Topological Characterization of Shelah's Strong Hypothesis and Fodor-type Reflection Principle

渕野 昌 (Sakaé Fuchino)

神戸大学大学院 システム情報学研究科

fuchino@diamond.kobe-u.ac.jp
http://kurt.scitec.kobe-u.ac.jp/~fuchino/

(November 27, 2010 (15:28 JST) version)

東北大学 ロジック セミナー での講演

July 23, 2010. 15:30 ~ 17:[12][0-9]

This presentation is typeset by pLATEX with beamer class.

Axiomatist reading of "Reverse Mathematics" Top. char. of SSH and FRP (2/21)

A "reverse" reading of Reverse Mathematics' philosophy in a broad sense from axiomatist point of view:

A (combinatorial) principle may be considered as prominent if it is equivalent to many "natural" "mathematical" statements over a base theory.

Axiomatist reading of "Reverse Mathematics" Top. char. of SSH and FRP (2/21)

A "reverse" reading of Reverse Mathematics' philosophy in a broad sense from axiomatist point of view:

A (combinatorial) principle may be considered as prominent if it is equivalent to many "natural" "mathematical" statements over a base theory.

Axiomatist reading of "Reverse Mathematics" Top. char. of SSH and FRP (2/21)

A "reverse" reading of Reverse Mathematics' philosophy in a broad sense from axiomatist point of view:

A (combinatorial) principle may be considered as prominent if it is equivalent to many "natural" "mathematical" statements over a base theory.

- Well-ordering theorem
- ▶ Zorn's lemma
- ▶ Existence of a basis to each vector space
- Tychonoff's theorem etc.

- ▶ There exists an inaccessible cardinal with tree property.
- ▶ There exists an inaccessible cardinal κ s.t. $\mathcal{L}_{\kappa,\omega}$ satisfies the Weak Compactness Theorem.
- ▶ There exists a Π_1^1 -indescribable cardinal. etc.

- ▶ Well-ordering theorem
- ▶ Zorn's lemma
- ▶ Existence of a basis to each vector space
- Tychonoff's theorem etc.

- ▶ There exists an inaccessible cardinal with tree property.
- ▶ There exists an inaccessible cardinal κ s.t. $\mathcal{L}_{\kappa,\omega}$ satisfies the Weak Compactness Theorem.
- ▶ There exists a Π_1^1 -indescribable cardinal. etc.

- ▶ Well-ordering theorem
- ▶ Zorn's lemma
- Existence of a basis to each vector space
- ▶ Tychonoff's theorem etc.

- ▶ There exists an inaccessible cardinal with tree property.
- ▶ There exists an inaccessible cardinal κ s.t. $\mathcal{L}_{\kappa,\omega}$ satisfies the Weak Compactness Theorem.
- ▶ There exists a Π_1^1 -indescribable cardinal. etc.

- ▶ Well-ordering theorem
- ▶ Zorn's lemma
- ▶ Existence of a basis to each vector space
- Tychonoff's theorem etc.

- ▶ There exists an inaccessible cardinal with tree property.
- ▶ There exists an inaccessible cardinal κ s.t. $\mathcal{L}_{\kappa,\omega}$ satisfies the Weak Compactness Theorem.
- ▶ There exists a Π_1^1 -indescribable cardinal. etc.

- ▶ Well-ordering theorem
- ▶ Zorn's lemma
- ▶ Existence of a basis to each vector space
- ▶ Tychonoff's theorem etc.

- ▶ There exists an inaccessible cardinal with tree property.
- ▶ There exists an inaccessible cardinal κ s.t. $\mathcal{L}_{\kappa,\omega}$ satisfies the Weak Compactness Theorem.
- ▶ There exists a Π_1^1 -indescribable cardinal. etc.

- ▶ Well-ordering theorem
- ▶ Zorn's lemma
- ▶ Existence of a basis to each vector space
- ▶ Tychonoff's theorem etc.

- ▶ There exists an inaccessible cardinal with tree property.
- ▶ There exists an inaccessible cardinal κ s.t. $\mathcal{L}_{\kappa,\omega}$ satisfies the Weak Compactness Theorem.
- ▶ There exists a Π_1^1 -indescribable cardinal. etc.

- ▶ Well-ordering theorem
- ▶ Zorn's lemma
- ▶ Existence of a basis to each vector space
- ▶ Tychonoff's theorem etc.

- ▶ There exists an inaccessible cardinal with tree property.
- ▶ There exists an inaccessible cardinal κ s.t. $\mathcal{L}_{\kappa,\omega}$ satisfies the Weak Compactness Theorem.
- ▶ There exists a Π_1^1 -indescribable cardinal. etc.

- ▶ Well-ordering theorem
- ▶ Zorn's lemma
- ▶ Existence of a basis to each vector space
- ▶ Tychonoff's theorem etc.

- ▶ There exists an inaccessible cardinal with tree property.
- ▶ There exists an inaccessible cardinal κ s.t. $\mathcal{L}_{\kappa,\omega}$ satisfies the Weak Compactness Theorem.
- ▶ There exists a Π_1^1 -indescribable cardinal. etc.

- ▶ Well-ordering theorem
- ▶ Zorn's lemma
- ▶ Existence of a basis to each vector space
- ▶ Tychonoff's theorem etc.

- ▶ There exists an inaccessible cardinal with tree property.
- ▶ There exists an inaccessible cardinal κ s.t. $\mathcal{L}_{\kappa,\omega}$ satisfies the Weak Compactness Theorem.
- ▶ There exists a Π_1^1 -indescribable cardinal. etc.

There can be also the following variation of the "reverse" reading of Reverse Mathematics' philosophy in a broader sense from axiomatist point of view:

A (combinatorial) principle may be considered as prominent if it is <u>equiconsistent</u> to many "natural" "mathematical" statements over a base theory.

There can be also the following variation of the "reverse" reading of Reverse Mathematics' philosophy in a broader sense from axiomatist point of view:

A (combinatorial) principle may be considered as prominent if it is <u>equiconsistent</u> to many "natural" "mathematical" statements over a base theory.

$$1+1=2$$

The assertion (axiom) "there exists a weakly compact cardinal" is equi-consistent with the following statements over ZFC:

- There is no ω_2 -Aronszajn tree (J.H. Silver, W.J. Mitchell 1972/73)
- ▶ Every stationary set $S \subseteq E_{\omega_0}^{\omega_2}$ reflects at almost all $E_{\omega_1}^{\omega_2}$ (M. Magidor 1982),

$$1+1=2$$

The assertion (axiom) "there exists a weakly compact cardinal" is equi-consistent with the following statements over ZFC:

- ► There is no ω_2 -Aronszajn tree (J.H. Silver, W.J. Mitchell 1972/73)
- ▶ Every stationary set $S \subseteq E_{\omega_0}^{\omega_2}$ reflects at almost all $E_{\omega_1}^{\omega_2}$ (M. Magidor 1982),

$$ightharpoonup 1 + 1 = 2.$$

The assertion (axiom) "there exists a weakly compact cardinal" is equi-consistent with the following statements over ZFC:

- There is no ω_2 -Aronszajn tree (J.H. Silver, W.J. Mitchell 1972/73)
- ▶ Every stationary set $S \subseteq E_{\omega_0}^{\omega_2}$ reflects at almost all $E_{\omega_1}^{\omega_2}$ (M. Magidor 1982),

$$ightharpoonup 1 + 1 = 2.$$

The assertion (axiom) "there exists a weakly compact cardinal" is equi-consistent with the following statements over ZFC:

- ► There is no ω_2 -Aronszajn tree (J.H. Silver, W.J. Mitchell 1972/73)
- ▶ Every stationary set $S \subseteq E_{\omega_0}^{\omega_2}$ reflects at almost all $E_{\omega_1}^{\omega_2}$ (M. Magidor 1982),

$$1+1=2.$$

The assertion (axiom) "there exists a weakly compact cardinal" is equi-consistent with the following statements over ZFC:

- ► There is no ω_2 -Aronszajn tree (J.H. Silver, W.J. Mitchell 1972/73)
- ▶ Every stationary set $S \subseteq E_{\omega_0}^{\omega_2}$ reflects at almost all $E_{\omega_1}^{\omega_2}$ (M. Magidor 1982),

$$ightharpoonup 1 + 1 = 2.$$

The assertion (axiom) "there exists a weakly compact cardinal" is equi-consistent with the following statements over ZFC:

- ► There is no ω_2 -Aronszajn tree (J.H. Silver, W.J. Mitchell 1972/73)
- ▶ Every stationary set $S \subseteq E_{\omega_0}^{\omega_2}$ reflects at almost all $E_{\omega_1}^{\omega_2}$ (M. Magidor 1982),

1+1=2

The assertion (axiom) "there exists a weakly compact cardinal" is equi-consistent with the following statements over ZFC:

- ► There is no ω_2 -Aronszajn tree (J.H. Silver, W.J. Mitchell 1972/73)
- ▶ Every stationary set $S \subseteq E_{\omega_0}^{\omega_2}$ reflects at almost all $E_{\omega_1}^{\omega_2}$ (M. Magidor 1982),

ightharpoonup 1 + 1 = 2.

The assertion (axiom) "there exists a weakly compact cardinal" is equi-consistent with the following statements over ZFC:

- ► There is no ω_2 -Aronszajn tree (J.H. Silver, W.J. Mitchell 1972/73)
- ▶ Every stationary set $S \subseteq E_{\omega_0}^{\omega_2}$ reflects at almost all $E_{\omega_1}^{\omega_2}$ (M. Magidor 1982),

- Every stationary set $S\subseteq E^{\omega_2}_{\omega_0}$ reflects at almost all $E^{\omega_2}_{\omega_1}$ (M. Magidor 1982),
- lacksqress For regular κ and $\lambda>\kappa$, $m{\mathcal{E}}_{\kappa}^{\lambda}=\{lpha<\lambda\,:\,\mathrm{cf}(lpha)=\kappa\}.$
- ▶ A stationary set $S \subseteq \lambda$, S reflects at $\alpha < \lambda$ if $S \cap \alpha$ is stationary in α .
- "stationary set $S\subseteq E_{\omega_0}^{\omega_2}$ reflects at almost all $E_{\omega_1}^{\omega_2}$ " means here that there is a closed unbounded $C\subseteq \lambda$ s.t.

$$\{lpha\in {\sf E}_{\omega_1}^{\omega_2}\,:\,{\sf S}\ {\sf reflects}\ {\sf at}\ lpha\}\supseteq{\sf C}\cap {\sf E}_{\omega_1}^{\omega_2}.$$

- Every stationary set $S\subseteq E^{\omega_2}_{\omega_0}$ reflects at almost all $E^{\omega_2}_{\omega_1}$ (M. Magidor 1982),
- ▶ For regular κ and $\lambda > \kappa$, $E_{\kappa}^{\lambda} = \{\alpha < \lambda : \operatorname{cf}(\alpha) = \kappa\}$.
- ▶ A stationary set $S \subseteq \lambda$, S reflects at $\alpha < \lambda$ if $S \cap \alpha$ is stationary in α .
- "stationary set $S\subseteq E_{\omega_0}^{\omega_2}$ reflects at almost all $E_{\omega_1}^{\omega_2}$ " means here that there is a closed unbounded $C\subseteq \lambda$ s.t.

$$\{ lpha \in {\it E}_{\omega_1}^{\omega_2} \,:\, {\it S} \ {\it reflects} \ {\it at} \ lpha \} \supseteq {\it C} \cap {\it E}_{\omega_1}^{\omega_2}.$$

- Every stationary set $S\subseteq E^{\omega_2}_{\omega_0}$ reflects at almost all $E^{\omega_2}_{\omega_1}$ (M. Magidor 1982),
- ▶ For regular κ and $\lambda > \kappa$, $E_{\kappa}^{\lambda} = \{\alpha < \lambda : \operatorname{cf}(\alpha) = \kappa\}$.
- ▶ A stationary set $S \subseteq \lambda$, S reflects at $\alpha < \lambda$ if $S \cap \alpha$ is stationary in α .
- "stationary set $S \subseteq E_{\omega_0}^{\omega_2}$ reflects at almost all $E_{\omega_1}^{\omega_2}$ " means here that there is a closed unbounded $C \subseteq \lambda$ s.t.

$$\{lpha\in {\it E}_{\omega_1}^{\omega_2}\,:\, {\it S} \ {\it reflects} \ {\it at} \ lpha\}\supseteq {\it C}\cap {\it E}_{\omega_1}^{\omega_2}.$$

- Every stationary set $S\subseteq E^{\omega_2}_{\omega_0}$ reflects at almost all $E^{\omega_2}_{\omega_1}$ (M. Magidor 1982),
- ▶ For regular κ and $\lambda > \kappa$, $E_{\kappa}^{\lambda} = \{\alpha < \lambda : \operatorname{cf}(\alpha) = \kappa\}$.
- ▶ A stationary set $S \subseteq \lambda$, S reflects at $\alpha < \lambda$ if $S \cap \alpha$ is stationary in α .
- "stationary set $S\subseteq E_{\omega_0}^{\omega_2}$ reflects at almost all $E_{\omega_1}^{\omega_2}$ " means here that there is a closed unbounded $C\subseteq \lambda$ s.t.

$$\{lpha\in {\it E}_{\omega_1}^{\omega_2}\,:\, {\it S} \ {\it reflects} \ {\it at} \ lpha\}\supseteq {\it C}\cap {\it E}_{\omega_1}^{\omega_2}.$$

Fodor-type Reflection Principle (FRP) is the principle which asserts that the following $FRP(\kappa)$ holds for all regular uncountable κ :

FRP(κ): For any stationary $S \subseteq E_{\omega}^{\kappa} = \{\alpha < \kappa : \operatorname{cf}(\alpha) = \omega\}$ and $g: S \to [\kappa]^{\leq \aleph_0}$ there is $I \in [\kappa]^{\aleph_1}$ such that

- ▶ $g(\alpha) \subseteq I$ for all $\alpha \in I \cap S$;
- ▶ for any regressive $f: S \cap I \to \kappa$ s.t. $f(\alpha) \in g(\alpha)$ for all $\alpha \in S \cap I$, there is $\xi^* < \kappa$ s.t. $f^{-1}{}^{II} \{\xi^*\}$ is stationary in sup(I).

Remark. By the last " \triangleright ", S reflects at $\sup(I)$.

Fodor-type Reflection Principle (FRP) is the principle which asserts that the following $FRP(\kappa)$ holds for all regular uncountable κ :

FRP(κ): For any stationary $S \subseteq E^{\kappa}_{\omega} = \{\alpha < \kappa : \operatorname{cf}(\alpha) = \omega\}$ and $g: S \to [\kappa]^{\leq \aleph_0}$ there is $I \in [\kappa]^{\aleph_1}$ such that

- ▶ $g(\alpha) \subseteq I$ for all $\alpha \in I \cap S$;
- ▶ for any regressive $f: S \cap I \to \kappa$ s.t. $f(\alpha) \in g(\alpha)$ for all $\alpha \in S \cap I$, there is $\xi^* < \kappa$ s.t. $f^{-1} {}'' \{ \xi^* \}$ is stationary in sup(I).

Remark. By the last " \triangleright ", S reflects at $\sup(I)$.

Fodor-type Reflection Principle (FRP) is the principle which asserts that the following $FRP(\kappa)$ holds for all regular uncountable κ :

FRP(κ): For any stationary $S \subseteq E_{\omega}^{\kappa} = \{ \alpha < \kappa : \mathrm{cf}(\alpha) = \omega \}$ and $g: S \to [\kappa]^{\leq \aleph_0}$ there is $I \in [\kappa]^{\aleph_1}$ such that

- $ightharpoonup \operatorname{cf}(I) = \omega_1;$
- ▶ $g(\alpha) \subseteq I$ for all $\alpha \in I \cap S$;
- ▶ for any regressive $f: S \cap I \to \kappa$ s.t. $f(\alpha) \in g(\alpha)$ for all $\alpha \in S \cap I$, there is $\xi^* < \kappa$ s.t. $f^{-1} {}'' \{ \xi^* \}$ is stationary in sup(I).

Remark. By the last " \triangleright ", S reflects at $\sup(I)$.

- ► FRP follows from RP.
- (F., Juhász, Soukup, Szentmiklóssy and Usuba, 2010)
 - **RP**: For any cardinal λ of cofinality $> \omega_1$ and stationary $S \subseteq [\lambda]^{\aleph_0}$, there is an $I \in [\lambda]^{\aleph_1}$ s.t.
 - \blacktriangleright $\omega_1 \subseteq I$

 - $lacksquare S\cap [I]^{leph_0}$ is stationary in $[I]^{leph_0}$.
- $\blacktriangleright [X]^{\kappa} = \{ x \subseteq X : |x| = \kappa \}.$
- ▶ $C \subseteq [X]^{\kappa}$ is closed unbounded if C is cofinal in $[X]^{\kappa}$ w.r.t. \subseteq and closed w.r.t. union of \subseteq -chain of length $\leq \kappa$.
- ▶ $S \subseteq [X]^{\kappa}$ is stationary if $S \cap C \neq \emptyset$ holds for any closed unbounded $C \subseteq [X]^{\kappa}$.

► FRP follows from RP.

(F., Juhász, Soukup, Szentmiklóssy and Usuba, 2010)

- ightharpoonup cf(I) = ω_1 ;
- $lacksquare S\cap [I]^{leph_0}$ is stationary in $[I]^{leph_0}$.
- $\blacktriangleright [X]^{\kappa} = \{ x \subseteq X : |x| = \kappa \}.$
- ▶ $C \subseteq [X]^{\kappa}$ is closed unbounded if C is cofinal in $[X]^{\kappa}$ w.r.t. \subseteq and closed w.r.t. union of \subseteq -chain of length $\leq \kappa$.
- ▶ $S \subseteq [X]^{\kappa}$ is stationary if $S \cap C \neq \emptyset$ holds for any closed unbounded $C \subseteq [X]^{\kappa}$.

► FRP follows from RP. (F., Juhász, Soukup, Szentmiklóssy and Usuba, 2010)

- \blacktriangleright $\omega_1 \subseteq I$;
- ightharpoonup cf(I) = ω_1 ;
- ▶ $S \cap [I]^{\aleph_0}$ is stationary in $[I]^{\aleph_0}$.
- $\blacktriangleright [X]^{\kappa} = \{ x \subseteq X : |x| = \kappa \}.$
- ▶ $C \subseteq [X]^{\kappa}$ is closed unbounded if C is cofinal in $[X]^{\kappa}$ w.r.t. \subseteq and closed w.r.t. union of \subseteq -chain of length $\leq \kappa$.
- ▶ $S \subseteq [X]^{\kappa}$ is stationary if $S \cap C \neq \emptyset$ holds for any closed unbounded $C \subseteq [X]^{\kappa}$.

► FRP follows from RP. (F., Juhász, Soukup, Szentmiklóssy and Usuba, 2010)

- \blacktriangleright $\omega_1 \subseteq I$;
- ightharpoonup cf(I) = ω_1 ;
- ▶ $S \cap [I]^{\aleph_0}$ is stationary in $[I]^{\aleph_0}$.
- $\blacktriangleright [X]^{\kappa} = \{ x \subseteq X : |x| = \kappa \}.$
- ▶ $C \subseteq [X]^{\kappa}$ is closed unbounded if C is cofinal in $[X]^{\kappa}$ w.r.t. \subseteq and closed w.r.t. union of \subseteq -chain of length $\leq \kappa$.
- ▶ $S \subseteq [X]^{\kappa}$ is stationary if $S \cap C \neq \emptyset$ holds for any closed unbounded $C \subseteq [X]^{\kappa}$.

► FRP follows from RP. (F., Juhász, Soukup, Szentmiklóssy and Usuba, 2010)

- \blacktriangleright $\omega_1 \subseteq I$;
- ightharpoonup cf(I) = ω_1 ;
- ▶ $S \cap [I]^{\aleph_0}$ is stationary in $[I]^{\aleph_0}$.
- $\blacktriangleright [X]^{\kappa} = \{ x \subseteq X : |x| = \kappa \}.$
- ▶ $C \subseteq [X]^{\kappa}$ is closed unbounded if C is cofinal in $[X]^{\kappa}$ w.r.t. \subseteq and closed w.r.t. union of \subseteq -chain of length $\leq \kappa$.
- ▶ $S \subseteq [X]^{\kappa}$ is stationary if $S \cap C \neq \emptyset$ holds for any closed unbounded $C \subseteq [X]^{\kappa}$.

► FRP follows from RP. (F., Juhász, Soukup, Szentmiklóssy and Usuba, 2010)

RP: For any cardinal λ of cofinality $> \omega_1$ and stationary $S \subseteq [\lambda]^{\aleph_0}$, there is an $I \in [\lambda]^{\aleph_1}$ s.t.

- $\blacktriangleright \ \omega_1 \subseteq I;$
- ightharpoonup cf(I) = ω_1 ;
- ▶ $S \cap [I]^{\aleph_0}$ is stationary in $[I]^{\aleph_0}$.
- $\blacktriangleright [X]^{\kappa} = \{ x \subseteq X : |x| = \kappa \}.$
- ▶ $C \subseteq [X]^{\kappa}$ is closed unbounded if C is cofinal in $[X]^{\kappa}$ w.r.t. \subseteq and closed w.r.t. union of \subseteq -chain of length $\leq \kappa$.
- ▶ $S \subseteq [X]^{\kappa}$ is stationary if $S \cap C \neq \emptyset$ holds for any closed unbounded $C \subseteq [X]^{\kappa}$.

Martin's Maximum
$$\Rightarrow$$
 MA⁺(σ -closed) \Rightarrow Axiom R \Rightarrow RP \Rightarrow FRP \uparrow The consistency of this principle follows from Con(ZFC+ there exists a supercompact cardinal)

The last implication is irreversible !!!

▶ RP implies $2^{\aleph_0} \le \aleph_2$ while FRP is compatible with arbitrary (consistent) size of the continuum.

Martin's Maximum
$$\Rightarrow$$
 MA⁺(σ -closed) \Rightarrow Axiom R \Rightarrow RP \Rightarrow FRP

The consistency of this principle follows from Con(ZFC+ there exists a supercompact cardinal content of the consistency of this principle follows from the consistency of the consistency

The last implication is irreversible !!!

▶ RP implies $2^{\aleph_0} \le \aleph_2$ while FRP is compatible with arbitrary (consistent) size of the continuum.

Martin's Maximum
$$\Rightarrow$$
 MA⁺(σ -closed) \Rightarrow Axiom R \Rightarrow RP \Rightarrow FRP

The consistency of this principle follows from Con(ZFC+ there exists a supercompact cardin

The last implication is irreversible !!!

▶ RP implies $2^{\aleph_0} \le \aleph_2$ while FRP is compatible with arbitrary (consistent) size of the continuum.

Martin's Maximum
$$\Rightarrow$$
 MA⁺(σ -closed) \Rightarrow Axiom R \Rightarrow RP \Rightarrow FRP

The consistency of this principle follows from $Con(\mathrm{ZFC}+\ there\ exists\ a\ supercompact\ cardinal$

The last implication is irreversible !!!

▶ RP implies $2^{\aleph_0} \le \aleph_2$ while FRP is compatible with arbitrary (consistent) size of the continuum.

Martin's Maximum
$$\Rightarrow$$
 MA⁺(σ -closed) \Rightarrow Axiom R \Rightarrow RP \Rightarrow FRP

The consistency of this principle follows from Con(ZFC+ there exists a supercompact cardinal

The last implication is irreversible !!!

▶ RP implies $2^{\aleph_0} \le \aleph_2$ while FRP is compatible with arbitrary (consistent) size of the continuum.

Martin's Maximum
$$\Rightarrow$$
 MA⁺(σ -closed) \Rightarrow Axiom R \Rightarrow RP \Rightarrow FRP

The consistency of this principle follows from Con(ZFC+ there exists a supercompact cardinal

The last implication is irreversible !!!

▶ RP implies $2^{\aleph_0} \le \aleph_2$ while FRP is compatible with arbitrary (consistent) size of the continuum.

Martin's Maximum
$$\Rightarrow$$
 MA⁺(σ -closed) \Rightarrow Axiom R \Rightarrow RP \Rightarrow FRP \uparrow The consistency of this principle follows from Con(ZFC+ there exists a supercompact cardinal)

The last implication is irreversible !!!

▶ RP implies $2^{\aleph_0} \le \aleph_2$ while FRP is compatible with arbitrary (consistent) size of the continuum.

Martin's Maximum
$$\Rightarrow$$
 MA⁺(σ -closed) \Rightarrow Axiom R \Rightarrow RP \Rightarrow FRP \uparrow The consistency of this principle follows from Con(ZFC+ there exists a supercompact cardinal)

The last implication is irreversible !!!

▶ RP implies $2^{\aleph_0} \le \aleph_2$ while FRP is compatible with arbitrary (consistent) size of the continuum.

Martin's Maximum
$$\Rightarrow$$
 MA⁺(σ -closed) \Rightarrow Axiom R \Rightarrow RP \Rightarrow FRP
The consistency of this principle follows from
Con(ZFC+ there exists a supercompact cardinal)

The last implication is irreversible !!!

▶ RP implies $2^{\aleph_0} \le \aleph_2$ while FRP is compatible with arbitrary (consistent) size of the continuum.

FRP is equivalent to the following assertion over ZFC:

- ightharpoonup A topological space X is countably compact if every countable open cover of X has a finite subcover.
- ▶ A topological space X is locally countably compact if every point has a closed neighborhood which is countably compact.
- ▶ X is $\leq \kappa$ -metrizable for a cardinal κ if every subspace Y of X of size $\leq \kappa$ is metrizable.
- \blacktriangleright There are at least 4 other statements in topology known to be equivalent to FRP.

FRP is equivalent to the following assertion over ZFC:

- ightharpoonup A topological space X is countably compact if every countable open cover of X has a finite subcover.
- ▶ A topological space X is locally countably compact if every point has a closed neighborhood which is countably compact.
- ▶ X is $\leq \kappa$ -metrizable for a cardinal κ if every subspace Y of X of size $\leq \kappa$ is metrizable.
- ► There are at least 4 other statements in topology known to be equivalent to FRP.

FRP is equivalent to the following assertion over ZFC:

- ightharpoonup A topological space X is countably compact if every countable open cover of X has a finite subcover.
- ▶ A topological space X is locally countably compact if every point has a closed neighborhood which is countably compact.
- ▶ X is $\leq \kappa$ -metrizable for a cardinal κ if every subspace Y of X of size $\leq \kappa$ is metrizable.
- ▶ There are at least 4 other statements in topology known to be equivalent to FRP.

FRP is equivalent to the following assertion over ZFC:

- ightharpoonup A topological space X is countably compact if every countable open cover of X has a finite subcover.
- ▶ A topological space X is locally countably compact if every point has a closed neighborhood which is countably compact.
- ▶ X is $\leq \kappa$ -metrizable for a cardinal κ if every subspace Y of X of size $\leq \kappa$ is metrizable.
- ► There are at least 4 other statements in topology known to be equivalent to FRP.

FRP is equivalent to the following assertion over ZFC:

- ightharpoonup A topological space X is countably compact if every countable open cover of X has a finite subcover.
- ▶ A topological space X is locally countably compact if every point has a closed neighborhood which is countably compact.
- ▶ X is $\leq \kappa$ -metrizable for a cardinal κ if every subspace Y of X of size $\leq \kappa$ is metrizable.
- \blacktriangleright There are at least 4 other statements in topology known to be equivalent to FRP.

▶ For an infinite graph $G = \langle G, \mathcal{E} \rangle$, the coloring number of G (col(G)) is defined as

$$col(G) = \min\{\mu :$$
 there is a well-ordering \prec of G s.t. $|\{y \in G : y \prec x \text{ and } \{x,y\} \in \mathcal{E}\}| < \mu \text{ for all } x \in G\}$

Theorem 2 (F., Sakai, Soukup and Usuba, preprint (201?))

FRP is equivalent to the following assertion over ZFC.

For any infinite graph $G = \langle G, \mathcal{E} \rangle$, if every subgraph H of G of cardinality $\leq \aleph_1$ satisfies $col(H) \leq \aleph_0$ then $col(G) \leq \aleph_0$.

▶ For an infinite graph $G = \langle G, \mathcal{E} \rangle$, the coloring number of G (col(G)) is defined as

$$\begin{split} col(G) &= \min\{\mu : \\ & \text{there is a well-ordering } \prec \text{ of } G \text{ s.t.} \\ &|\{y \in G : y \prec x \text{ and } \{x,y\} \in \mathcal{E}\}| < \mu \text{ for all } x \in G\}. \end{split}$$

Theorem 2 (F., Sakai, Soukup and Usuba, preprint (201?))

FRP is equivalent to the following assertion over ZFC:

```
For any infinite graph G = \langle G, \mathcal{E} \rangle, if every subgraph H of G of cardinality \leq \aleph_1 satisfies col(H) \leq \aleph_0 then col(G) \leq \aleph_0.
```

▶ For an infinite graph $G = \langle G, \mathcal{E} \rangle$, the coloring number of G (col(G)) is defined as

$$col(G) = min\{\mu :$$
 there is a well-ordering \prec of G s.t. $|\{y \in G : y \prec x \text{ and } \{x,y\} \in \mathcal{E}\}| < \mu \text{ for all } x \in G\}.$

Theorem 2 (F., Sakai, Soukup and Usuba, preprint (201?))

FRP is equivalent to the following assertion over ZFC:

For any infinite graph $G = \langle G, \mathcal{E} \rangle$, if every subgraph H of G of cardinality $\leq \aleph_1$ satisfies $col(H) \leq \aleph_0$ then $col(G) \leq \aleph_0$.

▶ A Boolean algebra B is openly generated if there is a mapping $f: B \to [B]^{<\aleph_0}$ s.t., for any $b, c \in B$ with $b \le c$, there is $d \in f(b) \cap f(c)$ s.t. $b \le d \le c$.

Theorem 3 (F. and Rinot, submitted (201?))

 FRP is equivalent to the following assertion over ZFC :

For any Boolean algebra B, if there are closed-unboundedly many openly generated subalgebras C of B of cardinality $\leq \aleph_1$ then B is openly generated.

▶ The proof of this theorem uses the fact that FRP implies Shelah's Strong Hypothesis (SSH)

▶ A Boolean algebra B is openly generated if there is a mapping $f: B \to [B]^{<\aleph_0}$ s.t., for any $b, c \in B$ with $b \le c$, there is $d \in f(b) \cap f(c)$ s.t. $b \le d \le c$.

Theorem 3 (F. and Rinot, submitted (201?))

FRP is equivalent to the following assertion over ZFC:

For any Boolean algebra B, if there are closed-unboundedly many openly generated subalgebras C of B of cardinality $\leq \aleph_1$ then B is openly generated.

► The proof of this theorem uses the fact that FRP implies Shelah's Strong Hypothesis (SSH)

▶ A Boolean algebra B is openly generated if there is a mapping $f: B \to [B]^{<\aleph_0}$ s.t., for any $b, c \in B$ with $b \le c$, there is $d \in f(b) \cap f(c)$ s.t. $b \le d \le c$.

Theorem 3 (F. and Rinot, submitted (201?))

FRP is equivalent to the following assertion over ZFC:

For any Boolean algebra B, if there are closed-unboundedly many openly generated subalgebras C of B of cardinality $\leq \aleph_1$ then B is openly generated.

► The proof of this theorem uses the fact that FRP implies Shelah's Strong Hypothesis (SSH)

▶ A Boolean algebra B is openly generated if there is a mapping $f: B \to [B]^{\leq \aleph_0}$ s.t., for any $b, c \in B$ with $b \leq c$, there is $d \in f(b) \cap f(c)$ s.t. $b \leq d \leq c$.

Theorem 3 (F. and Rinot, submitted (201?))

FRP is equivalent to the following assertion over ZFC:

For any Boolean algebra B, if there are closed-unboundedly many openly generated subalgebras C of B of cardinality $\leq \aleph_1$ then B is openly generated.

► The proof of this theorem uses the fact that FRP implies Shelah's Strong Hypothesis (SSH)

 \blacktriangleright If we drop "locally" from the assertion above, we obtain a theorem in ZFC:

Theorem 4 (Alan Dow, 1988)

For a countably compact topological space X, if X is $\leq \aleph_1$ -metrizable then X is metrizable

 \triangleright " $\leq \aleph_1$ " cannot be replaced by " $\leq \aleph_0$ ":

 \blacktriangleright If we drop "locally" from the assertion above, we obtain a theorem in ZFC:

Theorem 4 (Alan Dow, 1988)

For a countably compact topological space X, if X is $\leq \aleph_1$ -metrizable—then—X is metrizable

 $hd ``\leq leph_1"$ cannot be replaced by " $\leq leph_0"$:

 \blacktriangleright If we drop "locally" from the assertion above, we obtain a theorem in ZFC:

Theorem 4 (Alan Dow, 1988)

For a countably compact topological space X, if X is $\leq \aleph_1$ -metrizable—then—X is metrizable

 $hd ``\leq leph_1"$ cannot be replaced by " $\leq leph_0"$:

 \blacktriangleright If we drop "locally" from the assertion above, we obtain a theorem in ZFC:

Theorem 4 (Alan Dow, 1988)

For a countably compact topological space X, if X is $\leq \aleph_1$ -metrizable then X is metrizable.

> " $\leq \aleph_1$ " cannot be replaced by " $\leq \aleph_0$ ":

▶ If we drop "locally" from the assertion above, we obtain a theorem in ZFC:

Theorem 4 (Alan Dow, 1988)

For a countably compact topological space X, if X is $\leq \aleph_1$ -metrizable then X is metrizable.

 \triangleright " $\leq \aleph_1$ " cannot be replaced by " $\leq \aleph_0$ ":

▶ If we drop "locally" from the assertion above, we obtain a theorem in ZFC:

Theorem 4 (Alan Dow, 1988)

For a countably compact topological space X, if X is $\leq \aleph_1$ -metrizable then X is metrizable.

 \triangleright " $\leq \aleph_1$ " cannot be replaced by " $\leq \aleph_0$ ":

Claim 4.1

 ω_1 with the canonical order topology is countably compact.

Proof. Suppose that O_k , $k \in \omega$ are open subsets of ω_1 s.t.

(1)
$$\omega_1 = \bigcup_{k \in \omega} O_k$$
.

We show first that $\omega_1 \setminus O_k$ is bounded for some $k \in \omega$. Suppose otherwise. Then $\omega_1 \setminus O_k$, $k \in \omega$ are all closed and unbounded. It follows that $\omega_1 \setminus \bigcup_{k \in \omega} O_k = \bigcap_{k \in \omega} (\omega_1 \setminus O_k)$ is also

closed and unbounded; hence non empty in particular. This is a contradiction to (1).

We may assume that $\omega_1 \setminus O_0$ is bounded. Assume now, toward a contradiction, that $\bigcup_{k < i} O_k \neq \omega_1$ for all $i \in \omega$. For $i \in \omega$ let $\alpha_i < \omega_1$ be s.t.

$$\alpha_i \in \omega_1 \setminus \bigcup_{k < i} O_k$$
 but $(\alpha_i, \omega_1) \subseteq \bigcup_{k < i} O_k$.

Then $\langle \alpha_i : i \in \omega \rangle$ is decreasing and it is strictly decreasing at infinitely many places. A contradiction.

Claim 4.2

 ω_1 with the canonical order topology is first countable.

Proof. For $\alpha \in \omega_1$, if α is a successor ordinal then α is an isolated point. Otherwise α has the countable neighborhood base:

$$\{(\beta,\alpha+1):\beta<\alpha\}.$$

Claim 4.3

 ω_1 with the canonical order topology is $\leq \aleph_0$ -metrizable.

Proof. For any countable $Y\subseteq\omega_1$, there is $\alpha<\omega_1$ s.t. $Y\subseteq\alpha$. But since α (with its canonical order) is an order preserving embedding of α into \mathbb{R} , α is metrizable and hence also Y.

Claim 4.4

 ω_1 with the canonical order topology is not metrizable.

Proof. Suppose that there is a metric d which induces the order topology of ω_1 .

For all $\alpha \in Lim(\omega_1)$, let $n_{\alpha} \in \omega \setminus \{0\}$ be s.t.

$$B_d(\alpha, \frac{2}{n_\alpha}) \subseteq \alpha + 1 = (-1, \alpha + 1)$$
 and $\beta_\alpha < \alpha$ be s.t.

$$\beta_{\alpha} \in B_d(\alpha, \frac{1}{n_{\alpha}}).$$

By Fodor's lemma there is $n^* \in \omega$ and $\beta^* < \omega_1$ s.t.

$$S = \{ \alpha \in Lim(\omega_1) : n_\alpha = n^* \text{ and } \beta_\alpha = \beta^* \}$$

is stationary and hence, in particular, infinite.

Let α_0 , $\alpha_1 \in S$ be s.t. $\alpha_0 < \alpha_1$. Then we have

$$d(\alpha_0,\alpha_1) \leq d(\alpha_0,\beta^*) + d(\beta^*,\alpha_1) \leq \frac{1}{n_{\alpha_0}} + \frac{1}{n_{\alpha_1}} = \frac{2}{n^*}.$$

Thus, $\alpha_1 \in B_d(\alpha_0, \frac{2}{n^*}) = B_d(\alpha_0, \frac{2}{n_{\alpha_0}}) \subseteq \alpha_0 + 1$. This is a contradiction.

For a <u>locally</u> countably compact topological space X, if X is $\leq \aleph_1$ -metrizable then X is metrizable.

- ▶ If we assume V = L (the axiom asserting that the set-theoretic universe consists of constructible sets in the sense of Gödel) then the assertion above is false.
- ▶ Zoltan Balogh (posth. 2002) showed that Axiom R (recall that principle is e.g. a consequence of Martin's Maximum) implies the assertion above (Balogh's metrization theorem).

For a <u>locally</u> countably compact topological space X, if X is $\leq \aleph_1$ -metrizable then X is metrizable.

- ▶ If we assume V = L (the axiom asserting that the set-theoretic universe consists of constructible sets in the sense of Gödel) then the assertion above is false.
- ▶ Zoltan Balogh (posth. 2002) showed that Axiom R (recall that principle is e.g. a consequence of Martin's Maximum) implies the assertion above (Balogh's metrization theorem).

For a <u>locally</u> countably compact topological space X, if X is $\leq \aleph_1$ -metrizable then X is me<u>trizable</u>.

- ▶ If we assume V = L (the axiom asserting that the set-theoretic universe consists of constructible sets in the sense of Gödel) then the assertion above is false.
- ▶ Zoltan Balogh (posth. 2002) showed that Axiom R (recall that principle is e.g. a consequence of Martin's Maximum) implies the assertion above (Balogh's metrization theorem).

For a <u>locally</u> countably compact topological space X, if X is $\leq \aleph_1$ -metrizable then X is metrizable.

- ▶ If we assume V = L (the axiom asserting that the set-theoretic universe consists of constructible sets in the sense of Gödel) then the assertion above is false.
- ▶ Zoltan Balogh (posth. 2002) showed that Axiom R (recall that principle is e.g. a consequence of Martin's Maximum) implies the assertion above (Balogh's metrization theorem).

- \blacktriangleright The proof of the equivalence of FRP with the assertion on openly generated Boolean algebras used the fact that FRP implies Shelah's Strong Hypothesis (SSH)
- ▶ Shelah's Strong Hypothesis (SSH) is the principle equivalent to the assertion: For every cardinal κ we have $\mathrm{cf}([\kappa^+]^{\aleph_0},\subseteq)=\kappa^+$ where
 - $ho \kappa^+$ denotes the successor cardinal of κ . $ho \operatorname{cf}(A, \leq)$ for a partial ordering $\langle A, \leq \rangle$ is the smallest cardinality of $B \subseteq A$ cofinal in A (i.e., $\forall x \in A \exists y \in B(x \leq y)$).
- ▶ "Shelah's Strong Hypothesis" is actually not so strong! It is merely slightly stronger than "Singular Cardinal Hypothesis" (SCH).

Theorem 5 (F. and Rinot, submitted (201?))

FRP implies SSH. In particular, FRP implies SCH.

- ▶ The proof of the equivalence of FRP with the assertion on openly generated Boolean algebras used the fact that FRP implies Shelah's Strong Hypothesis (SSH)
- ▶ Shelah's Strong Hypothesis (SSH) is the principle equivalent to the assertion: For every cardinal κ we have $\mathrm{cf}([\kappa^+]^{\aleph_0},\subseteq)=\kappa^+$ where
 - $\triangleright \kappa^+$ denotes the successor cardinal of κ .
 - ho cf (A, \leq) for a partial ordering $\langle A, \leq \rangle$ is the smallest ardinality of $B \subseteq A$ cofinal in A (i.e., $\forall x \in A \exists y \in B(x \leq A)$
- "Shelah's Strong Hypothesis" is actually not so strong! It is merely slightly stronger than "Singular Cardinal Hypothesis" (SCH).

Theorem 5 (F. and Rinot, submitted (201?))

FRP implies SSH. In particular, FRP implies SCH.

- ▶ The proof of the equivalence of FRP with the assertion on openly generated Boolean algebras used the fact that FRP implies Shelah's Strong Hypothesis (SSH)
- ▶ Shelah's Strong Hypothesis (SSH) is the principle equivalent to the assertion: For every cardinal κ we have $\mathrm{cf}([\kappa^+]^{\aleph_0},\subseteq)=\kappa^+$ where
 - $ho \kappa^+$ denotes the successor cardinal of κ . $ho \operatorname{cf}(A, \leq)$ for a partial ordering $\langle A, \leq \rangle$ is the smallest cardinality of $B \subseteq A$ cofinal in A (i.e., $\forall x \in A \exists y \in B(x \leq y)$).
- ► "Shelah's Strong Hypothesis" is actually not so strong! It is merely slightly stronger than "Singular Cardinal Hypothesis" (SCH).

FRP implies SSH In particular FRP implies SCH

- ▶ The proof of the equivalence of FRP with the assertion on openly generated Boolean algebras used the fact that FRP implies Shelah's Strong Hypothesis (SSH)
- ▶ Shelah's Strong Hypothesis (SSH) is the principle equivalent to the assertion: For every cardinal κ we have $\mathrm{cf}([\kappa^+]^{\aleph_0},\subseteq)=\kappa^+$ where
 - $\triangleright \kappa^+$ denotes the successor cardinal of κ .
 - ho cf (A, \leq) for a partial ordering $\langle A, \leq \rangle$ is the smallest ardinality of $B \subseteq A$ cofinal in A (i.e., $\forall x \in A \exists y \in B(x \leq y)$)
- "Shelah's Strong Hypothesis" is actually not so strong! It is merely slightly stronger than "Singular Cardinal Hypothesis" (SCH).

Theorem 5 (F. and Rinot, submitted (201?))

FRP implies SSH. In particular, FRP implies SCH.

- ▶ The proof of the equivalence of FRP with the assertion on openly generated Boolean algebras used the fact that FRP implies Shelah's Strong Hypothesis (SSH)
- ▶ Shelah's Strong Hypothesis (SSH) is the principle equivalent to the assertion: For every cardinal κ we have $\mathrm{cf}([\kappa^+]^{\aleph_0},\subseteq)=\kappa^+$ where
 - $\triangleright \kappa^+$ denotes the successor cardinal of κ .
- $ightharpoonup \operatorname{cf}(A, \leq)$ for a partial ordering $\langle A, \leq \rangle$ is the smallest cardinality of $B \subseteq A$ cofinal in A (i.e., $\forall x \in A \exists y \in B(x \leq y)$).
- ► "Shelah's Strong Hypothesis" is actually not so strong! It is merely slightly stronger than "Singular Cardinal Hypothesis" (SCH).

Theorem 5 (F. and Rinot, submitted (201?))

FRP implies SSH. In particular, FRP implies SCH.

- ▶ The proof of the equivalence of FRP with the assertion on openly generated Boolean algebras used the fact that FRP implies Shelah's Strong Hypothesis (SSH)
- ▶ Shelah's Strong Hypothesis (SSH) is the principle equivalent to the assertion: For every cardinal κ we have $\mathrm{cf}([\kappa^+]^{\aleph_0},\subseteq)=\kappa^+$ where
 - $\triangleright \kappa^+$ denotes the successor cardinal of κ .
- $ightharpoonup \operatorname{cf}(A, \leq)$ for a partial ordering $\langle A, \leq \rangle$ is the smallest cardinality of $B \subseteq A$ cofinal in A (i.e., $\forall x \in A \exists y \in B(x \leq y)$).
- ► "Shelah's Strong Hypothesis" is actually not so strong! It is merely slightly stronger than "Singular Cardinal Hypothesis" (SCH).

Theorem 5 (F. and Rinot, submitted (201?))

FRP implies SSH In particular FRP implies SCH.

- ▶ The proof of the equivalence of FRP with the assertion on openly generated Boolean algebras used the fact that FRP implies Shelah's Strong Hypothesis (SSH)
- ▶ Shelah's Strong Hypothesis (SSH) is the principle equivalent to the assertion: For every cardinal κ we have $\mathrm{cf}([\kappa^+]^{\aleph_0},\subseteq)=\kappa^+$ where
 - $\triangleright \kappa^+$ denotes the successor cardinal of κ .
- $ightharpoonup \operatorname{cf}(A, \leq)$ for a partial ordering $\langle A, \leq \rangle$ is the smallest cardinality of $B \subseteq A$ cofinal in A (i.e., $\forall x \in A \exists y \in B(x \leq y)$).
- ► "Shelah's Strong Hypothesis" is actually not so strong! It is merely slightly stronger than "Singular Cardinal Hypothesis" (SCH).

Theorem 5 (F. and Rinot, submitted (201?))

FRP implies SSH. In particular, FRP implies SCH.

- \blacktriangleright We call a topological space X thin if for every $D \subseteq X$ we have $|\overline{D}| < |D|^+$. X is $<\kappa$ -thin for a cardinal κ if $|\overline{D}| < |D|^+$ holds for all $D \subseteq X$ of cardinality $< \kappa$.
- \blacktriangleright A topological space X is countably tight if for every $Y \subseteq X$ and $x \in X$ if $x \in \overline{Y}$ then there is a countable $Y' \subseteq Y$ s.t. $x \in \overline{Y'}$.

Theorem 6 (F. and Rinot, submitted (201?))

SSH is equivalent with the following assertion:

For any countably tight topological space X if X is $< \aleph_1$ -thin then X is thin.

The assertion (axiom) "there exists a weakly compact cardinal" is equi-consistent with the following statement over ZFC:

Every stationary set $S \subseteq E_{\omega_0}^{\omega_2}$ reflects at almost all $E_{\omega_1}^{\omega_2}$ (M. Magidor 1982),

Theorem 7 (Miyamoto, (2010))

The assertion (axiom) "there exists a Mahlo cardinal" is equi-consistent with $FRP(\aleph_2)$ over ZFC:

The assertion (axiom) "there exists a weakly compact cardinal" is equi-consistent with the following statement over ZFC:

Every stationary set $S \subseteq E_{\omega_0}^{\omega_2}$ reflects at almost all $E_{\omega_1}^{\omega_2}$ (M. Magidor 1982),

Theorem 7 (Miyamoto, (2010))

The assertion (axiom) "there exists a Mahlo cardinal" is equi-consistent with $FRP(\aleph_2)$ over ZFC:

My preprints and papers mentioned in the talk are available at:

http://kurt.scitec.kobe-u.ac.jp/~fuchino/preprints.html

This slide will be linked to:

http://kurt.scitec.kobe-u.ac.jp/~fuchino/