
Linear Algebra II – final exam on Jan. 30
(2014/01/30)

2013/14 Fall Semester, Sakaé Fuchino (TA: Diego Mej́ıa)

○1 Calculate the determinant of the following matrices:

(a)


1 2 −1 3
0 1 2 −5

−2 3 −1 4
7 −1 3 −2

 (b)


1 9 6 7
0 3 9 6
0 2 6 4
1 4 4 0


○2 Find the inverse of the following matrix:


0 0 0 2
0 0 2 0
0 2 0 0
2 0 0 0


○3 Diagonalize the matrix:

[
3 −1

−1 2

]
○4 Which of the following are linear mappings. Explain why. Determine the matrices Mϕ corresponding

to the linear mappings ϕ among the following.

(a) ϕ1 : R2 → R2;

[
x

y

]
7→

[
x + 1
y + 1

]
(b) ϕ2 : R2 → R2;

[
x

y

]
7→

[
x + y

x − y

]
(c) ϕ3 : R2 → R2;

[
x

y

]
7→

[
x sin θ

y cos θ

]
(d) ϕ4 : R2 → R3;

[
x

y

]
7→

 x

y

1


(e) ϕ5 : R2 → R3;

[
x

y

]
7→

 y

0
x

 (f) ϕ6 : R2 → R4;

[
x

y

]
7→


0
0
0
0


(g) ϕ7 : R → R2; x 7→

[
x

x2

]
(h) ϕ8 : R2 → R3;

[
x

y

]
7→

 x

y

x + 2y


○5 Let ϕθ : R2 → R2 be the rotation counter-clockwise through the angle θ (0 ≤ θ < 2π) around the

origin.

(a) Show that ϕθ is a linear mapping.

(b) Determine the matrix Mϕθ
corresponding to the linear mapping ϕθ.

(c) Find a geometric explanation for the fact that Mϕθ
does not have any eigenvector if θ 6= 0.

(d) For which θ can Mϕθ
be diagonalized?

○6 Let ϕ : R2 → R3 be a linear mapping such that ϕ(

[
1
2

]
) =

 1
2

−3

 and ϕ(

[
2
1

]
) =

 2
4

−6

. (a) Find

the matrix Mϕ representing the linear mapping ϕ. (b) Decide Im(ϕ) and Ker(ϕ).

○7 Show that any linear mapping ϕ : Rm → Rn satisfies the following: (a) ϕ(0) = 0. (b) If ϕ(a) 6= 0

for some a ∈ Rm then ϕ(a + b) 6= ϕ(b) for all b ∈ Rm.

○8 Suppose that ε is an eigenvalue of an n × n matrix A. Show that

{u ∈ Rn : u is an eigenvector of A with eigen value ε} ∪ {0}

is a linear subspace of Rn.
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Example of Possible Answers

○1 (a):∣∣∣∣∣∣∣∣
1 2 −1 3
0 1 2 −5

−2 3 −1 4
7 −1 3 −2

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 2 −1 3
0 1 2 −5
0 7 −3 10
0 −15 10 −23

∣∣∣∣∣∣∣∣ = 1 ×

∣∣∣∣∣∣
1 2 −5
7 −3 10

−5 10 −23

∣∣∣∣∣∣ = −134

(b):∣∣∣∣∣∣∣∣
1 9 6 7
0 3 9 6
0 2 6 4
1 4 4 0

∣∣∣∣∣∣∣∣ = 0,

since the third row of the matrix is 2
3

times the second row.

○2 :
0 0 0 2
0 0 2 0
0 2 0 0
2 0 0 0

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 !


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

∣∣∣∣∣∣∣∣
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 !


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣∣
0 0 0 1

2

0 0 1
2 0

0 1
2 0 0

1
2 0 0 0



Hence


0 0 0 2
0 0 2 0
0 2 0 0
2 0 0 0


−1

=


0 0 0 1

2

0 0 1
2 0

0 1
2 0 0

1
2 0 0 0

.

○3 : Solving the characteristic polynomial, we obtain the eingenvalues of our matrix A as:∣∣∣∣ 3 − ε −1
−1 2 − ε

∣∣∣∣ = 0 ⇔ ε2 − 5ε + 5 = 0 ⇔ ε =
5 ±

√
5

2
.

For the eigenvalue ε =
5 +

√
5

2
of A, one of the non-trivial solution of the equation Ax = εx is

[
2

1 −
√

5

]
.

For ε =
5 −

√
5

2
,

[
2

1 +
√

5

]
. Thus, letting U =

[
2 2

1 −
√

5 1 +
√

5

]
, we have U−2AU =

[
5+

√
5

2 0
0 5−

√
5

2

]
.

○4 (a): ϕ1 is not a linear mapping since ϕ1(0) =

[
1
1

]
6= 0.

(b): ϕ2 is a linear mapping since ϕ2 is represented as ϕ2(

[
x

y

]
) =

[
1 1
1 −1

][
x

y

]
.

In particular Mϕ2 =

[
1 1
1 −1

]
.

(c): ϕ3 is a linear mapping since ϕ3 is represented as ϕ3(

[
x

y

]
) =

[
sin θ 0

0 cos θ

][
x

y

]
.

In particular Mϕ3 =

[
sin θ 0

0 cos θ

]
.

(d) ϕ4 is not a linear mapping since ϕ4(0) =

 0
0
1

 6= 0.

(e): ϕ5 is a linear mapping since ϕ5 is represented as ϕ5(

[
x

y

]
) =

 0 1
0 0
1 0

[
x

y

]
.

In particular Mϕ5 =

 0 1
0 0
1 0

.
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(f): ϕ6 is a linear mapping since ϕ6 is represented as ϕ6(

[
x

y

]
) =


0 0
0 0
0 0
0 0

[
x

y

]
.

In particular Mϕ6 =


0 0
0 0
0 0
0 0

.

(g): ϕ7 is not a linear mapping since for example 2ϕ7(1) = 2

[
1
1

]
=

[
2
2

]
6=

[
2
4

]
= ϕ7(2).

(h): ϕ8 is a linear mapping since ϕ8 is represented as ϕ8(

[
x

y

]
) =

 1 0
0 1
1 2

[
x

y

]
.

In particular Mϕ8 =

 1 0
0 1
1 2

.

○5 (a): ϕθ is linear since, for any vectors x, y in R2 and a ∈ R (2) the rotaion of x + y is equal to the

addition of the vectors x rotated and y rotated, (2) ax rotated is the same as a times vecv rotated.

(b): Sicne ϕθ(

[
1
0

]
) =

[
cos θ

sin θ

]
and ϕθ(

[
0
1

]
) =

[
−sinθ

cos θ

]
, we have Mϕθ

=

[
cos θ − sin θ

sin θ cos θ

]
.

(c): If θ 6= 0 then vectors are rotated by non-zero angle. In particular, for any non-zero vector x ∈ R2

ϕθ(x) has different direction as αx for any α ∈ R if θ 6= 0 and θ 6= π. This explains that ϕθ has no

eigenvector.

(d): By (c), ϕθ cannot diagonalized if θ 6= 0 and θ 6= π, If θ = 0 then ϕθ is the identity mapping and its

matrix Mϕθ
is the 2 × 2 unit matrix E. Thus Mϕθ

is diagonalization of itself and hence diagonalizable.

If θ = π then each x is sent to −x by the mapping ϕθ. Thus Mϕθ
= −E.

○6 (a):

Since

[
1
0

]
= −1

3

([
1
2

]
− 2

[
2
1

])
, we have ϕ(

[
1
0

]
) = −1

3

 1
2

−3

 − 2

 2
4

−6

 = −1
3

−3
−6

9

 =

 1
2

−3

.

Similarly, since

[
0
1

]
= 1

3

(
2

[
1
2

]
−

[
2
1

])
, ϕ(

[
0
1

]
) = 1

3

2

 1
2

−3

 −

 2
4

−6

 = 1
3

 0
0
0

 =

 0
0
0

.

It follows that Mϕ =

 1 0
2 0

−3 0

.

(b): Im(ϕ) = {a

 1
2

−3

 : a ∈ R}. Ker(ϕ) = {
[

0
a

]
: a ∈ R}.

○7 (a): We have ϕ(0) = ϕ(0+0) = ϕ(0)+ϕ(0) by the additivity of the linear mapping. By subtracting

ϕ(0) from the both sides of the equation, we obtain 0 = ϕ(0) as desired.

(b): We have ϕ(a + b) = ϕ(a) + ϕ(b). Thus we would have 0 = ϕ(b) if ϕ(a + b) = ϕ(a).

○8 Let X = {u ∈ Rn : u is an eigenvector of A for the eigen value ε} ∪ {0}, and suppose a, b ∈ X

and c, d ∈ R. It is enough to show that ca + db ∈ X. Note first that we have Aa = εa and Ab = εb

(independently of whether a or b is 0 or not).
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If ca + db = 0 then this is clear. So suppose ca + db 6= 0. We have A(ca + db) = cAa + dAb =

cεa + dεb = ε(ca + db). This shows that ca + db is an eigenvector of A for the eigenvalue ε and hence

ca + db ∈ X as desired.
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