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sense from axiomatist point of view:

Axiomatist reading of " Reverse Mathematics” Top.char. of SSH and FRP (2/21)
A "reverse” reading of Reverse Mathematics’ philosophy in a broad
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A (combinatorial) principle may be considered as

prominent if it is equivalent to many “natural”
‘mathematical” statements over a base theory.
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Axiomatist reading (1/4): examples in set theory  Top.char. of SSH and FRP (3/21)

Axiom of Choice (AC) is equivalent to each of the following
statements over ZF:

» Well-ordering theorem
» Zorn's lemma

> Existence of a basis to each vector space
» Tychonoff’s theorem etc.

The assertion (axiom) “there exists a weakly compact cardinal” is

equivalent to each of the following statements over ZFC:

> There exists an inaccessible cardinal with tree property.

> There exists an inaccessible cardinal  s.t. L, satisfies the
Weak Compactness Theorem.

» There exists a }-indescribable cardinal. etc.
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There can be also the following variation of the "reverse” reading
of Reverse Mathematics' philosophy in a broader sense from
axiomatist point of view:

A (combinatorial) principle may be considered as
prominent if it is equiconsistent to many “natural”
“mathematical” statements over a base theory.




Axiomatist reading (3/4): examples in set theory Top.char. of SSH and FRP (5/21)

AC is equi-consistent with the following statement over ZF:

» 1+1=2.

The assertion (axiom) “there exists a weakly compact cardinal” is
equi-consistent with the following statements over ZFC:

» There is no wy-Aronszajn tree
(J.H.Silver, W.J. Mitchell 1972/73)

» Every stationary set S C E;? reflects at almost all £57?
(M. Magidor 1982),

Remark. In the last two statements above, there is no mention at

all on “large” cardinals!!
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Top. char. of SSH and FRP (6/21)
is equi-consistent with the following statement over ZFC:

The assertion (axiom) “there exists a weakly compact cardinal”

Every stationary set S C E;;2 reflects at almost all £;2
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The assertion (axiom) “there exists a weakly compact cardinal”
is equi-consistent with the following statement over ZFC:

Every stationary set S C E;;2 reflects at almost all £;2
(M. Magidor 1982),

» For regular k and A > K, £} = {a < A\ : cf(a) = K}

> A stationary set S C A, S reflects at o < A if SN« is stationary
in a.

» “stationary set S C Ee reflects at almost all £52" means here
that there is a closed unbounded C C A\ s.t.

{a € EZ? o S reflects at a} D CNEZ2.
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Fodor-type Reflection Principle Top. char. of SSH and FRP (7/21)

Fodor-type Reflection Principle (FRP) is the principle which asserts
that the following FRP (%) holds for all regular uncountable «:

FRP(x): For any stationary S C Ef = {a < &k
and g : S — [k]=N0 there is | € [k]™ such that
> cf(]) = wi;

» g(a) Clforallacins;

: of(a) = w}

» for any regressive f : SN/ — k s.t. f(a) € g(a) for all

a € SN, there is £ < k s.t. £~ 1"{¢*} is stationary in
sup(1).

Remark. By the last "»", S reflects at sup(/).
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Fodor-type Reflection Principle (2/3) Top. char. of SSH and FRP (8/21)

» FRP follows from RP.
(F., Juhdsz, Soukup, Szentmikléssy and Usuba, 2010)

RP: For any cardinal A of cofinality > w; and stationary S C
[\]Y, there is an | € [A]™ s.t.

> wi C I/

> cf(/) = wy;

» SN [/]N is stationary in [/]M.

> (X]"={xCX :|x|=r}

» C C [X]" is closed unbounded if C is cofinal in [X]* w.r.t. C
and closed w.r.t. union of C-chain of length < k.

» S C [X]" is stationary if SN C # () holds for any closed
unbounded C C [X]".
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Known implications among related combinatorial principles:

Martin's Maximum = MA® (o-closed) = Axiom R = RP = FRP
T

The consistency of this principle follows from
Con(ZFC+ there exists a supercompact cardinal)

The last implication is irreversible !!!

» RP implies 2% < X, while FRP is compatible with arbitrary
(consistent) size of the continuum.

(F., Juhdsz, Soukup, Szentmikléssy and Usuba, 2010)



Assertions equivalent to FRP (1/3)

Top. char. of SSH and FRP (10/21)
Theorem 1 (F., Juhdsz, Soukup, Szentmikléssy and Usuba,
(2010); F., Sakai, Soukup and Usuba, preprint (2017))

FRP is equivalent to the following assertion over ZFC:

if X is < Ny-metrizable

For a locally countably compact topological space X,

then X is metrizable.
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Theorem 1 (F., Juhdsz, Soukup, Szentmikléssy and Usuba,
(2010); F., Sakai, Soukup and Usuba, preprint (2017))

FRP is equivalent to the following assertion over ZFC:

For a locally countably compact topological space X,

if X is <Ny-metrizable then X is metrizable.

> A topological space X is countably compact if every countable
open cover of X has a finite subcover.

> A topological space X is locally countably compact if every
point has a closed neighborhood which is countably compact.

» X is < k-metrizable for a cardinal « if every subspace Y of X of
size < Kk is metrizable.

» There are at least 4 other statements in topology known to be
equivalent to FRP.
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Assertions equivalent to FRP (2/3)
(col(G)) is defined as

Top. char. of SSH and FRP (11/21)
» For an infinite graph G = (G, &), the coloring number of G
col(G) = min{yu :

there is a well-ordering < of G s.t.

[{y € G:y<xand{x,y} € £}| < pforall x € G}.

Theorem 2 (F., Sakai, Soukup and Usuba, preprint (2017))
FRP is equivalent to the following assertion over ZFC:
For any infinite graph G = (G,&), if

col(H) < Ng

every subgraph H of G of cardinality < N, satisfies
then

col(G) < No.
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Assertions equivalent to FRP (3/3)
» A Boolean algebra B is openly generated if there is a mapping

Top. char. of SSH and FRP (12/21)
f: B — [B]<Y s.t., for any b, c € B with b < c, there is
def(b)nf(c)st. b<d<ec.

Theorem 3 (F. and Rinot, submitted (2017))

FRP is equivalent to the following assertion over ZFC:
For any Boolean algebra B,

if there are closed-unboundedly many openly generated subalge-
bras C of B of cardinality < N; then

B is openly generated.
» The proof of this theorem uses the fact that FRP implies
Shelah’s Strong Hypothesis (SSH)
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Background of Theorem 1

Theorem 1 asserts that FRP is equivalent to the assertion: “For a

locally countably compact topological space X, if X is
< Nj;-metrizable then X is metrizable”.

> If we drop “locally” from the assertion above, we obtain a
theorem in ZFC:

Theorem 4 (Alan Dow, 1988)

For a countably compact topological space X,
if X is <Ni-metrizable then X is metrizable. O

> “<N;” cannot be replaced by “<Ny":

wy (the first uncountable ordinal (= ¥; as a set)) with the canon-

ical order topology is countably compact, first countable, and
< Ng-metrizable but not metrizable.
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The order topology of w; (1/3) Top.char. of SSH and FRP (14/21)

Claim 4.1

w1 with the canonical order topology is countably compact.

Proof. Suppose that Oy, k € w are open subsets of w; s.t.

(1) w1 = Ukew Ok'

We show first that wy \ O is bounded for some k € w.

Suppose otherwise. Then w; \ Ok, k € w are all closed and
unbounded. It follows that w1 \ Uyc,, Ok = [kew (w1 \ Ok) is also
closed and unbounded; hence non empty in particular. This is a
contradiction to (1).

We may assume that wy \ Op is bounded. Assume now, toward a
contradiction, that | J,_; Ok # w1 for all i € w. For i € w let

aj < wi be s.t.

@i € w1 \ Uk<; Ok but (e, wi) € Uy<; Ok

Then (o : i € w) is decreasing and it is strictly decreasing at

infinitely many places. A contradiction. . _ o



The order topology of w; (2/3) Top.char. of SSH and FRP (15/21)

Claim 4.2

w1 with the canonical order topology is first countable.

Proof. For oo € wy, if «v is a successor ordinal then « is an isolated
point. Otherwise « has the countable neighborhood base:

{(Bya+1): B <a}. 0

Claim 4.3
w1 with the canonical order topology is < Ny-metrizable.
Proof. For any countable Y C wy, thereis a < w; s.t. Y C a.

But since « (with its canonical order) is an order preserving
embedding of « into R, « is metrizable and hence also Y. O



The order topology of w; (3/3) Top.char. of SSH and FRP (16/21)

Claim 4.4

w1 with the canonical order topology is not metrizable.

Proof. Suppose that there is a metric d which induces the order
topology of wy.
For all @ € Lim(w), let n, € w\ {0} be s.t.
By(«, n%) Ca+l=(-1l,a+1)and f, < o be s.t.
Ba € Bd(“??%)'
By Fodor’s lemma there is n* € w and * < w; s.t.
S ={a € Llim(wi) : np, =n*and B, = *}
is stationary and hence, in particular, infinite.
Let ag, ar1 € S be s.t. ap < 1. Then we have

d(ao, 1) < d(ao, %)+ d(B*,01) < - + - = =

Naygy Nay n*
Thus, a; € By(ao, %) = By(ao, 2-) C ap + 1. Thisis a
@0
contradiction. O
=] = - = =
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X 1s metrizable.
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Background of Theorem 1 (2) Top.char. of SSH and FRP (17/21)

The statement of Theorem 1 is a natural generalization of Dow's
Theorem:

For a locally countably compact topological space X,
if X is <Nj-metrizable then X is metrizable.

It has been known that this statement is independent form ZFC:

> If we assume V = L (the axiom asserting that the set-theoretic
universe consists of constructible sets in the sense of Godel) then
the assertion above is false.

» Zoltan Balogh (posth. 2002) showed that Axiom R (recall that
principle is e.g. a consequence of Martin's Maximum) implies the
assertion above (Balogh's metrization theorem).

=] =) = = = A



Shelah’s Strong Hypothesis Top. char. of SSH and FRP (18/21)

» The proof of the equivalence of FRP with the assertion on
openly generated Boolean algebras used the fact that FRP implies
Shelah’s Strong Hypothesis (SSH)

» Shelah’s Strong Hypothesis (SSH) is the principle equivalent to
the assertion: For every cardinal s we have cf([x1]", C) = T
where

> kT denotes the successor cardinal of .
> cf(A, <) for a partial ordering (A, <) is the smallest
cardinality of B C A cofinal in A (i.e., Yx € Ady € B(x < y)).

» “Shelah’s Strong Hypothesis” is actually not so strong!
It is merely slightly stronger than “Singular Cardinal Hypothesis”
(SCH).

Theorem 5 (F. and Rinot, submitted (2017))
FRP implies SSH. In particular, FRP implies SCH.

=] - =
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Theorem 5 (F. and Rinot, submitted (2017))
FRP implies SSH. In particular, FRP implies SCH.
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SSH also enjoys a topological characterization  Top.char. of SSH and FRP (19/21)

» We call a topological space X thin if for every D C X we have
|D| < |D|". X is <x-thin for a cardinal s if |D| < |D|" holds
for all D C X of cardinality < x.

> A topological space X is countably tight if for every Y C X and
x € X if x € Y then there is a countable Y/ C Y s.t. x € Y.

Theorem 6 (F. and Rinot, submitted (2017))

SSH is equivalent with the following assertion:

For any countably tight topological space X
if X is <Ni-thin then X is thin.
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Consistency Strength

Top. char. of SSH and FRP (20/21)
is equi-consitstent with the following statement over ZFC

The assertion (axiom) “there exists a weakly compact cardinal”

Every stationary set S C Ej2 reflects at almost all £;2
(M. Magidor 1982),




Consistency Strength

Top. char. of SSH and FRP (20/21)
is equi-consitstent with the following statement over ZFC:

The assertion (axiom) “there exists a weakly compact cardinal”

Every stationary set S C Ej2 reflects at almost all £;2
(M. Magidor 1982),

Theorem 7 (Miyamoto, (2010))

The assertion (axiom) “there exists a Mahlo cardinal” is
equi-consistent with FRP(N;) over ZFC:



Thank you for your attention!

Top. char. of SSH and FRP (21/21)
My preprints and papers mentioned in the talk are available at:

http://kurt.scitec.kobe-u.ac.jp/"fuchino/preprints.html
This slide will be linked to:

http://kurt.scitec.kobe-u.ac.jp/"fuchino/
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