構造の数理

|VIII. 「順序の理論」の数学的な基礎(その 2)

Sakaé Fuchino (渕野 昌)

Kobe University (神戸大学大学院 システム情報学研究科)

fuchino@diamond.kobe-u.ac.jp

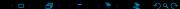
http://kurt.scitec.kobe-u.ac.jp/~fuchino/

(December 8, 2010 (15:16 JST) version)

神戸大学 2010 年度後期の講義

December 2, 2010

This presentation is typeset by pLATEX with beamer class.



- \triangleright X を集合とするとき X 上の二項関係 R が 半順序 であるとは , R が次の性質を満たすことである .
 - \triangleright すべての $a \in X$ に対し, aRa

(反射律)

- \triangleright すべての $a, b \in X$ に対し, a R b かつ b R a なら a = b が成り立つ (反対称律)
- \triangleright すべての $a, b, c \in X$ に対し, aRb かつ bRc なら, aRc が成り立つ (推移律)
- ▶ X 上の半順序 R が更に次の性質を持つとき, R は 線形順序 であるという:
- \triangleright すべての $a, b \in X$ に対し, aRb または bRa の少なくとも 片方は成り立つ (比較可能性)

 \triangleright X を集合とするとき X 上の二項関係 R が 半順序 であるとは , R が次の性質を満たすことである .

- \triangleright すべての $a \in X$ に対し, aRa (反射律)
- \triangleright すべての $a, b \in X$ に対し, a R b かつ b R a なら a = b が成り立つ (反対称律)
- \triangleright すべての $a, b, c \in X$ に対し, aRb かつ bRc なら, aRc が成り立つ (推移律)
- ▶ X 上の半順序 R が更に次の性質を持つとき, R は 線形順序 であるという:
- \triangleright すべての $a, b \in X$ に対し, aRb または bRa の少なくとも 片方は成り立つ (比較可能性)

- \triangleright X を集合とするとき X 上の二項関係 R が 半順序 であるとは , R が次の性質を満たすことである .
 - \triangleright すべての $a \in X$ に対し, aRa (反射律)
 - \triangleright すべての $a, b \in X$ に対し, a R b かつ b R a なら a = b が成り立つ (反対称律)
 - \triangleright すべての $a, b, c \in X$ に対し, aRb かつ bRc なら, aRc が成り立つ (推移律)
- ▶ X 上の半順序 R が更に次の性質を持つとき, R は 線形順序 であるという:
- \triangleright すべての $a, b \in X$ に対し, aRb または bRa の少なくとも 片方は成り立つ (比較可能性)

- \triangleright X を集合とするとき X 上の二項関係 R が 半順序 であるとは , R が次の性質を満たすことである .
 - \triangleright すべての $a \in X$ に対し, aRa (反射律)
 - \triangleright すべての $a, b \in X$ に対し, a R b かつ b R a なら a = b が成り立つ (反対称律)
 - \triangleright すべての $a, b, c \in X$ に対し, aRb かつ bRc なら, aRc が成り立つ (推移律)
- ▶ X 上の半順序 R が更に次の性質を持つとき, R は 線形順序 であるという:
- \triangleright すべての $a, b \in X$ に対し, aRb または bRa の少なくとも 片方は成り立つ (比較可能性)

 $\triangleright X, X'$ を集合として, $X \subseteq X'$ とする \checkmark 記号の復習 (X = X' の場合も考える).

R を X 上の二項関係として R' を X' 上の二項関係とするとき ,

 $\triangleright R'$ が R の 拡張 であるとは , すべての $x, y \in X$ に対して , $x R y \Rightarrow x R' y$ が成り立つこととする .

 $\triangleright R$ が R' の X への 制限 であるとは , すべての x, $y \in X$ に対して , $x R y \Leftrightarrow x R' y$ が成り立つこととする . \P

- ▶ 集合 X に対し X の デカルト積 (Cartesian product) X^2 を $X^2 = \{(x,y): x,y \in X\}$ と定義する.同様に , $X^3 = \{(x,y,z): x,y,z \in X\}$ etc. とする ・ 🚇
- \blacktriangleright X 上の二項関係 R は , X^2 の部分集合 $\{(x,y) \in X^2 : x R y\}$ と同一視することができる.この同一視により ,

 $\triangleright R'$ は R の拡張である $\Leftrightarrow R \subseteq R'$.

igsplus X, X' を集合として, $X \subseteq X'$ とする ullet 記号の復習 (X = X') の場合も考える).

R を X 上の二項関係として R' を X' 上の二項関係とするとき ,

 $\triangleright R'$ が R の 拡張 であるとは , すべての $x, y \in X$ に対して , $x R y \Rightarrow x R' y$ が成り立つこととする .

 $\triangleright R$ が R' の X への 制限 であるとは , すべての x, $y \in X$ に対して , $x R y \Leftrightarrow x R' y$ が成り立つこととする . \P

- ト集合 X に対し X の デカルト積 (Cartesian product) X^2 を $X^2 = \{(x,y): x,y \in X\}$ と定義する.同様に , $X^3 = \{(x,y,z): x,y,z \in X\}$ etc. とする ・例
- \blacktriangleright X 上の二項関係 R は , X^2 の部分集合 $\{(x,y) \in X^2 : x R y\}$ と同一視することができる.この同一視により ,

 $\triangleright R'$ は R の拡張である $\Leftrightarrow R \subseteq R'$.

 \triangleright X, X' を集合として, $X \subseteq X'$ とする \checkmark 記号の復習 (X = X' の場合も考える).

R を X 上の二項関係として R' を X' 上の二項関係とするとき,

 $\triangleright R'$ が R の 拡張 であるとは , すべての $x, y \in X$ に対して , $x R y \Rightarrow x R' y$ が成り立つこととする .

 $\triangleright R$ が R' の X への 制限 であるとは , すべての x, $y \in X$ に対して , $x R y \Leftrightarrow x R' y$ が成り立つこととする . \P

- ightharpoonup X 上の二項関係 R は , X^2 の部分集合 $\{(x,y) \in X^2 : x R y\}$ と同一視することができる.この同一視により ,

 $\triangleright R'$ は R の拡張である $\Leftrightarrow R \subseteq R'$.

 \triangleright X, X' を集合として, $X \subseteq X'$ とする \checkmark 記号の復習 (X = X' の場合も考える).

R を X 上の二項関係として R' を X' 上の二項関係とするとき,

 $\triangleright R'$ が R の 拡張 であるとは , すべての $x, y \in X$ に対して , $x R y \Rightarrow x R' y$ が成り立つこととする .

 $\triangleright R$ が R' の X への 制限 であるとは , すべての $x, y \in X$ に対して , $x R y \Leftrightarrow x R' y$ が成り立つこととする . • 🔊

- ightharpoonup X 上の二項関係 R は , X^2 の部分集合 $\{(x,y) \in X^2 : x R y\}$ と同一視することができる.この同一視により ,

 $\triangleright R'$ は R の拡張である $\Leftrightarrow R \subseteq R'$.

 \blacktriangleright X, X' を集合として, $X \subseteq X'$ とする \bullet 記号の復習 (X = X' の場合も考える).

R を X 上の二項関係として R' を X' 上の二項関係とするとき,

 $\triangleright R'$ が R の 拡張 であるとは , すべての $x, y \in X$ に対して , $x R y \Rightarrow x R' y$ が成り立つこととする .

 $\triangleright R$ が R' の X への 制限 であるとは , すべての $x, y \in X$ に対して , $x R y \Leftrightarrow x R' y$ が成り立つこととする . • 🔊

- ▶ 集合 X に対し X の デカルト積 (Cartesian product) X^2 を $X^2 = \{(x,y): x,y \in X\}$ と定義する.同様に , $X^3 = \{(x,y,z): x,y,z \in X\}$ etc. とする ・ 🔊
- ▶ X 上の二項関係 R は , X^2 の部分集合 $\{(x,y) \in X^2 : x R y\}$ と同一視することができる.この同一視により ,

 $\triangleright R'$ は R の拡張である $\Leftrightarrow R \subseteq R'$.

 \blacktriangleright X, X' を集合として, $X \subseteq X'$ とする \checkmark 記号の復習 (X = X') の場合も考える).

R を X 上の二項関係として R' を X' 上の二項関係とするとき,

 $\triangleright R'$ が R の 拡張 であるとは , すべての $x, y \in X$ に対して , $x R y \Rightarrow x R' y$ が成り立つこととする .

 $\triangleright R$ が R' の X への 制限 であるとは , すべての $x, y \in X$ に対して , $x R y \Leftrightarrow x R' y$ が成り立つこととする . • 🔊

- ▶ 集合 X に対し X の デカルト積 (Cartesian product) X^2 を $X^2 = \{(x,y): x,y \in X\}$ と定義する.同様に , $X^3 = \{(x,y,z): x,y,z \in X\}$ etc. とする ・ 🔊
- ▶ X 上の二項関係 R は , X^2 の部分集合 $\{(x,y) \in X^2 : x R y\}$ と同一視することができる.この同一視により ,

 $\triangleright R'$ は R の拡張である $\Leftrightarrow R \subseteq R'$.

 \triangleright X, X' を集合として, $X \subseteq X'$ とする \checkmark 記号の復習 (X = X' の場合も考える).

R を X 上の二項関係として R' を X' 上の二項関係とするとき ,

 $\triangleright R'$ が R の 拡張 であるとは , すべての $x, y \in X$ に対して , $x R y \Rightarrow x R' y$ が成り立つこととする .

 $\triangleright R$ が R' の X への 制限 であるとは , すべての $x, y \in X$ に対して , $x R y \Leftrightarrow x R' y$ が成り立つこととする . • 🔊

- ▶ 集合 X に対し X の デカルト積 (Cartesian product) X^2 を $X^2 = \{(x,y): x,y \in X\}$ と定義する.同様に , $X^3 = \{(x,y,z): x,y,z \in X\}$ etc. とする ・ 🔊
- ▶ X 上の二項関係 R は , X^2 の部分集合 $\{(x,y) \in X^2 : x R y\}$ と同一視することができる.この同一視により ,

 $\triangleright R'$ は R の拡張である $\Leftrightarrow R \subseteq R'$.

 \blacktriangleright X, X' を集合として, $X\subseteq X'$ とする \bullet 記号の復習 (X=X' の場合も考える).

R を X 上の二項関係として R' を X' 上の二項関係とするとき ,

 $\triangleright R'$ が R の 拡張 であるとは , すべての $x, y \in X$ に対して , $x R y \Rightarrow x R' y$ が成り立つこととする .

 $\triangleright R$ が R' の X への 制限 であるとは , すべての $x, y \in X$ に対して , $x R y \Leftrightarrow x R' y$ が成り立つこととする . • 🔊

- ト集合 X に対し X の デカルト積 (Cartesian product) X^2 を $X^2 = \{(x,y): x,y \in X\}$ と定義する.同様に, $X^3 = \{(x,y,z): x,y,z \in X\}$ etc. とする ・ 🔊
- ightarrow X 上の二項関係 R は , X^2 の部分集合 $\{(x,y)\in X^2:x\ R\ y\}$ と同一視することができる.この同一視により ,

 $\triangleright R'$ は R の拡張である $\Leftrightarrow R \subseteq R'$.

 \triangleright X, X' を集合として, $X \subseteq X'$ とする \checkmark 記号の復習 (X = X' の場合も考える).

R を X 上の二項関係として R' を X' 上の二項関係とするとき ,

 $\triangleright R'$ が R の 拡張 であるとは , すべての $x, y \in X$ に対して , $x R y \Rightarrow x R' y$ が成り立つこととする .

 $\triangleright R$ が R' の X への 制限 であるとは , すべての $x, y \in X$ に対して , $x R y \Leftrightarrow x R' y$ が成り立つこととする . • 🔊

- ▶ 集合 X に対し X の デカルト積 (Cartesian product) X^2 を $X^2 = \{(x,y): x,y \in X\}$ と定義する.同様に , $X^3 = \{(x,y,z): x,y,z \in X\}$ etc. とする ・ 🔊
- ightarrow X 上の二項関係 R は , X^2 の部分集合 $\{(x,y)\in X^2:x\ R\ y\}$ と同一視することができる.この同一視により ,
- $\triangleright R'$ は R の拡張である $\Leftrightarrow R \subseteq R'$.
- $\triangleright R$ は R' の X への制限である \Leftrightarrow R は R' と X^2 の共通部分である ($R = R' \cap X^2$).

すべての空でない (つまり要素を少なくとも 1 つは持つ) 有限集合 X と X 上の任意の半順序 R に対して , R の拡張となっている X 上の全順序 \tilde{R} が存在する .

証明方針: X の要素の数に関する帰納法で示す. 以下の補題を用いる. (用題の解説)

補題 2

すべての空でない有限集合 X と X の上の半順序 R に対し , R に関する X の極小元 (用語の定義) が存在する .

- ▶ 上の補題も有限集合 X の要素の数に関する帰納法で証明する.
- ト 上の補題では一般には 「 X は有限」という条件は落せないことに注意! たとえば , $\mathbb Q$ 上の順序 \le を考えると \le に関する $\mathbb Q$ の極小元は存在しない!

上の補題と定理の証明は次回に見ることにする。、その、そのでは、

すべての空でない (つまり要素を少なくとも 1 つは持つ) 有限集合 X と X 上の任意の半順序 R に対して , R の拡張となっている X 上の全順序 \tilde{R} が存在する .

証明方針: X の要素の数に関する帰納法で示す. 以下の補題を用いる. (用題の解説

補題 2

すべての空でない有限集合 X と X の上の半順序 R に対し , R に関する X の極小元 $(A \mid B \mid B \mid C \mid E)$ が存在する .

- ▶ 上の補題も有限集合 X の要素の数に関する帰納法で証明する.
- ト 上の補題では一般には 「 X は有限」という条件は落せないことに注意! たとえば , $\mathbb Q$ 上の順序 \le を考えると \le に関する $\mathbb Q$ の極小元は存在しない!

上の補題と定理の証明は次回に見ることにする。

すべての空でない (つまり要素を少なくとも 1 つは持つ) 有限集合 X と X 上の任意の半順序 R に対して , R の拡張となっている X 上の全順序 \tilde{R} が存在する .

証明方針: X の要素の数に関する帰納法で示す.

以下の補題を用いる. ◀ 用語の解説

補題 2

すべての空でない有限集合 X と X の上の半順序 R に対し , R に関する X の極小元 (R 用語の定義) が存在する .

- ▶ 上の補題も有限集合 X の要素の数に関する帰納法で証明する.
- ト 上の補題では一般には 「 X は有限」という条件は落せないことに注意! たとえば , $\mathbb Q$ 上の順序 \le を考えると \le に関する $\mathbb Q$ の極小元は存在しない!

上の補題と定理の証明は次回に見ることにする。

すべての空でない(つまり要素を少なくとも 1 つは持つ)有限集合 X と X 上の任意の半順序 R に対して,R の拡張となっている X 上の全順序 \tilde{R} が存在する.

証明方針: X の要素の数に関する帰納法で示す. 以下の補題を用いる. ・ 用語の解説

補題 2

すべての空でない有限集合 X と X の上の半順序 R に対し , R に関する X の極小元 (A) 開語の定義 が存在する .

- ▶ 上の補題も有限集合 X の要素の数に関する帰納法で証明する.
- ▶ 上の補題では一般には 「 X は有限」という条件は落せないことに注意! たとえば , $\mathbb Q$ 上の順序 \le を考えると \le に関する $\mathbb Q$ の極小元は存在しない!

上の補題と定理の証明は次回に見ることにする。、、看、、こ、、こ

すべての空でない(つまり要素を少なくとも 1 つは持つ)有限集合 X と X 上の任意の半順序 R に対して,R の拡張となっている X 上の全順序 \tilde{R} が存在する.

証明方針: X の要素の数に関する帰納法で示す. 以下の補題を用いる. ・ 用語の解説

補題 2

すべての空でない有限集合 X と X の上の半順序 R に対し , R に関する X の極小元 (A) 開語の定義 が存在する .

- ▶ 上の補題も有限集合 X の要素の数に関する帰納法で証明する.
- ト 上の補題では一般には 「 X は有限」という条件は落せないことに注意! たとえば , $\mathbb Q$ 上の順序 \le を考えると \le に関する $\mathbb Q$ の極小元は存在しない!

上の補題と定理の証明は次回に見ることにする。。

すべての空でな $oldsymbol{\mathsf{N}}$ (つまり要素を少なくとも 1 つは持つ)有限集合 X と X 上の任意の半順序 R に対して , R の拡張となっている X 上の全順序 \tilde{R} が存在する .

証明方針: X の要素の数に関する帰納法で示す. 以下の補題を用いる. ・ 用語の解説

補題 2

すべての空でない有限集合 X と X の上の半順序 R に対し , R に関する X の極小元 (A) 開語の定義 が存在する .

- ▶ 上の補題も有限集合 X の要素の数に関する帰納法で証明する.
- ト 上の補題では一般には 「 X は有限」という条件は落せないことに注意! たとえば , $\mathbb Q$ 上の順序 \le を考えると \le に関する $\mathbb Q$ の極小元は存在しない!

すべての空でな \mathbf{N} (つまり要素を少なくとも 1 つは持つ)有限集合 X と X 上の任意の半順序 R に対して , R の拡張となっている X 上の全順序 \tilde{R} が存在する .

証明方針: X の要素の数に関する帰納法で示す. 以下の補題を用いる. ・ 用語の解説

補題 2

すべての空でない有限集合 X と X の上の半順序 R に対し , R に関する X の極小元 (A) 開語の定義 が存在する .

- ▶ 上の補題も有限集合 X の要素の数に関する帰納法で証明する.
- ト 上の補題では一般には 「 X は有限」という条件は落せないことに注意! たとえば , $\mathbb Q$ 上の順序 \le を考えると \le に関する $\mathbb Q$ の極小元は存在しない!

上の補題と定理の証明は次回に見ることにする. 🦼

すべての $x \in X$ に対して $x \in Y$ が成り立つ (あるいは,すべての x に対して, $x \in X \Rightarrow x \in Y$)が成り立つ ことである.

 $\triangleright \mathbb{N} \subseteq \mathbb{Q}, \ \mathbb{Q} \subseteq \mathbb{R}$ である. \subseteq は推移律を満たす.したがって,上の例から $\mathbb{N} \subseteq \mathbb{R}$ であることが帰結できる.

すべての $x \in X$ に対して $x \in Y$ が成り立つ (あるいは,すべての x に対して, $x \in X \Rightarrow x \in Y$)が成り立つ ことである.

 \triangleright N \subseteq \mathbb{Q} , \mathbb{Q} \subseteq \mathbb{R} である. \subseteq は推移律を満たす.したがって,上の例から \mathbb{N} \subseteq \mathbb{R} であることが帰結できる.

すべての $x \in X$ に対して $x \in Y$ が成り立つ (あるいは,すべての x に対して, $x \in X \Rightarrow x \in Y$) が成り立つ ことである.

 \triangleright N \subseteq \mathbb{Q} , \mathbb{Q} \subseteq \mathbb{R} である. \subseteq は推移律を満たす.したがって,上の例から \mathbb{N} \subseteq \mathbb{R} であることが帰結できる.

すべての $x \in X$ に対して $x \in Y$ が成り立つ (あるいは,すべての x に対して, $x \in X \Rightarrow x \in Y$)が成り立つ ことである.

 $\triangleright \mathbb{N} \subseteq \mathbb{Q}$, $\mathbb{Q} \subseteq \mathbb{R}$ である. \subseteq は推移律を満たす.したがって,上の例から $\mathbb{N} \subseteq \mathbb{R}$ であることが帰結できる.

- ▶ $\mathbb{N}\subseteq\mathbb{Q}$ だったが, \mathbb{Q} 上の大小関係 \leq は, \mathbb{N} 上の数の大小関係 \leq の拡張となっている.
- \mathbb{N} 上の大小関係 \leq は \mathbb{O} 上の大小関係 \leq の \mathbb{N} への制限である.
- ight
 ight
 ho $\mathbb{Q}\subseteq\mathbb{R}$ だが, \mathbb{Q} 上の大小関係 \leq と \mathbb{R} 上の大小関係 \leq も上と同じ関係にある.
- ▶ $\mathbb N$ 上の関係 $n R m \Leftrightarrow m = n+1$ を考える (この関係は順序でも半順序でもない!). $\mathbb N$ 上の大小関係 \leq , も $\mathbb Q$ 上の大小関係 \leq も R の拡張だが, R は, どちらの大小関係の $\mathbb N$ への制限でもない.

- ▶ $\mathbb{N}\subseteq\mathbb{Q}$ だったが, \mathbb{Q} 上の大小関係 \leq は, \mathbb{N} 上の数の大小関係 \leq の拡張となっている.
- \mathbb{N} 上の大小関係 \leq は \mathbb{Q} 上の大小関係 \leq の \mathbb{N} への制限である.
- ▶ $\mathbb{Q}\subseteq\mathbb{R}$ だが, \mathbb{Q} 上の大小関係 \leq と \mathbb{R} 上の大小関係 \leq も上と同じ関係にある.
- ▶ $\mathbb N$ 上の関係 $n R m \Leftrightarrow m = n+1$ を考える (この関係は順序でも半順序でもない!). $\mathbb N$ 上の大小関係 \leq , も $\mathbb Q$ 上の大小関係 \leq も R の拡張だが, R は, どちらの大小関係の $\mathbb N$ への制限でもない.

- ▶ $\mathbb{N}\subseteq\mathbb{Q}$ だったが, \mathbb{Q} 上の大小関係 \leq は, \mathbb{N} 上の数の大小関係 \leq の拡張となっている.
- $\mathbb N$ 上の大小関係 \leq は $\mathbb Q$ 上の大小関係 \leq の $\mathbb N$ への制限である.
- $ightharpoonup \mathbb{Q} \subseteq \mathbb{R}$ だが, \mathbb{Q} 上の大小関係 \leq と \mathbb{R} 上の大小関係 \leq も上と同じ関係にある.
- ▶ $\mathbb N$ 上の関係 $n R m \Leftrightarrow m = n+1$ を考える (この関係は順序でも半順序でもない!). $\mathbb N$ 上の大小関係 \leq , も $\mathbb Q$ 上の大小関係 \leq も R の拡張だが, R は, どちらの大小関係の $\mathbb N$ への制限でもない.

- ▶ $\mathbb{N}\subseteq\mathbb{Q}$ だったが, \mathbb{Q} 上の大小関係 \leq は, \mathbb{N} 上の数の大小関係 \leq の拡張となっている.
- \mathbb{N} 上の大小関係 \leq は \mathbb{Q} 上の大小関係 \leq の \mathbb{N} への制限である.
- $ight
 ight
 htharpoonup \mathbb{Q} \subseteq \mathbb{R}$ だが, \mathbb{Q} 上の大小関係 \leq と \mathbb{R} 上の大小関係 \leq も上と同じ関係にある.
- ▶ N 上の関係 $n R m \Leftrightarrow m = n+1$ を考える (この関係は順序でも半順序でもない!). N 上の大小関係 \leq , も $\mathbb Q$ 上の大小関係 \leq も R の拡張だが, R は, どちらの大小関係の $\mathbb N$ への制限でもない.

- ▶ $\mathbb{N} \subseteq \mathbb{Q}$ だったが, \mathbb{Q} 上の大小関係 \leq は, \mathbb{N} 上の数の大小関係 \leq の拡張となっている.
- $\mathbb N$ 上の大小関係 \le は $\mathbb Q$ 上の大小関係 \le の $\mathbb N$ への制限である.
- $ightharpoonup \mathbb{Q} \subseteq \mathbb{R}$ だが , \mathbb{Q} 上の大小関係 \leq と \mathbb{R} 上の大小関係 \leq も上と同じ関係にある .
- ▶ N 上の関係 $n R m \Leftrightarrow m = n+1$ を考える(この関係は順序でも半順序でもない!). N 上の大小関係 \leq , も $\mathbb Q$ 上の大小関係 \leq も R の拡張だが,R は,どちらの大小関係の $\mathbb N$ への制限でもない.

- ▶ $\mathbb{N}\subseteq\mathbb{Q}$ だったが, \mathbb{Q} 上の大小関係 \leq は, \mathbb{N} 上の数の大小関係 \leq の拡張となっている.
- \mathbb{N} 上の大小関係 \leq は \mathbb{Q} 上の大小関係 \leq の \mathbb{N} への制限である.
- $ightharpoonup \mathbb{Q} \subseteq \mathbb{R}$ だが , \mathbb{Q} 上の大小関係 \leq と \mathbb{R} 上の大小関係 \leq も上と同じ関係にある .
- ▶ $\mathbb N$ 上の関係 $n R m \Leftrightarrow m = n+1$ を考える(この関係は順序でも半順序でもない!). $\mathbb N$ 上の大小関係 \leq , も $\mathbb Q$ 上の大小関係 \leq も R の拡張だが,R は,どちらの大小関係の $\mathbb N$ への制限でもない.

▶ $\mathbb{R}^2 = \{(x,y): x,y \in \mathbb{R}\}$ だが,(x,y) を座標(x,y)を持つ平面上の点と同一視することで, \mathbb{R}^2 を平面上の点の全体の集合とみなすことができる.同様の同一視により, \mathbb{R}^3 は空間の点の全体の集合とみなせ, \mathbb{R}^4 は時空の点の全体の集合とみなせる.

 $\triangleright X$ がちょうど n 個の要素を持つ有限集合 (要素の数が有限な集合)とするとき , X^2 は n^2 個の要素を持つ有限集合となる .

証明. n に関する帰納法で証明する. 🖪 帰納法の解説

n=0 のとき, つまり X が要素を一つも持たない集合のときには, X^2 も定義から要素を一つも持たない集合になるので $0^2=0$ となり, 主張は成り立つ.

n=k に対し,主張が成り立つとすると,n=k+1 のときにも主張が成り立つことを示す.X を k+1 個の要素を持つ集合として, $x_0\in X$ を一つ固定する. X_0 を X の x_0 以外の要素の全体とすると, x_0 は k 個の要素を持つ集合となる.

残りの集合はそれぞれ k, k, 1 個の要素を持つ.したがって, X^2 の要素の数は,これらの数を足して $k^2+k+k+1=k^2+2k+1=(k+1)^2$ となり,

- ▶ $\mathbb{R}^2 = \{(x,y): x,y \in \mathbb{R}\}$ だが,(x,y) を座標 (x,y) を持つ平面上の点と同一視することで, \mathbb{R}^2 を平面上の点の全体の集合とみなすことができる.同様の同一視により, \mathbb{R}^3 は空間の点の全体の集合とみなせ, \mathbb{R}^4 は時空の点の全体の集合とみなせる.
- $\triangleright X$ がちょうど n 個の要素を持つ有限集合 (要素の数が有限な集合)とするとき $, X^2$ は n^2 個の要素を持つ有限集合となる .

証明 n に関する帰納法で証明する . 「帰納法の解説」

n=0 のとき , つまり X が要素を一つも持たない集合のときには , X^2 も定義から要素を一つも持たない集合になるので $0^2=0$ となり , 主張は成り立つ .

n=k に対し,主張が成り立つとすると, n=k+1 のときにも主張が成り立つことを示す. X を k+1 個の要素を持つ集合として, $x_0 \in X$ を一つ固定する. X_0 を X の x_0 以外の要素の全体とすると, X_0 は k 個の要素を持つ集合となる.

 $\{(x,x_0):x\in X_0\},\ \{(x_0,x_0)\}.$ 帰納法の仮定から , $(X_0)^2$ は k^2 個の要素を持つ.残りの集合はそれぞれ k, k, 1 個の要素を持つ.したがって , X^2 の要素の数は ,

n = k + 1 に対しても主張が成り立つことが示せた

- ▶ $\mathbb{R}^2 = \{(x,y): x,y \in \mathbb{R}\}$ だが,(x,y) を座標(x,y) を持つ平面上の点と同一視することで, \mathbb{R}^2 を平面上の点の全体の集合とみなすことができる.同様の同一視により, \mathbb{R}^3 は空間の点の全体の集合とみなせ, \mathbb{R}^4 は時空の点の全体の集合とみなせる.
- $\triangleright X$ がちょうど n 個の要素を持つ有限集合 (要素の数が有限な集合)とするとき $, X^2$ は n^2 個の要素を持つ有限集合となる .

証明 n に関する帰納法で証明する . 「帰納法の解説」

n=0 のとき , つまり X が要素を一つも持たない集合のときには , X^2 も定義から要素を一つも持たない集合になるので $0^2=0$ となり , 主張は成り立つ .

n=k に対し,主張が成り立つとすると,n=k+1 のときにも主張が成り立つことを示す.X を k+1 個の要素を持つ集合として, $x_0\in X$ を一つ固定する. X_0 を X の x_0 以外の要素の全体とすると, x_0 は k 個の要素を持つ集合となる. x_0 は次の 4 つの集合に分割される. x_0 0 (x_0 0) x_0 1 (x_0 1) x_0 3 (x_0 2) x_0 3 (x_0 3) x_0 4 (x_0 4) x_0 5 (x_0 5) x_0 6 (x_0 6) x_0 6 (x_0 7) x_0 7 (x_0 8) x_0 8 (x_0 9) x_0 8 (x_0 9) x_0 8 (x_0 9) x_0 9 (x_0 9)

残りの集合はそれぞれ k, k, 1 個の要素を持つ.したがって, X^2 の要素の数は,これらの数を足して $k^2+k+k+1=k^2+2k+1=(k+1)^2$ となり,

- ▶ $\mathbb{R}^2 = \{(x,y): x,y \in \mathbb{R}\}$ だが,(x,y) を座標 (x,y) を持つ平面上の点と同一視することで, \mathbb{R}^2 を平面上の点の全体の集合とみなすことができる.同様の同一視により, \mathbb{R}^3 は空間の点の全体の集合とみなせ, \mathbb{R}^4 は時空の点の全体の集合とみなせる.
 - $\triangleright X$ がちょうど n 個の要素を持つ有限集合 (要素の数が有限な集合)とするとき , X^2 は n^2 個の要素を持つ有限集合となる .

証明. n に関する帰納法で証明する. 🔻 帰納法の解説

n=0 のとき , つまり X が要素を一つも持たない集合のときには , X^2 も定義から要素を一つも持たない集合になるので $0^2=0$ となり , 主張は成り立つ .

n=k に対し,主張が成り立つとすると,n=k+1 のときにも主張が成り立つことを示す.X を k+1 個の要素を持つ集合として, $x_0\in X$ を一つ固定する. X_0 を X の x_0 以外の要素の全体とすると, X_0 は k 個の要素を持つ集合となる. X^2 は次の 4 つの集合に分割される. $(X_0)^2$, $\{(x_0,x):x\in X_0\}$,

 $\{(x,x_0):x\in X_0\},\ \{(x_0,x_0)\}.$ 帰納法の仮定から, $(X_0)^c$ は k^2 個の要素を持つ. 残りの集合はそれぞれ k,k,1 個の要素を持つ.したがって, X^2 の要素の数は,これらの数を足して $k^2+k+k+1=k^2+2k+1=(k+1)^2$ となり,

- ▶ $\mathbb{R}^2 = \{(x,y): x,y \in \mathbb{R}\}$ だが,(x,y) を座標 (x,y) を持つ平面上の点と同一視することで, \mathbb{R}^2 を平面上の点の全体の集合とみなすことができる.同様の同一視により, \mathbb{R}^3 は空間の点の全体の集合とみなせ, \mathbb{R}^4 は時空の点の全体の集合とみなせる.
 - $\triangleright X$ がちょうど n 個の要素を持つ有限集合 (要素の数が有限な集合)とするとき , X^2 は n^2 個の要素を持つ有限集合となる .

n=0 のとき , つまり X が要素を一つも持たない集合のときには , X^2 も定義から要素を一つも持たない集合になるので $0^2=0$ となり , 主張は成り立つ .

n=k に対し,主張が成り立つとすると,n=k+1 のときにも主張が成り立つことを示す.X を k+1 個の要素を持つ集合として, $x_0\in X$ を一つ固定する. X_0 を X の x_0 以外の要素の全体とすると, X_0 は k 個の要素を持つ集合となる. X^2 は次の 4 つの集合に分割される. $(X_0)^2$, $\{(x_0,x):x\in X_0\}$,

 $\{(x_i,x_0):x\in X_0\},\{(x_0,x_0)\}$. 帰納法の仮定から, $(X_0)^*$ は k^* 個の要素を持つ. 残りの集合はそれぞれ k, k, 1 個の要素を持つ.したがって, X^2 の要素の数は,これらの数を足して $k^2+k+k+1=k^2+2k+1=(k+1)^2$ となり,

- ▶ $\mathbb{R}^2 = \{(x,y): x,y \in \mathbb{R}\}$ だが,(x,y) を座標 (x,y) を持つ平面上の点と同一視することで, \mathbb{R}^2 を平面上の点の全体の集合とみなすことができる.同様の同一視により, \mathbb{R}^3 は空間の点の全体の集合とみなせ, \mathbb{R}^4 は時空の点の全体の集合とみなせる.
 - \triangleright X がちょうど n 個の要素を持つ有限集合 (要素の数が有限な集合)とするとき , X^2 は n^2 個の要素を持つ有限集合となる .

n=0 のとき , つまり X が要素を一つも持たない集合のときには , X^2 も定義から要素を一つも持たない集合になるので $0^2=0$ となり , 主張は成り立つ .

n=k に対し,主張が成り立つとすると,n=k+1 のときにも主張が成り立つことを示す.X を k+1 個の要素を持つ集合として, $x_0\in X$ を一つ固定する. X_0 を X の x_0 以外の要素の全体とすると, x_0 は x_0 個の要素を持つ集合となる. x_0 は次の 4 つの集合に分割される. x_0 0 になった。 x_0 1 は次の 4 つの集合に分割される. x_0 1 になった。 x_0 2 は次の 4 つの集合に分割される. x_0 3 になった。 x_0 4 になった。

 $\{(x_1,x_0):x\in X_0\},\{(x_0,x_0)\}$. 帰納法の仮定から, $(X_0)^c$ は k^2 個の要素を持つ. 残りの集合はそれぞれ k, k, 1 個の要素を持つ.したがって, X^2 の要素の数は,これらの数を足して $k^2+k+k+1=k^2+2k+1=(k+1)^2$ となり,

- ▶ $\mathbb{R}^2 = \{(x,y): x,y \in \mathbb{R}\}$ だが,(x,y) を座標((x,y))を持つ平面上の点と同一視することで, \mathbb{R}^2 を平面上の点の全体の集合とみなすことができる.同様の同一視により, \mathbb{R}^3 は空間の点の全体の集合とみなせ, \mathbb{R}^4 は時空の点の全体の集合とみなせる.
 - ▶ X がちょうど n 個の要素を持つ有限集合 (要素の数が有限な集合)とするとき , X^2 は n^2 個の要素を持つ有限集合となる .

n=0 のとき , つまり X が要素を一つも持たない集合のときには , X^2 も定義から要素を一つも持たない集合になるので $0^2=0$ となり , 主張は成り立つ .

n=k に対し,主張が成り立つとすると,n=k+1 のときにも主張が成り立つことを示す.X を k+1 個の要素を持つ集合として, $x_0\in X$ を一つ固定する. X_0 を X の x_0 以外の要素の全体とすると, x_0 は x_0 個の要素を持つ集合となる x_0 は次の 4 つの集合に分割される. $(x_0)^2$, $\{(x_0,x):x\in X_0\}$,

 $\{(x,x_0):x\in X_0\},\ \{(x_0,x_0)\}.$ 帰納法の仮定から , $(X_0)^2$ は k^2 個の要素を持つ . 残りの集合はそれぞれ k, k, 1 個の要素を持つ . したがって , X^2 の要素の数は , これらの数を足して $k^2+k+k+1=k^2+2k+1=(k+1)^2$ となり ,

n=k+1 に対しても主張が成り立つことが示せた. $_{lack lack lack lack}$ $_{lack lack lack lack lack lack}$ $_{lack lack lack lack}$ $_{lack lack lack$

- ▶ $\mathbb{R}^2 = \{(x,y): x,y \in \mathbb{R}\}$ だが,(x,y) を座標((x,y))を持つ平面上の点と同一視することで, \mathbb{R}^2 を平面上の点の全体の集合とみなすことができる.同様の同一視により, \mathbb{R}^3 は空間の点の全体の集合とみなせ, \mathbb{R}^4 は時空の点の全体の集合とみなせる.
 - $\triangleright X$ がちょうど n 個の要素を持つ有限集合 (要素の数が有限な集合)とするとき , X^2 は n^2 個の要素を持つ有限集合となる .

n=0 のとき , つまり X が要素を一つも持たない集合のときには , X^2 も定義から要素を一つも持たない集合になるので $0^2=0$ となり , 主張は成り立つ .

n=k に対し,主張が成り立つとすると,n=k+1 のときにも主張が成り立つことを示す.X を k+1 個の要素を持つ集合として, $x_0\in X$ を一つ固定する. X_0 を X の x_0 以外の要素の全体とすると, X_0 は k 個の要素を持つ集合となる. X^2 は次の 4 つの集合に分割される. $(X_0)^2$, $\{(x_0,x):x\in X_0\}$,

 $\{(x,x_0):x\in X_0\}$, $\{(x_0,x_0)\}$. 帰納法の仮定から , $(X_0)^2$ は k^2 個の要素を持つ . 残りの集合はそれぞれ k, k, 1 個の要素を持つ . したがって , X^2 の要素の数は , これらの数を足して $k^2+k+k+1=k^2+2k+1=(k+1)^2$ となり ,

n=k+1 に対しても主張が成り立つことが示せた. $_{lack lack lack lack}$ $_{lack lack lack lack lack lack}$ $_{lack lack lack lack}$ $_{lack lack lack$

- ▶ $\mathbb{R}^2 = \{(x,y): x,y \in \mathbb{R}\}$ だが,(x,y) を座標((x,y))を持つ平面上の点と同一視することで, \mathbb{R}^2 を平面上の点の全体の集合とみなすことができる.同様の同一視により, \mathbb{R}^3 は空間の点の全体の集合とみなせ, \mathbb{R}^4 は時空の点の全体の集合とみなせる.
 - ▶ X がちょうど n 個の要素を持つ有限集合 (要素の数が有限な集合)とするとき , X^2 は n^2 個の要素を持つ有限集合となる .

n=0 のとき , つまり X が要素を一つも持たない集合のときには , X^2 も定義から要素を一つも持たない集合になるので $0^2=0$ となり , 主張は成り立つ .

n=k に対し,主張が成り立つとすると,n=k+1 のときにも主張が成り立つことを示す.X を k+1 個の要素を持つ集合として, $x_0\in X$ を一つ固定する. X_0 を X の x_0 以外の要素の全体とすると, X_0 は k 個の要素を持つ集合となる. X^2 は次の 4 つの集合に分割される. $(X_0)^2$, $\{(x_0,x):x\in X_0\}$,

 $\{(x,x_0):x\in X_0\}$, $\{(x_0,x_0)\}$. 帰納法の仮定から , $(X_0)^2$ は k^2 個の要素を持つ . 残りの集合はそれぞれ k, k, 1 個の要素を持つ . したがって , X^2 の要素の数は , これらの数を足して $k^2+k+k+1=k^2+2k+1=(k+1)^2$ となり ,

- ▶ $\mathbb{R}^2 = \{(x,y): x,y \in \mathbb{R}\}$ だが,(x,y) を座標 (x,y) を持つ平面上の点と同一視することで, \mathbb{R}^2 を平面上の点の全体の集合とみなすことができる.同様の同一視により, \mathbb{R}^3 は空間の点の全体の集合とみなせ, \mathbb{R}^4 は時空の点の全体の集合とみなせる.
 - $\triangleright X$ がちょうど n 個の要素を持つ有限集合 (要素の数が有限な集合)とするとき , X^2 は n^2 個の要素を持つ有限集合となる .

n=0 のとき , つまり X が要素を一つも持たない集合のときには , X^2 も定義から要素を一つも持たない集合になるので $0^2=0$ となり , 主張は成り立つ .

n=k に対し,主張が成り立つとすると, n=k+1 のときにも主張が成り立つことを示す. X を k+1 個の要素を持つ集合として, $x_0\in X$ を一つ固定する. X_0 を X の x_0 以外の要素の全体とすると, X_0 は k 個の要素を持つ集合となる. X^2 は次の 4 つの集合に分割される. $(X_0)^2$, $\{(x_0,x):x\in X_0\}$,

 $\{(x,x_0):x\in X_0\}$, $\{(x_0,x_0)\}$. 帰納法の仮定から , $(X_0)^2$ は k^2 個の要素を持つ . 残りの集合はそれぞれ k, k, 1 個の要素を持つ . したがって , X^2 の要素の数は , これらの数を足して $k^2+k+k+1=k^2+2k+1=(k+1)^2$ となり ,

- ▶ $\mathbb{R}^2 = \{(x,y): x,y \in \mathbb{R}\}$ だが,(x,y) を座標 (x,y) を持つ平面上の点と同一視することで, \mathbb{R}^2 を平面上の点の全体の集合とみなすことができる.同様の同一視により, \mathbb{R}^3 は空間の点の全体の集合とみなせ, \mathbb{R}^4 は時空の点の全体の集合とみなせる.
 - ▶ X がちょうど n 個の要素を持つ有限集合 (要素の数が有限な集合)とするとき , X^2 は n^2 個の要素を持つ有限集合となる .

n=0 のとき , つまり X が要素を一つも持たない集合のときには , X^2 も定義から要素を一つも持たない集合になるので $0^2=0$ となり , 主張は成り立つ .

n=k に対し,主張が成り立つとすると,n=k+1 のときにも主張が成り立つことを示す.X を k+1 個の要素を持つ集合として, $x_0\in X$ を一つ固定する.

 X_0 を X の X_0 以外の要素の全体とすると , X_0 は k 個の要素を持つ集合となる . X^2 は次の 4 つの集合に分割される . $(X_0)^2$, $\{(x_0,x):x\in X_0\}$,

 $\{(x,x_0):x\in X_0\},\{(x_0,x_0)\}$. 帰納法の仮定から $(X_0)^2$ は k^2 個の要素を持つ .

残りの集合はそれぞれ k, k, 1 個の要素を持つ.したがって, X^2 の要素の数は, これらの数を足して $k^2 + k + k + 1 = k^2 + 2k + 1 = (k+1)^2$ となり,

n=k+1 に対しても主張が成り立つことが示せた.

 $\mathfrak{A}(n)$ を自然数 n に対するある主張とする $.m_0$ をある自然数とするとき ,「すべての自然数 $n \geq m_0$ に対し $\mathfrak{A}(n)$ が成り立つ」を証明するために , 次のことを示す

 $\triangleright 1$ $\mathfrak{A}(m_0)$ が成り立つ.

> 2 n=k のときに $\mathfrak{A}(n)$ (つまり $\mathfrak{A}(k)$)が成り立つとすると n=k+1 のときにも $\mathfrak{A}(n)$ (つまり $\mathfrak{A}(k+1)$)が成り立つ .

▶ 上の ▷1 は 帰納法の始め (the beginning of the induction), ▷2 は 帰納法のステップ (the step of the induction または the induction step) と呼ばれる.

▶ 哲学では,多くの例から,法則を抽出することを 帰納 (induction) という.mathematical induction という用語は,この 帰納と帰納法を区別するための用語だが,いささか長い表現なので,数学では通常単に induction と言うことが多い.

 $\mathfrak{A}(n)$ を自然数 n に対するある主張とする $.m_0$ をある自然数とするとき , すべての自然数 $n \geq m_0$ に対し $\mathfrak{A}(n)$ が成り立つ」を証明するために , 次のことを示す

- ⊳1 乿(m₀) が成り立つ.
- ho 2 n=k のときに $\mathfrak{A}(n)$ (つまり $\mathfrak{A}(k)$)が成り立つとすると n=k+1 のときにも $\mathfrak{A}(n)$ (つまり $\mathfrak{A}(k+1)$)が成り立つ .
- ▶ 上の $\triangleright 1$ は 帰納法の始め (the beginning of the induction), $\triangleright 2$ は 帰納法のステップ (the step of the induction または the induction step) と呼ばれる.
- ▶ 哲学では,多くの例から,法則を抽出することを 帰納 (induction) という.mathematical induction という用語は,この 帰納と帰納法を区別するための用語だが,いささか長い表現なので,数学では通常単に induction と言うことが多い.

 $\mathfrak{A}(n)$ を自然数 n に対するある主張とする $.m_0$ をある自然数とするとき 「すべての自然数 $n \ge m_0$ に対し $\mathfrak{A}(n)$ が成り立つ」を証明するために ,次のことを示す

 $\triangleright 1$ $\mathfrak{A}(m_0)$ が成り立つ.

 \triangleright 2 n=k のときに $\mathfrak{A}(n)$ (つまり $\mathfrak{A}(k)$)が成り立つとすると n=k+1 のときにも $\mathfrak{A}(n)$ (つまり $\mathfrak{A}(k+1)$)が成り立つ .

▶ 上の ▷1 は 帰納法の始め (the beginning of the induction), ▷2 は 帰納法のステップ (the step of the induction または the induction step) と呼ばれる.

▶ 哲学では,多くの例から,法則を抽出することを 帰納 (induction) という. mathematical induction という用語は,この 帰納と帰納法を区別するための用語だが,いささか長い表現なので,数学では通常単に induction と言うことが多い.

 $\mathfrak{A}(n)$ を自然数 n に対するある主張とする $.m_0$ をある自然数とするとき 「すべての自然数 $n \ge m_0$ に対し $\mathfrak{A}(n)$ が成り立つ」を証明するために ,次のことを示す

 $\triangleright 1$ $\mathfrak{A}(m_0)$ が成り立つ.

ho 2 n=k のときに $\mathfrak{A}(n)$ (つまり $\mathfrak{A}(k)$)が成り立つとすると n=k+1 のときにも $\mathfrak{A}(n)$ (つまり $\mathfrak{A}(k+1)$)が成り立つ .

- ▶ 上の ▷1 は 帰納法の始め (the beginning of the induction), ▷2 は 帰納法のステップ (the step of the induction または the induction step) と呼ばれる.
- ▶ 哲学では,多くの例から,法則を抽出することを 帰納 (induction) という.mathematical induction という用語は,この 帰納と帰納法を区別するための用語だが,いささか長い表現なの で,数学では通常単に induction と言うことが多い.

 $\mathfrak{A}(n)$ を自然数 n に対するある主張とする $.m_0$ をある自然数とするとき ,「すべての自然数 $n \geq m_0$ に対し $\mathfrak{A}(n)$ が成り立つ」を証明するために , 次のことを示す

 $\triangleright 1$ $\mathfrak{A}(m_0)$ が成り立つ.

 \triangleright 2 n=k のときに $\mathfrak{A}(n)$ (つまり $\mathfrak{A}(k)$)が成り立つとすると n=k+1 のときにも $\mathfrak{A}(n)$ (つまり $\mathfrak{A}(k+1)$)が成り立つ .

- ▶ 上の ▷1 は 帰納法の始め (the beginning of the induction), ▷2 は 帰納法のステップ (the step of the induction または the induction step) と呼ばれる.
- ▶ 哲学では,多くの例から,法則を抽出することを 帰納 (induction) という.mathematical induction という用語は,この 帰納と帰納法を区別するための用語だが,いささか長い表現なの で,数学では通常単に induction と言うことが多い.

▶ 定理を証明するときに必要となる技術的な主張で,定理ほどは独立していないもののことを 補題 (lemma) とよぶ.

▶ X を集合として R を X 上の半順序とするとき , $x \in X$ が X の R に関する極小元である , とは , すべての X と異る $Y \in X$ に対し , $Y \notin X$ が成り立つことである .

- ▶ 定理を証明するときに必要となる技術的な主張で,定理ほどは独立していないもののことを 補題 (lemma) とよぶ.
- ▶ X を集合として R を X 上の半順序とするとき , $x \in X$ が X の R に関する極小元である , とは , すべての X と異る $Y \in X$ に対し , $Y \notin X$ が成り立つことである .