triangleright \kappa^+$ denotes the successor cardinal of κ . - ho cf (A, \leq) for a partial ordering $\langle A, \leq \rangle$ is the smallest ardinality of $B \subseteq A$ cofinal in A (i.e., $\forall x \in A \exists y \in B(x \leq A)$ - "Shelah's Strong Hypothesis" is actually not so strong! It is merely slightly stronger than "Singular Cardinal Hypothesis" (SCH). Theorem 5 (F. and Rinot, submitted (201?)) FRP implies SSH. In particular, FRP implies SCH. - ▶ The proof of the equivalence of FRP with the assertion on openly generated Boolean algebras used the fact that FRP implies Shelah's Strong Hypothesis (SSH) - ▶ Shelah's Strong Hypothesis (SSH) is the principle equivalent to the assertion: For every cardinal κ we have $\mathrm{cf}([\kappa^+]^{\aleph_0},\subseteq)=\kappa^+$ where - $ho \kappa^+$ denotes the successor cardinal of κ . $ho \operatorname{cf}(A, \leq)$ for a partial ordering $\langle A, \leq \rangle$ is the smallest cardinality of $B \subseteq A$ cofinal in A (i.e., $\forall x \in A \exists y \in B(x \leq y)$). - ► "Shelah's Strong Hypothesis" is actually not so strong! It is merely slightly stronger than "Singular Cardinal Hypothesis" (SCH). FRP implies SSH In particular FRP implies SCH - ▶ The proof of the equivalence of FRP with the assertion on openly generated Boolean algebras used the fact that FRP implies Shelah's Strong Hypothesis (SSH) - ▶ Shelah's Strong Hypothesis (SSH) is the principle equivalent to the assertion: For every cardinal κ we have $\mathrm{cf}([\kappa^+]^{\aleph_0},\subseteq)=\kappa^+$ where - $\triangleright \kappa^+$ denotes the successor cardinal of κ . - ho cf (A, \leq) for a partial ordering $\langle A, \leq \rangle$ is the smallest ardinality of $B \subseteq A$ cofinal in A (i.e., $\forall x \in A \exists y \in B(x \leq y)$) - "Shelah's Strong Hypothesis" is actually not so strong! It is merely slightly stronger than "Singular Cardinal Hypothesis" (SCH). Theorem 5 (F. and Rinot, submitted (201?)) FRP implies SSH. In particular, FRP implies SCH. - ▶ The proof of the equivalence of FRP with the assertion on openly generated Boolean algebras used the fact that FRP implies Shelah's Strong Hypothesis (SSH) - ▶ Shelah's Strong Hypothesis (SSH) is the principle equivalent to the assertion: For every cardinal κ we have $\mathrm{cf}([\kappa^+]^{\aleph_0},\subseteq)=\kappa^+$ where - $\triangleright \kappa^+$ denotes the successor cardinal of κ . - $ightharpoonup \operatorname{cf}(A, \leq)$ for a partial ordering $\langle A, \leq \rangle$ is the smallest cardinality of $B \subseteq A$ cofinal in A (i.e., $\forall x \in A \exists y \in B(x \leq y)$). - ► "Shelah's Strong Hypothesis" is actually not so strong! It is merely slightly stronger than "Singular Cardinal Hypothesis" (SCH). Theorem 5 (F. and Rinot, submitted (201?)) FRP implies SSH. In particular, FRP implies SCH. - ▶ The proof of the equivalence of FRP with the assertion on openly generated Boolean algebras used the fact that FRP implies Shelah's Strong Hypothesis (SSH) - ▶ Shelah's Strong Hypothesis (SSH) is the principle equivalent to the assertion: For every cardinal κ we have $\mathrm{cf}([\kappa^+]^{\aleph_0},\subseteq)=\kappa^+$ where - $\triangleright \kappa^+$ denotes the successor cardinal of κ . - $ightharpoonup \operatorname{cf}(A, \leq)$ for a partial ordering $\langle A, \leq \rangle$ is the smallest cardinality of $B \subseteq A$ cofinal in A (i.e., $\forall x \in A \exists y \in B(x \leq y)$). - ► "Shelah's Strong Hypothesis" is actually not so strong! It is merely slightly stronger than "Singular Cardinal Hypothesis" (SCH). Theorem 5 (F. and Rinot, submitted (201?)) FRP implies SSH In particular FRP implies SCH. - ▶ The proof of the equivalence of FRP with the assertion on openly generated Boolean algebras used the fact that FRP implies Shelah's Strong Hypothesis (SSH) - ▶ Shelah's Strong Hypothesis (SSH) is the principle equivalent to the assertion: For every cardinal κ we have $\mathrm{cf}([\kappa^+]^{\aleph_0},\subseteq)=\kappa^+$ where - $\triangleright \kappa^+$ denotes the successor cardinal of κ . - $ightharpoonup \operatorname{cf}(A, \leq)$ for a partial ordering $\langle A, \leq \rangle$ is the smallest cardinality of $B \subseteq A$ cofinal in A (i.e., $\forall x \in A \exists y \in B(x \leq y)$). - ► "Shelah's Strong Hypothesis" is actually not so strong! It is merely slightly stronger than "Singular Cardinal Hypothesis" (SCH). ## Theorem 5 (F. and Rinot, submitted (201?)) FRP implies SSH. In particular, FRP implies SCH. - \blacktriangleright We call a topological space X thin if for every $D \subseteq X$ we have $|\overline{D}| < |D|^+$. X is $<\kappa$ -thin for a cardinal κ if $|\overline{D}| < |D|^+$ holds for all $D \subseteq X$ of cardinality $< \kappa$. - \blacktriangleright A topological space X is countably tight if for every $Y \subseteq X$ and $x \in X$ if $x \in \overline{Y}$ then there is a countable $Y' \subseteq Y$ s.t. $x \in \overline{Y'}$. ## Theorem 6 (F. and Rinot, submitted (201?)) SSH is equivalent with the following assertion: For any countably tight topological space X if X is $< \aleph_1$ -thin then X is thin. The assertion (axiom) "there exists a weakly compact cardinal" is equi-consistent with the following statement over ZFC: Every stationary set $S \subseteq E_{\omega_0}^{\omega_2}$ reflects at almost all $E_{\omega_1}^{\omega_2}$ (M. Magidor 1982), Theorem 7 (Miyamoto, (2010)) The assertion (axiom) "there exists a Mahlo cardinal" is equi-consistent with $FRP(\aleph_2)$ over ZFC: The assertion (axiom) "there exists a weakly compact cardinal" is equi-consistent with the following statement over ZFC: Every stationary set $S \subseteq E_{\omega_0}^{\omega_2}$ reflects at almost all $E_{\omega_1}^{\omega_2}$ (M. Magidor 1982), Theorem 7 (Miyamoto, (2010)) The assertion (axiom) "there exists a Mahlo cardinal" is equi-consistent with $FRP(\aleph_2)$ over ZFC: My preprints and papers mentioned in the talk are available at: http://kurt.scitec.kobe-u.ac.jp/~fuchino/preprints.html This slide will be linked to: http://kurt.scitec.kobe-u.ac.jp/~fuchino/