Letture: Sakaé Fuchino (30)
Letture: Sakaé Fuchino (30)
1 Let
$$A = \begin{bmatrix} 1 & 0 & -3 \\ -3 & 2 & -2 & -1 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} -2 \\ -3 \\ -1 \end{bmatrix}$.
(a) Find det A
(b) Find A^{-1} .
(c) Solve the equation $A\mathbf{x} = \mathbf{b}$.
(a):
 $det A = 1 \times 1 \times (-1) + 0 \times 0 \times 2 + (-3) \times (-3) \times (-2) - ((-3) \times 1 \times 2 + 1 \times 0 \times (-2) + 0 \times (-3) \times (-1)) = -1$
(b):
 $\begin{bmatrix} 1 & 0 & -3 \\ -3 & 1 & 0 & 0 \\ 2 & -2 & -1 & 0 & 0 & 1 \\ 0 & -3 & 3 & 1 & 0 \\ 0 & 0 & -1 & 4 & 2 & 1 \end{bmatrix}$ $3 \cdot row + 2 \times 2 \cdot row$
 $\sim \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & -3 & 1 & 0 & 0 \\ 0 & 0 & -1 & 4 & 2 & 1 \\ 0 & 0 & -1 & 4 & 2 & 1 \end{bmatrix}$ $3 \cdot row + 2 \times 2 \cdot row$
 $\sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -3 & 1 & 0 & 0 \\ 0 & 0 & -1 & 4 & 2 & -1 \\ 0 & 1 & -4 & 2 & -1 \end{bmatrix}$ $(-1) \times 3 \cdot row$
 $\sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -4 & 2 & -1 \\ 0 & 1 & 0 & -2 & -1 \end{bmatrix}$ $1 \cdot row + 3 \times 3 \cdot row$
 $\sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -4 & -2 & -1 \\ 0 & 1 & 0 & -2 & -1 \end{bmatrix}$ $1 \cdot row + 3 \times 3 \cdot row$
 $\simeq \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -4 & -2 & -1 \\ -3 & -5 & -3 \\ -4 & -2 & -1 \end{bmatrix}$
Thus we have: $A^{-1} = \begin{bmatrix} -11 & -6 & -3 \\ -9 & -5 & -3 \\ -4 & -2 & -1 \end{bmatrix} \begin{bmatrix} -2 \\ -3 \\ -1 \\ -2 \end{bmatrix} = \cdots$
(2) Let $A = \begin{bmatrix} 1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 \end{bmatrix}$ where b represents a number.
(3) Decide for which b the matrix A is invertible.
(b) Find A^{-1} for such b that A is invertible.
(c) Decide for which b the equation $A\mathbf{x} = \mathbf{0}$ has a non trivial solution.
(a):
 A is invertible $c \det A \neq 0 \leftrightarrow 1 \times 1 \times 1 - b \times 1 \times 1 \neq 0 \Leftrightarrow b \neq 1$
(b):
 $\begin{bmatrix} 1 & 0 & b & 1 & 0 & 0 \\ 0 & 1 & -b & 1 & 0 \\ 0 & 1 & -b & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -b \\ 0 & 1 & -b & 1 & 0 \\ 0 & 1 & -b & 1 & -b \\ 1 & -b & 3 & -1 \cdot row \\ \frac{1}{1-b} \times 3 \cdot row \\ \frac{1}{1-b} \times 3 \cdot row$

$$A^{-1} = \begin{bmatrix} 1 & 0 & -\frac{b}{1-b} \\ 0 & 1 & 0 \\ \frac{1}{1-b} & 0 & \frac{1}{1-b} \end{bmatrix}$$

(c): $A\mathbf{x} = \mathbf{0}$ has at least one non trivial solution $\Leftrightarrow A$ is not invertible $\Leftrightarrow b = 1$

3 Find the standard matrices of the following linear transformation from \mathbb{R}^2 to \mathbb{R}^2 :

- (a) Reflection through the x_2 -axis.
- (b) Reflection through the origin.

(c) Horizontal expansion by factor
$$k$$
 (i.e. $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} kx \\ y \end{bmatrix}$)

(a):
$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$
 (b): $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$ (c): $\begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix}$

4 Find the standard matrix of the linear transformation

$$\varphi : \mathbb{R}^2 \to \mathbb{R}^3; \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mapsto \begin{bmatrix} 3x_1 + x_2 \\ 5x_1 + 7x_2 \\ x_1 + 3x_2 \end{bmatrix}.$$

Since
$$\varphi\begin{pmatrix} 1\\0 \end{pmatrix} = \begin{bmatrix} 3\\5\\1 \end{bmatrix}$$
 and $\varphi\begin{pmatrix} 0\\1 \end{pmatrix} = \begin{bmatrix} 1\\7\\3 \end{bmatrix}$, the standart matrix of φ is $M_{\varphi} = \begin{bmatrix} 3&1\\5&7\\1&3 \end{bmatrix}$.

5

Show that, for an $n \times n$ matrix A, 0 is one of its eigen values if and only if A is not invertible.

0 is an eigen value of $A \Leftrightarrow A\mathbf{x} = 0\mathbf{x}$ (i.e. $A\mathbf{x} = \mathbf{0}$) has a non-trivial solution $\Leftrightarrow A$ is not invertible.

6 Suppose that λ_1 and λ_2 are two distinct eingen values of a matrix A and \mathbf{u}_1 and \mathbf{u}_2 are eigen vectors corresponding to them respectively. Show that \mathbf{u}_1 and \mathbf{u}_2 are linearly independent.

We have $A\mathbf{u}_1 = \lambda_1 \mathbf{u}_1$ and $A\mathbf{u}_2 = \lambda_2 \mathbf{u}_2$. Suppose that

(1) $\alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 = \mathbf{0}$

for $\alpha_1, \alpha_2 \in \mathbb{R}$.

We want to show that $\alpha_1 = \alpha_2 = 0$.

By applying A on both sides of (1) we obtain

(2) $\alpha_1\lambda_1\mathbf{u}_1 + \alpha_2\lambda_2\mathbf{u}_2 = A(\alpha_1\mathbf{u}_1 + \alpha_2\mathbf{u}_2) = \mathbf{0}.$

By subtracting $\lambda_1 \times (1)$ from (2) we obtain

(3) $\alpha_2(\lambda_2 - \lambda_1)\mathbf{u}_2 = \mathbf{0}.$

Since $\mathbf{u}_2 \neq \mathbf{0}$ (\mathbf{u}_2 was an eigen vector) and $\lambda_2 - \lambda_1 \neq 0$ by assumption, it follows that $\alpha_2 = 0$. By substituting $\alpha_2 = 0$ in (1) (and noting that $\mathbf{u}_1 \neq \mathbf{0}$) we also obtain $\alpha_1 = 0$. Thus we have $\alpha_1 = \alpha_2 = 0$ as desired.