構造の数理

Ⅲ. 演算の体系と代数的構造(その3)

Sakaé Fuchino (渕野 昌)

Kobe University (神戸大学大学院 システム情報学研究科)

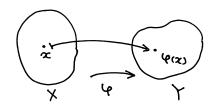
fuchino@diamond.kobe-u.ac.jp
http://kurt.scitec.kobe-u.ac.jp/~fuchino/

(November 3, 2010 (18:59 JST) version)

神戸大学 2010 年度後期の講義 October 21, 2010

This presentation is typeset by pLATEX with beamer class.

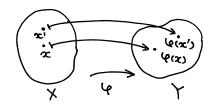
- \blacktriangleright X と Y を集合とするとき , φ が X から Y への 写像 (mapping) であるとは , φ が X の各要素 X に Y のある要素を対応させる "規則" を与えていることである .
- \triangleright $x \in X$ が φ によって対応させられる Y の要素のことを $\varphi(x)$ と書く .
- ightharpoonup arphi が X から Y での写像であることを , arphi:X o Y であらわす .



写像 (2) — 単射,全射,全単射

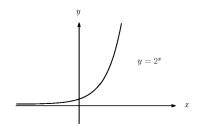
構造の数理 Ⅲ (3/9)

- ▶ ℝ から ℝ への写像は 関数 とよばれることもある.
- ▶ 写像 $\varphi: X \to Y$ が 単射 であるとは , x, $x' \in X$ で $x \neq x'$ なら必ず $\varphi(x) \neq \varphi(x')$ が成り立つこと .



- ▶ 写像 $\varphi: X \to Y$ が 全射 であるとは , すべての $y \in Y$ に対し , $\varphi(x) = y$ となるような $x \in X$ が存在すること .
- ▶ 写像 $\varphi: X \to Y$ が 全単射 であるとは φ が全射かつ単射であること .

- ▶ $\varphi: \mathbb{R} \to \mathbb{R}$; $x \mapsto \sin(x)$ として φ を定義すると , φ は全射でも単射でもない .
- ▶ 上と同じ写像を , $\varphi: \mathbb{R} \to [-1,1]; x \mapsto \sin(x)$ ととらえなおす と , φ は全射だが単射ではない .
- ight
 ight
 ight
 ho $(x) \mapsto 2x$ とすると $(x) \varphi$ は全単射である $(x) \mapsto \varphi$
- ▶ $\mathbb{R}^+ = \{r \in \mathbb{R} : r > 0\}$ だった . $\varphi : \mathbb{R} \to \mathbb{R}^+$; $x \mapsto 2^x$ とすると φ は全単射である .



- $lackbox(G,\circ)$, (H,ullet) を群とする.全単射 $\varphi:G\to H$ が,すべての x, $y\in G$ に対し, $\varphi(x\circ y)=\varphi(x)ullet \varphi(y)$ を満たすとき, φ は群 G から群 H への 同型写像 (isomorphism) である,という.G から H への同型写像が存在するとき,G と H は 同型 (isomorphic) であるという.
- $\blacktriangleright \varphi$ が G から H の同型写像なら , φ は G の単位元を H の単位元に移し , G での逆元を H での逆元に移す .
- ▶ G から H の同型写像は,上に述べたことから,G の群としての「構造」を H の群としての「構造」にちょうど対応させるものになっていることがわかる.したがって,G と H が同型のときには,G と H は互いのコピーになっていると考えることができ,群として同一視できる.

- $ightharpoonup \varphi: \mathbb{R}
 ightarrow \mathbb{R}^+; x \mapsto 2^x$ を考える.
- φ は全単射だった.任意の実数 x,y に対し,

$$\varphi(x + y) = 2^{x+y} = 2^x \times 2^y = \varphi(x) \times \varphi(y)$$

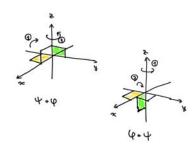
が成り立つ.

したがって , φ は $(\mathbb{R},+)$ から (\mathbb{R}^+,\times) への同型写像になっていることがわかる .

- ▶ 群 (G, \circ) がアーベル群 \Leftrightarrow すべての $x, y \in G$ に対し, $x \circ y = y \circ x$ が成り立つ
- ▶ 群 (G, \circ) はアーベル群でない $\Leftrightarrow x, y \in G$ で $x \circ y \neq y \circ x$ となるものが存在する

ト G を 3 次元空間の原点を中心とした回転の全体とする.G の要素 x, y に対し, $x \circ y$ で回転 y と x の合成を表すことにする.つまり $x \circ y$ はまず y だけ回転してその後 x だけ回転したときの結果としての回転である.

このとき (G,\circ) は群となるが,アーベル群ではない.



このスライドも含めて,講義のスライドと,スライドの printer friendly version は,

http://kurt.scitec.kobe-u.ac.jp/~fuchino/kobe/index.html

に順次リンクします.

来週,10月28日(木) の講義は休講とします