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Set theory is the theory of everything (in mathematics) Spead-up Theorems (2/21)

◮ The axiom system of standard set theory (Zermelo Fraenkel set
theory with Axiom of Choice, abbr: ZFC) provides a framework in
which all known mathematical theories (and their proofs) can be
formulated.

◮ Set theory also provides powerful meta-mathematical tools to
analyze the interrelation between mathematical theorems and
theories (mostly in terms of consistency strength but also in other
ways).

⊲ If some mathematical statement ϕ is shown to be unprovable in
ZFC, (e.g. by using the method of forcing) then it should be
regarded that ϕ is not provable in the (conventional) mathematics.

⊲ If it is shown that a mathematical theorem ϕ unprovable in a
fragment F of ZFC (e.g. F = Zermelo’s set theory Z without the
Axiom of Choice), this may be interpreted either that ϕ is a result
outside the classical mathematics, or that this is an example
showing the mathematical necessity of those axioms of set theory
used in the proof.

https://plato.stanford.edu/entries/set-theory/#For


Naïve axiomatic set theory Spead-up Theorems (3/21)

◮ The axioms of ZFC are built on the single predicate “∈” where
“x ∈ y ” means x belongs to y as an element.

⊲ We do not introduce a predicate for expressing “x is a set” since
everything is a set in set theory. If we say “for all x ...” in an axiom
of set theory, what is meant is “for all set x , ...”.

◮ In the following, The axiom system ZFC of set theory is formulated
with certain redundancy. This formulation is chosen on purpose so
that some important subtheories of ZFC are subsets of the system.



Naïve axiomatic set theory (2/4) Spead-up Theorems (4/21)

◮ The axioms of Zermelo’s set theory Z are the following statements:

Extensionality: If we have u ∈ x if and only if u ∈ y for any u,
then x = y .

Empty Set: There is x s.t. u 6∈ x for any u

(such set x is denoted by ∅).

Pair: For x and y there is z s.t., for any u, u ∈ z if and only if
u = x or u = y (notation: z = {x , y}).

Union: For any x , there is y s.t., for any u, u ∈ y if and only if
u ∈ z for some z ∈ x (notation: y =

⋃
x).

Separation: If Φ(·) is a property expressed by using only “∈” and
“=” then for any x there is y s.t. u ∈ y if and only if u ∈ x and
Φ(u) holds. (notation: y = {u ∈ x : Φ(u)}).

Power Set: For any x , there is y s.t., for any u, u ∈ y if and only if
all elements of u are elements of x (notation: y = P(x)).



Naïve axiomatic set theory (3/4) Spead-up Theorems (5/21)

Infinity: There is x s.t. ∅ ∈ x and, for any y ∈ x ,
⋃
{y , {y , y}}

(= y ∪ {y}) ∈ x .

⊲ Zermelo’s axiom system of set theory consists of all the axioms
introduced sofar.

◮ Most of classical mathematics can be developed in the axiom
system Z (see the argument in the next slide but one). The next
Axiom of Choice (abbr.: AC) is often used in modern mathematics
(there are even a couple of theorems in Calculus and Linear Algebra
in which we need this axiom):

AC: For any x s.t. ∅ 6∈ x and s.t. any distinct y , y ′ ∈ x have empty
intersection (i.e. there is no u with u ∈ y and u ∈ y ′), there is z s.t.
for each y ∈ x there is the unique u ∈ z s.t. u ∈ y .

◮ The axiom system which is obtained by adding AC to Z is denoted
by ZC.



Naïve axiomatic set theory (3/4) Spead-up Theorems (6/21)

◮ Finally, the axiom system ZFC is the system obtained by adding the
following axioms to the axioms of ZC:

Replacement: For any x , if Φ(·, ·) is a property expressed by using
only “∈” and “=” s.t., for any u ∈ x there is the unique v s.t.
Φ(u, v) holds, then there is y s.t. v ∈ y if and only if Φ(u, v) for
some u ∈ x (notation: y = {v : Φ(u, v) for some u ∈ x}).

Foundation: For any non empty x , there is y ∈ x s.t. there is no
y ′ ∈ x with y ′ ∈ y .



The whole mathematics can be developed in ZFC Spead-up Theorems (7/21)

◮ Most of the classical mathematics can be developed in Z!

◮ All the usual set operations and relations can be defined in Z.

⊲ For example, we can define x ∪ y =
⋃
{x , y},

x ∩ y = {u ∈ x : u ∈ y}, x \ y = {u ∈ x : u 6∈ y},
〈x , y〉 = {{x , x}, {x , y}},
x × y = {〈u, v〉 ∈ P(P(x ∪ y)) : u ∈ x , v ∈ y}

x ⊆ y ⇔ z ∈ y holds for all z ∈ x ,

f is a function from x to y ⇔ f ⊆ x × y and for any u ∈ x there
is a unique v ∈ y s.t. 〈u, v〉 ∈ f

f (u) = v ⇔ 〈u, v〉 ∈ f , etc.

◮ For a set x as in the Axiom of Infinity, let

ω = {y ∈ x : y ∈ z for all z s.t. ∅ ∈ z and
u ∪ {u} ∈ z for all u ∈ z}

=
⋂
{z : ∅ ∈ z and

⋂
{y , {y , y}} ∈ z for all y ∈ z}.



The whole mathematics can be developed in ZFC (2/2) Spead-up Theorems (8/21)

◮ Most of the classical mathematics can be developed in Z!

◮ ω can be seen as the set of all 0 = ∅, 1 = {0}, 2 = {0, 1},
3 = {0, 1, 2}, etc. Thus ω can be considered as the set of natural
numbers. We distinguish between meta-mathematical natural
numbers and natural numbers in set theory and the collection of the
former is denoted by N.

◮ We can introduce basic operations like addition and multiplication
on ω which satisfy all the properties these functions should satisfy.

◮ Starting from ω with the basic operations, we can define the set of
rational numbers Q and the set of real numbers R. The Axiom of
Power Set is used to define R over Q as a set.

◮ Using the notion of function as a set, introduced earlier, We can
reformulate AC as:

AC: (Reformulated) For any x s.t. ∅ 6∈ x , there is f : x →
⋃
x s.t.,

for each y ∈ x , f (y) ∈ y .



Meta-mathematics Spead-up Theorems (9/21)

◮ The axiom systems of Z, ZFC etc. formulated as above are still
highly inaccurate in many ways. They can be made precise by
reformulating them on basis of the predicate logic.

◮ In the following, we work in “meta-mathematics”. In particular any
set-theoretic notation in the following is just for convenience. No
set theory is assumed.



Predicate logic Spead-up Theorems (10/21)

⊲ A language L is a collection of constant, function and relation
symbols {ci , fj , rk}i∈I ,j∈J,k∈K . We keep an (potentially infinite) list
of symbols for variables x0, x1,... in stock.

⊲ L-terms are defined recursively by:

(1) a variable is an L-term; (2) a constant symbol of L is an
L-term; (3) if t0,..., tn−1 are L-terms, and f is an n-ary function
symbol of L, then f (t0, ..., tn−1) is an L-term; (4) nothing else.

⊲ If all the variables, which appear in a term t, are in the list
x0, ..., xk−1, we write t = t(x0, ..., xk−1).



Predicate logic (2/2) Spead-up Theorems (11/21)

⊲ L-formulas are defined recursively by:

(1) if t0 and t1 are L-terms then t0 ≡ t1 is an L-formula; (2) if
t0,..., tn−1 are L-terms and r is an n-ary relation symbol in L, then
r(t0, ..., tn−1) is an L-formula; (3) if ϕ and ψ are L-formulas, then
¬ϕ and (ϕ→ ψ) are L-formulas; (4) if ϕ is an L-formula and x a
variable, then ∃x ϕ is an L-formula; (5) nothing else.

⊲ a variable x in an L-formula ϕ is said to be free in ϕ if there is no
subformula of the form ∃x ψ containing the appearance of the
variable x in ψ. We write ϕ = ϕ(x0, ..., xk−1), if all free variables of
ϕ are among x0, ..., xk−1.

⊲ An L-formula without any free variable is called an L-sentence.



Predicate logic (3/3) Spead-up Theorems (12/21)

◮ The intended reading of ¬ϕ, (ϕ→ ψ), ∃x ϕ is “ϕ does not hold”,
“ϕ implies ψ”, and “there exists x s.t. ϕ”, respectively.

⊲ We can also express (ϕ ∨ ψ) [“ϕ or ψ”], (ϕ ∧ ψ) [“ϕ and ψ”],
(ϕ↔ ψ) [“ϕ if and only if ψ”], ∀x ϕ [“for all x we have ϕ”] by

(¬ϕ→ ψ), ¬(¬ϕ ∨ ¬ψ), ((ϕ→ ψ) ∧ (ψ → ϕ)), and ¬∃x¬ϕ

respectively.

◮ With the intended reading of the logical symbols in mind, we can
reformulate the formal axioms of ZFC. Let Lε be the language
consisting of the single binary relation symbol ε (whose intended
interpretation is the set-theoretic element relation).

Empty Set: ∃x ∀y (¬y ε x)
.

.

.

Separation: for each Lε-formula ϕ = ϕ(y , x0, ..., xk−1),

∀x0 · · · ∀xk−1∀u∃v ∀y (y ε v ↔ (y ε u ∧ ϕ))
.

.

.



A formal deduction system of the predicate logic Spead-up Theorems (13/21)

◮ We can introduce a formal deduction system for the predicate logic
which encompasses all logical deduction in mathematics —— The
completeness of the system is “guaranteed” by Gödel’s completeness
theorem.

◮ For a language L and an L-theory (concretely given collection of
L-sentences) T , a proof P of an L-formula ϕ from T is a sequence
ϕ0, ...,ϕn of L-formulas s.t. ϕn = ϕ, and each ϕi in the sequence is
either an element of T , or one of the following logical axioms, or ϕi

is deduced from earlier formulas in the sequence by one of the
deduction schemes below.

⊲ If there is a proof P of ϕ from T , we write T ⊢P ϕ. If there is a
proof of ϕ from T , we write T ⊢ ϕ.



Axioms and deduction rules of the formal system Spead-up Theorems (14/21)

Axioms of equality: ∀x x ≡ x , ∀x∀y (x ≡ y → y ≡ x),...

Logical axioms: All tautology of propositional logic (for example,
all L-formulas of the form (ϕ→ (ψ → ϕ)))

⊲ Note that there is an algorithm to decide if a given formula is a
tautology.

Existential axioms: All L-formulas of the form (ϕ(t/x) → ∃x ϕ)
for an L-formula ϕ and L-term t where the substitution ϕ(t/x) is
appropriate (i.e., without any conflict of the variables in ϕ and t)

Deduction schemes:

ϕ, (ϕ→ ψ)

ψ
(Modus Ponens)

(ϕ→ ψ)

(∃xϕ→ ψ)
where x is not free in ψ

( Rule of Existential
Quantification)



Significance of the strict axiomatization Spead-up Theorems (15/21)

◮ By the strict axiomatization of set theory over the predicate logic,
we can say definitively if a proof is correct or not. Theoretically, this
can be even checked mechanically (-> proof checking, automated
theorem proving ATP)

◮ ZFC over predicate logic gives the superset of the range of
conventional mathematics.

◮ Foundational questions about consistency and relative consistency
can be asked first after the strict axiomatization has been done.

◮ After the strict axiomatization has been done, meta-mathematical
methods can be applied to obtain mathematical results (even inside
ZF).



Meta-mathematics translated into the set theory Spead-up Theorems (16/21)

◮ Let L{} be the language Lε extended by adding the constant and
function symbols ∅, {·, ·}, · ∪ ·. Let Z{}, ZFC{}, etc. be the
expansion of the axiom systems Z, ZFC, etc. in L{} obtained by
adding the axioms saying the expected definitions of the new
symbols (e.g., ∀x (¬x ε ∅) is one of such definitions).

◮ Let Z0 be the minimal subtheory of Z{} containing all the axioms
needed in the following arguments.

◮ In Z0, finite sequences can be defined as mapping t from some
n ∈ ω (with n = {0, ..., n − 1}) where n is the length of the
sequence and the ith component of t is t(i). The set ω>X of all
finite sequences of elements of X can be also considered in Z0. In
the following T , T ′ etc. are concretely given L{}-theories extending
Z0.



Meta-mathematics translated into the set theory (2/3) Spead-up Theorems (17/21)

◮ For a concretely given language L all the symbols which appear in
L-formulas can be coded by elements of ω × ω. For example,
variables x0, x1,... are coded by 〈0, 0〉, 〈1, 0〉,..., symbols ‘→’, ‘¬’,
‘∃’,... by 〈0, 1〉, 〈1, 1〉, 〈2, 1〉,... etc.

◮ Further in Z0, we can define sets TermL{}
, FmlL{}

, ppZFC{}qq,
ppTqq ⊆ ω>ω×ω which correspond to the collections of L{}-terms,
L{}-formulas, axioms of ZFC and axioms of T respectively, by
corresponding recursive definition which can be done in Z0.

◮ The predicate “P is a proof of ϕ from ppTqq” can be also
introduced in Z0 as an appropriate L{}-formula which we abbreviate
as proof (P, ppTqq, ϕ). The L{}-formula ∃P proof (P, ppTqq, ϕ)
then expresses that “ϕ is provable from ppTqq”. This formula is
abbreviated as prov(ppTqq, ϕ).



Meta-mathematics translated into the set theory (3/3) Spead-up Theorems (18/21)

◮ We define Th(ppTqq) = {ϕ ∈ FmlL{}
: prov(ppTqq, ϕ)}. Th(T )

denotes the meta-theoretical original of Th(ppTqq).

◮ The predicate consis(ppTqq) is defined by Th(ppTqq) 6≡ FmlL{}
.

Intuitively the predicate claims that “T is consistent”.

◮ The following surprising result is a variation of Gödel’s Second
Incompleteness Theorem. Remember that T is a concretely given
L{}-theory with T ⊇ Z0.

Theorem 1.

(a) If T is consistent then consis(ppTqq) is not provable in T .

(b) any concretely given extension T ′ of T is not decidable, that
is, Th(T ′) is not recursive (computable), as far as T ′ is consistent.



Speed-up theorems Spead-up Theorems (19/21)

◮ For a proof P , let the length L(P) of the proof P be defined as the
sum of of the length of formulas in P . For an L{}-formula ϕ, let
WT (ϕ) be the smallest possible length of a proof of ϕ from T , if ϕ
is provable; undefined otherwise.

Theorem 2. (Ehrenfeucht and Mycielski, 1971) Suppose that
ϕ0 is an L{}-formula independent from T (i.e., neither ϕ0 nor
¬ϕ0 is provable from T ). Then there is no recursive function
S : N → N s.t.

WT (τ) ≤ S(WT+ϕ0
(τ)) holds for all τ ∈ Th(T ).

Theorem 3. (Gödel, 1936) Suppose that T ′ is a consistent
extension of T s.t. T ′ ⊢ consis(ppTqq). Then, for any recursive
function S : N → N, there is an L{}-formula ϕ = ϕ(x) s.t. (1)
T ′ ⊢ ϕ(n) for all n ∈ N, (2) WT (ϕ(n)) ≥ S(n) for all n ∈ N, but
(3) T ′ ⊢ (∀n ε ω)ϕ(n).



Significance of the Speed-up Theorems Spead-up Theorems (20/21)

◮ Speed-up theorems are nods to the intuition that we obtain shorter
proofs in a stronger axiomatic framework.

◮ ZFC is very much stronger than what we need to develop the
conventional mathematics.

⊲ There is a research field called “Reverse Mathematics” in which very
weak systems of set theory are studied in connection with the
question which part of mathematics can be already done in which
weak fragment of the set theory. Some of these researchers want to
see in (full) set theory an unbalancedly strong theory irrelevant to
the every day mathematics.

⊲ Speed-up theorems shows that, even if the final objective of these
people is to formulate the “reasonable” mathematics in a possible
weak framework, the study of set theory and its extensions are
indispensable for (research in) mathematics.



Thank you for your attention.


