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theory. Laver’s theorem and Bukovský’s theorem assert that set-generic

extensions of a given ground model constitute a quite reasonable and

sufficiently general class of standard models of set-theory.

In sections 2 and 3 of this note, we give a proof of Bukovsky’s theorem

in a modern setting (for another proof of this theorem see [4]). In section

4 we check that the multiverse of set-generic extensions can be treated

as a collection of countable transitive models in a conservative extension

of ZFC. The last section then deals with the problem of the existence of

infinitely-many independent buttons, which arose in the modal-theoretic

approach to the set-generic multiverse by J.Hamkins and B. Loewe [12].

1 The category of forcing extensions as the set-theoretic

multiverse

The forcing method is a powerful tool to prove the consistency of set-theoretic

(i.e., mathematical) assertions relative to (the consistency of) the axioms of set

theory. If a sentence σ in the language LZF of set theory is proved to be relatively

consistent with the axioms of set theory (ZFC) by some forcing argument then

it is so in the sense of the strictly finitist standpoint of Hilbert: the forcing

proof can be recast into an algorithm A such that, if a formal proof P of a

contradiction from ZFC + σ is ever given, then we can transform P with the

help of A to another proof of a contradiction from ZFC or even ZF alone.

The “working set-theorists” however prefer to see their forcing arguments

not as mere discussions concerning manipulations of formulas in a formal system

but rather concerning the “real” mathematical universe in which they “live”.

Forcing for them is thus a method of extending the universe of set theory where

they originally “live” (the ground model, usually denoted as “V ”) to many

(actually more than class many in the sense of V ) different models of set the-

ory called generic extensions of V . Actually, a family of generic extensions is

constructed for certain V -definable partial orderings P. Each such generic ex-

tension is obtained first by fixing a so-called generic filter G which is a filter

over P, sitting outside V with a “generic” sort of transcendence over V , and

then by adding G to V to generate a new structure — the generic extension

V [G] of V — which is also a model of ZFC. Often this process of taking generic

extensions over some model of set theory is even repeated transfinitely-many
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times. As a result, a set-theorist performing forcing constructions is seen to live

in many different models of set theory simultaneously. This is manifested in

many technical expositions of forcing where the reader very often finds narra-

tives beginning with phrases like: “Working in V [G], . . . ”, “Let α < κ be such

that x is in the α th intermediate model V [Gα] and . . . ”, “Now returning to V ,

. . . ”, etc., etc.

Although this “multiverse” view of forcing is in a sense merely a modus

loquendi, it is worthwhile to study the possible pictures of this multiverse per

se. Some initial moves in this direction have been taken e.g. in [1], [2], [5], [6],

[7], [8], [11], [12], [21], [24] etc. The term “multiverse” probably originated in

work of Woodin in which he considered the “set-generic multiverse”, the “class”

of set-theoretic universes which forms the closure of the given initial universe V

under set-generic extension and set-generic ground models. Sometimes we also

have to consider the constellations of the set-generic multiverse where V cannot

be reconstructed as a set-generic extension of some of or even any of the proper

inner models of V . To deal with such cases it is more convenient to consider

the expanded generic multiverse where we also assume that the multiverse is

also closed under the construction of definable inner models.

The set-generic universe should be distinguished from the “class-generic mul-

tiverse”, defined in the same way but with respect to class-forcing extensions

and ground models, as well as inner models of class-generic extensions that

are not themselves class-generic (see [5]). It is even possible to go beyond class-

forcing by considering forcings whose conditions are classes, so-called hyperclass

forcings (see [6]). The broadest point of view with regard to the multiverse is

expressed in [7], where the “hyperuniverse” is taken to consist of all universes

which share the same ordinals as the initial universe (which is taken to be

countable to facilitate the construction of new universes). The hyperuniverse is

closed under all notions of forcing.

In this article we restrict our attention to the set-generic multiverse. The

well-posedness of questions regarding the set-generic multiverse is established

by the theorems of Laver and Bukovský which we discuss in Section 2. These

theorems show that the set-generic extensions and set-generic ground models of

a given universe represent a “class” of models with a natural characterization.

The straightforward formulation of the set-generic multiverse requires the
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notion of “class” of classes which cannot be treated in the usual framework of

ZF set theory, but, as emphasized at the beginning, theorems about the set-

generic multiverse are actually meta-theorems about ZFC. However we can also

consider a theory which is a conservative extension of ZFC in which set-generic

extensions and set-generic ground models are real objects in the theory and the

set-generic multiverse a definable class. In Section 4, we consider such a system

and show that it is a conservative extension of ZFC.

The multiverse view sometimes highlights problems which would never have

been asked in the conventional context of forcing constructions (see [11]). As one

such example we consider in Section 5 the problem of the existence of infinitely

many independent buttons (in the sense of [12]).

2 Laver’s theorem and Bukovský’s theorem

In the forcing language, we often have to express that a certain set is already in

the ground model, e.g. in a statement like: p ∥–P “ . . . ẋ is in V and . . . ”. In

such situations we can always find a large enough ordinal ξ such that the set in

question should be found in that level of the cumulative hierarchy in the ground

model. So we can reformulate a statement like the one above into something

like p ∥–P “ . . . ẋ ∈ V̌ξ and . . . ” which is a legitimate expression in the forcing

language.

This might be one of the reasons why it is proved only quite recently that

the ground model is always definable in an arbitrary set-generic extension:

Theorem 2.1 (R. Laver, [17], H.Woodin [23]). There is a formula φ∗(x, y) in

LZF such that, for any transitive model V of ZFC and set-generic extension

V [G] of V there is a ∈ V such that, for any b ∈ V [G]

b ∈ V ⇔ V [G] |= φ∗(a, b).

An important corollary of Laver’s theorem is that a countable transitive

model of ZFC can have at most countably many ground models for set forcing.

Bukovský’s theorem gives a natural characterization of inner models M of

V such that V is a set-generic extension ofM (1) . Note that, by Laver’s theorem

(1) In the terminology of [8], M is a ground of V .
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Theorem 2.1, such an M is then definable in V . However the inner model M

of V may be introduced as a class in the sense of von Neumann-Bernays-Gödel

class theory (NBG) and in such a situation the definability of M in V may not

be immediately clear.

Let us begin with the following observation concerning κ-c.c. generic exten-

sions. We shall call a partial ordering atomless if each element of it has at least

two extensions which are incompatible with each other.

Lemma 2.2. Let κ be a regular uncountable cardinal. If P is a κ-c.c. atomless

partial ordering, then P adds a new subset of 2<κ.

Proof. Without loss of generality, we may assume that P consists of the positive

elements of a κ-c.c. atomless complete Boolean algebra B. Note that P adds

new subsets of On since P adds a new set (e.g. the (V,P)-generic set). Suppose
that Ṡ is a P-name of a new subset of On. Let θ be a sufficiently large regular

cardinal and let M ≺ H(θ) be such that

(2.1) |M | ≤ 2<κ; buk-0

(2.2) <κM ⊆M and buk-1

(2.3) P, Ṡ, κ ∈M . buk-2

Let Ṫ be a P-name such that ∥–P “ Ṫ = Ṡ ∩M ”. By (2.1), it is enough to show

the following, where V denotes the ground model:

Claim 2.2.1. ∥–P “ Ṫ ̸∈ V ”.

⊢ Otherwise there would be p ∈ P and T ∈ V , T ⊆ On such that

(2.4) p ∥–P “ Ṫ = Ť ”.

We show in the following that then we can construct a strictly decreasing se-

quence ⟨qα : α < κ⟩ in P ∩M such that

(2.5) p ≤P qα for all α < κ. buk-3

But since {qα · −qα+1 : α < κ} is then a pairwise disjoint subset of P, this
contradicts the κ-c.c. of P.

Suppose that ⟨qα : α < δ⟩ for some δ < κ has been constructed. If δ is a

limit, let qδ =
∏B

α<δ qα. Then we have p ≤P qδ and qδ ≤P qα for all α < δ.

Since ⟨qα : α < δ⟩ ∈M by (2.2), we also have qδ ∈M .
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If δ = β + 1, then, since M |=“qβ does not decide Ṡ” by the elementarity

of M , there are ξ ∈ On ∩M and q, q′ ∈ P ∩M with q, q′ ≤P qβ such that

q ∥–P “ ξ ∈ Ṡ ” and q′ ∥–P “ ξ ̸∈ Ṡ ”. At least one of them, say q, must be

incompatible with p. Then qδ = qβ · −q is as desired. ⊣ (Claim 2.2.1)

(Lemma 2.2)

Note that, translated into the language of complete Boolean algebras, the

lemma above just asserts that no κ-c.c. atomless Boolean algebra B is (2<κ, 2)-

distributive.

Suppose now that we work in NBG, V is a transitive model of ZF and M an

inner model of ZF in V (that is M is a transitive class ⊆ V with (M,∈) |= ZF).

For a regular uncountable cardinal κ in M , we say that M κ-globally covers V

if for every function f (in V ) with dom(f) ∈ M and rng(f) ⊆ M , there is a

function g ∈M with dom(g) = dom(f) such that f(i) ∈ g(i) andM |= | g(i) | <
κ for all i ∈ dom(f).

Theorem 2.3 (L. Bukovský, [3](2) ). Suppose that V is a transitive model of

ZFC, M ⊆ V an inner model of ZFC and κ is a regular uncountable cardinal

in M . Then M κ-globally covers V if and only if V is a κ-c.c. set-generic

extension of M .

As the referee of the paper points out, this theorem can be formulated more

naturally in the von Neumann-Bernays-Gödel class theory (NBG) since in the

framework of ZFC this theorem can only be formulated as a meta-theorem, that

is, as a collection of theorems consisting of corresponding statements for each

formula which might define an inner model M .

Proof of Theorem 2.3: If V is a κ-c.c. set-generic extension of M , say by

a partial ordering P ∈ M with M |=“P has the κ-c.c.”, then it is clear that

M κ-globally covers V (for f as above, let ḟ ∈ M be a P-name of f and g be

defined by letting g(α) to be the set of all possible values ḟ(α) may take).

The proof of the converse is done via the following Lemma 2.4. Note that,

by Grigorieff’s theorem (see Corollary 2.6 below), the statement of this Lemma

is a consequence of Bukovský’s theorem:

(2)Tadatoshi Miyamoto told us that James Baumgartner independently proved this theorem

in an unpublished note also using infinitary logic.

6



Lemma 2.4. Suppose that M is an inner model of a transitive model V of ZFC

such that M κ-globally covers V for some κ regular uncountable in M . Then

for any A ∈ V , A ⊆ On, M [A] is(3) a κ-c.c. set-generic extension of M .

Note that it can happen easily that M [A] is not a set generic extrension

of M . For example, if 0# exists and M = L, then M [0#] is not a set-generic

extension of M .

We first show that Theorem 2.3 follows from Lemma 2.4. Assume that M

κ-globally covers V . We have to show that V is a κ-c.c. set-generic extension

of M . In V , let λ be a regular cardinal such that λ<κ = λ and A ⊆ On be a set

such that

(2.6) (P(λ))M [A] = (P(λ))V . buk-4

Then, by Lemma 2.4, M [A] is a κ-c.c. generic extension of M and hence we

haveM [A] |= “κ is a regular cardinal”. Actually we haveM [A] = V . Otherwise

there would be a B ∈ V \M [A] with B ⊆ On. Since M [A] κ-globally covers

M [A][B], we may apply Lemma 2.4 on this pair and conclude that M [A][B] is

a (non trivial) κ-c.c. generic extension of M [A]. By Lemma 2.2, there is a new

element of P((2<κ)M [A]) ⊆ P(λ) inM [A][B].But this is a contradiction to (2.6).

(Theorem 2.3)

Proof of Lemma 2.4: We work in M and construct a κ-c.c. partial ordering

P such that M [A] is a P-generic extension over M .

Let µ ∈ On be such that A ⊆ µ and let L∞(µ) be the infinitary sentential

logic with atomic sentences

(2.7) “α ∈ Ȧ” for α ∈ µ buk-5

and the class of sentences closed under ¬ and
∨∨

where ¬ is to be applied

to a formula and
∨∨

to an arbitrary set of formulas. To be specific let us

assume that the atomic sentences “α ∈ Ȧ” for α ∈ µ are coded by the sets

⟨α, 0⟩ for α ∈ µ, the negation ¬φ by ⟨φ, 1⟩ and the infinitary disjunction
∨∨

Φ

(3) M [A] may be defined by M [A] =
∪

α∈On L(V
M
α ∪ {A}). M [A] is a model of ZF: this

can be seen easily e.g. by applying Theorem 13.9 in [13]. If M also satisfies AC then M [A]

satisfies AC as well since, in this case, it is easy to see that a well-ordering of (Vα)
M ∪ {A}

belongs to M [A] for all α ∈ On.
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by ⟨Φ, 2⟩. We regard the usual disjunction ∨ of two formulas as a special case

of
∨∨

and other logical connectives like “
∧∧

”, “∧”, “→” as being introduced as

abbreviations of usual combinations of ¬ and
∨∨

. For a sentence φ ∈ L∞(µ)

and B ⊆ µ, we write B |= φ when φ holds if each atomic sentence of the

form “α ∈ Ȧ” in φ is interpreted by “α ∈ B” and logical connectives in φ are

interpreted in canonical way. For a set Γ of sentences, we write B |= Γ if B |= ψ

for all ψ ∈ Γ. For Γ ⊆ L∞(µ) and φ, we write Γ |= φ if B |= Γ implies B |= φ

for all B ⊆ µ (in V ).

Let ⊢ be a notion of provability for L∞(µ) in some logical system which is

correct (i.e. Γ ⊢ φ always implies Γ |= φ)(4) , upward absolute (i.e. M ⊆ N

and M |= “Γ ⊢ φ” always imply N |= “Γ ⊢ φ” for any transitive models M ,

N of ZF) and sufficiently strong (so that all the arguments used below work

for this ⊢). In Section 3 we introduce one such deductive system (as well as

an alternative approach without using such a deduction system, based on Lévy

Absoluteness).

Let λ = max{κ, µ+} and Lλ(µ) = L∞(µ)∩ (Vλ)
M . Let f ∈ V be a mapping

f :
(
P(Lλ(µ))

)M \ {∅} →
(
Lλ(µ)

)M
such that, for any Γ ∈

(
P(Lλ(µ))

)M \ {∅},
we have f(Γ) ∈ Γ and A |= f(Γ) if A |=

∨∨
Γ. Since M κ-globally covers

V , there is a g ∈ M with g :
(
P(Lλ(µ))

)M \ {∅} → P<κ

(
Lλ(µ)

)M
such that

f(Γ) ∈ g(Γ) ⊆ Γ for all Γ ∈ (P(Lλ(µ)))
M \ {∅}.

In M , let

(2.8) T = {
∨∨

Γ →
∨∨
g(Γ) : Γ ∈ P(Lλ(µ)) \ {∅}}.

Note that M [A] |= “A |= T”. It follows that T is consistent with respect to our

deduction system (in V ). In M , let

(2.9) P = {φ ∈ Lλ(µ) : T ̸⊢ ¬φ} buk-6

and for φ, ψ ∈ P, let

(2.10) φ ≤P ψ ⇔ T ⊢ φ→ ψ. buk-7

Claim 2.4.1. For φ ∈ Lλ(µ), if A |= φ then we have φ ∈ P. In particular,

“α ∈ Ȧ” ∈ P for all α ∈ A and “¬(α ∈ Ȧ)” ∈ P for all α ∈ µ \ A.

(4)More precisely, we assume that ZF proves the correctness of ⊢.
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⊢ Suppose A |= φ. We have to show T ̸⊢ ¬φ: If T ⊢ ¬φ in M , then we would

have V |= “T ⊢ ¬φ”. Since A |= T in V , it follows that A |= ¬φ. This is a

contradiction. ⊣ (Claim 2.4.1)

Claim 2.4.2. For φ, ψ ∈ P, φ and ψ are compatible if and only if

(2.11) T ̸⊢ ¬(φ ∧ ψ). buk-8

Note that (2.11) is equivalent to

(2.12) T ̸⊢ ¬φ ∨ ¬ψ (⇔ T ̸⊢ φ→ ¬ψ). buk-8-0

⊢ Suppose that φ, ψ ∈ P are compatible. By the definition of ≤P this means

that there is η ∈ P such that T ⊢ η → φ and T ⊢ η → ψ. For this η we

have T ⊢ η → (φ ∧ ψ). Since T ̸⊢ ¬η by the consistency of T , it follows that

T ̸⊢ ¬(φ ∧ ψ).
Conversely if T ̸⊢ ¬(φ ∧ ψ). Then (φ ∧ ψ) ∈ P. Since T ⊢ (φ ∧ ψ) → φ and

T ⊢ (φ ∧ ψ) → ψ, we have (φ ∧ ψ) ≤P φ and (φ ∧ ψ) ≤P ψ. Thus φ and ψ are

compatible with respect to ≤P. ⊣ (Claim 2.4.2)

Claim 2.4.3. P has the κ-c.c.

⊢ Suppose that Γ ⊆ P is an antichain. Since | g(Γ) | < κ, it is enough to

show that g(Γ) = Γ. Suppose otherwise and let φ0 ∈ Γ \ g(Γ). Since “
∨∨

Γ →∨∨
g(Γ)” ∈ T and ⊢ φ0 →

∨∨
Γ, we have

(2.13) T ⊢ φ0 →
∨∨
g(Γ). buk-9

It follows that there is φ ∈ g(Γ) such that φ0 and φ are compatible. This is

because otherwise we would have T ⊢ φ0 → ¬φ for all φ ∈ g(Γ) by Claim 2.4.2.

Hence T ⊢ φ0 →
∧∧

{¬φ : φ ∈ g(Γ)} which is equivalent to T ⊢ φ0 → ¬
∨∨
g(Γ).

From this and (2.13), it follows that T ⊢ ¬φ0. But this is a contradiction to

the assumption that φ0 ∈ P.
Now, since Γ is pairwise incompatible, it follows that φ0 = φ ∈ g(Γ). This

is a contradiction to the choice of φ0. ⊣ (Claim 2.4.3)

In V , let G(A) = {φ ∈ P : A |= φ}. By Claim 2.4.1, we have G(A) = {φ ∈
Lλ(µ) : A |= φ} and A is definable from G(A) over M as {α ∈ µ : “α ∈ Ȧ” ∈
G(A)}. Thus we have M [G(A)] =M [A].

Hence the following two Claims prove our Lemma:

9



Claim 2.4.4. G(A) is a filter in P.

⊢ Suppose that φ ∈ G(A) and φ ≤P ψ. Since this means that A |= φ and

T ⊢ φ→ ψ, it follows that A |= ψ. That is, ψ ∈ G(A).

Suppose now that φ, ψ ∈ G(A). This means that

(2.14) A |= φ and A |= ψ. buk-9-0

Hence we have A |= φ∧ ψ. By Claim 2.4.1, it follows that (φ∧ ψ) ∈ P, that is,
T ̸⊢ ¬(φ ∧ ψ). Thus φ and ψ are compatible by Claim 2.4.2. ⊣ (Claim 2.4.4)

Claim 2.4.5. G(A) is P-generic.

⊢ Working inM , suppose that Γ is a maximal antichain in P. By Claim 2.4.3,

we have |Γ | < κ and hence we have
∨∨

Γ ∈ Lλ(µ) and hence
∨∨

Γ ∈ P: For

φ ∈ Γ, since φ ∈ P we have T ̸⊢ ¬φ and ⊢ φ→
∨∨

Γ. It follows T ̸⊢
∨∨

Γ.

Moreover we have T ⊢
∨∨

Γ: Otherwise ¬
∨∨

Γ would be an element of P
incompatible with every φ ∈ Γ. A contradiction to the maximality of Γ.

Hence A |=
∨∨

Γ and thus there is φ ∈ Γ such that A |= φ. That is,

φ ∈ G(A). ⊣ (Claim 2.4.5)

(Lemma 2.4)

The proof of Theorem 2.3 from Lemma 2.4 relies on Lemma 2.2 and the

Axiom of Choice is involved both in the statement and the proof of Lemma 2.2.

On the other hand, Lemma 2.4 can be proved without assuming the Axiom

of Choice in M : It suffices to eliminate choice from the proof of Claim 2.4.5.

Proof of Claim 2.4.5 without the Axiom of Choice in M : Working in

M , suppose that D is a dense subset of P. Then A |=
∨∨
D: Otherwise we

would have T ̸⊢
∨∨
D. Since

(2.15) T ⊢
∨∨
D ↔

∨∨
g(D), buk-10

it follows that T ̸⊢
∨∨
g(D). Since

∨∨
g(D) ∈ Lλ(µ), this implies ¬

∨∨
g(D) ∈ P.

Since D is dense in P there is φ0 ∈ D such that T ⊢ φ0 → ¬
∨∨
g(D). By (2.15),

it follows that T ⊢ φ0 → ¬
∨∨
D. On the other hand, since φ0 ∈ D we have

T ⊢ φ0 →
∨∨
D. Hence we have T ⊢ ¬φ0 which is a contradiction to φ0 ∈ P.

Thus there is φ1 ∈ D such that A |= φ1, that is, φ1 ∈ G(A).

(Claim 2.4.5 without AC in M)

The next corollary follows immediately from this remark:
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Corollary 2.5. Work in NBG. Suppose that V is a model of ZFC and M is

an inner model of V (of ZF) such that M κ-globally covers V . If V = M [A]

for some set A ⊆ On then V is a κ-c.c. set-generic extension of M .

We do not know if Corollary 2.5 is false without the added assumption that

V is M [A] for a set of ordinals A.

More generally, it seems to be open if there is a characterisation of the set-

generic extensions of an arbitrary model of ZF; or at least of such extensions

given by partial orders which are well-ordered in the ground model.

Grigorieff’s theorem can be also obtained by a modification of the proof of

Theorem 2.3.

Corollary 2.6 (S. Grigorieff [10]). Suppose thatM is an inner model of a model

V of ZFC and V is a set-generic extension of M . Then any inner model N of

V (of ZFC) with M ⊆ N is a set-generic extension of M and hence definable

in V . Also, for such N , V is a set-generic extension of N .

If V is κ-c.c. set-generic extension of M in addition, then N is a κ-c.c.

set-generic extension of M and V is a κ-c.c. set-generic extension of N .

Similarly to Theorem 2.3, we can also characterize generic extensions ob-

tained via a partial ordering of cardinality ≤ κ.

For M and V as above, we say that V is κ-decomposable into M if for any

a ∈ V with a ⊆M , there are ai ∈M , i ∈ κ such that a =
∪

i<κ ai.

Theorem 2.7. Suppose that V is a transitive model of ZFC and M an inner

model of ZFC definable in V and κ is a cardinal in M . Then V is a generic

extension of M by a partial ordering in M of size ≤ κ (in M) if and only if M

κ+-globally covers V and V is κ-decomposable into M .

Proof. If V is a generic extension of M by a generic filter G over a partial

ordering P ∈ M of size ≤ κ (in M) then P has the κ+-c.c. and hence M κ+-

globally covers V by Theorem 2.1. V is κ-decomposable into M since, for any

a ∈ V with a = ȧG, we have a =
∪
{{m ∈M : p ∥–P “m ∈ ȧ ”} : p ∈ G}.

Suppose now thatM κ+-globally covers V and V is κ-decomposable intoM .

By Theorem 2.3, there is a κ+-c.c. partial ordering P inM and a P-generic filter
G overM such that V =M [G]. Without loss of generality, we may assume that

P consists of the positive elements of a complete Boolean algebra B (in M).
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By κ-decomposability, G can be decomposed into κ sets Gi ∈ M , i < κ.

Without loss of generality, we may assume that 1lP forces this fact. So letting

Ġ be the standard name of G and Ġi, i < κ be names of Gi, i < κ respectively,

we may assume

(2.16) ∥–P “ Ġ =
∪

i<κ Ġi ”. buk-9-1

Working inM , let Xi ⊆ P be a maximal pairwise incompatible set of conditions

p which decide Ġi to be Gi,p ∈ M for each i < κ. By the κ+-c.c. of P, we
have |Xi | ≤ κ. Clearly, we have p ≤P

∏BGi,p for all i < κ and p ∈ Xi. Let

P′ =
∪
{Xi : i < κ}. Then |P′ | ≤ κ.

Claim 2.7.1. P′ is dense in P.

⊢ Suppose p ∈ P. Then there is q ≤ p such that q decides some Ġi to be Gi,q

and p ∈ Gi,q. Let r ∈ Xi be compatible with q. Then we have r ≤P
∏BGi,r =∏BGi,q ≤ p. ⊣ (Claim 2.7.1)

Thus V is a P′-generic extension over M . (Theorem 2.7)

3 A Formal deductive system for L∞(µ)

In the proof of Lemma 2.4, we used a formal deductive system of L∞(µ) without

specifying exactly which system we are using. It is enough to consider a system

of deduction which contains all logical axioms we used in the course of the proof

together with modus ponens and some infinitary deduction rules like:

φi → ψ, i ∈ I∨∨
{φi : i ∈ I} → ψ

What we need for such a system is that its correctness and upward absoluteness

hold while we do not make use of any version of completeness of the system.

Formal deduction systems for infinitary logics have been studied extensively

in 1960s and 1970s, see e.g. [14], [15], [20]. Nevertheless, to be concrete, we

shall introduce below such a deductive system S for L∞(µ).
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One peculiar task for us here is that we have to make our deduction system

S such that S does not rely on AC so that we can apply it in an inner model M

which does not necessarily satisfy AC to obtain Corollary 2.5.

Recall that we have introduced L∞(µ) as the smallest class containing the

sets ⟨α, 0⟩, α ∈ µ as the codes of the prediactes “α ∈ Ȧ” for α ∈ µ and closed

with respect to ⟨φ, 1⟩ for φ ∈ L∞(µ) and ⟨Φ, 2⟩ for all sets Φ ⊆ L∞(µ) where

⟨φ, 1⟩ and ⟨Φ, 2⟩ represent ¬φ and
∨∨

Φ respectively. Here, to be more precise

about the role of the infinite conjunction we add the infinitary logical connective∧∧
, and assume that

∧∧
Φ is coded by ⟨Φ, 3⟩ and thus L∞(µ) is also closed with

respect to ⟨Φ, 3⟩ for all sets Φ ⊆ L∞(µ).

The axioms of S consist of the following formulas:

(A1) φ(φ0, φ1, ...,φn−1)

for each tautology φ(A0, A1, ...,An−1) of (finitary) propositional logic and

φ0, φ1,...,φn−1 ∈ L∞(µ);

(A2) φ→
∨∨

Φ and
∧∧

Φ → φ

for any set Φ ⊂ L∞(µ) and φ ∈ Φ;

(A3) ¬(
∧∧

Φ) ↔
∨∨

{¬φ : φ ∈ Φ} and

¬(
∨∨

Φ) ↔
∧∧

{¬φ : φ ∈ Φ}

for any set Φ ⊆ L∞(µ); and

(A4) φ ∧ (
∨∨

Ψ) ↔
∨∨

{φ ∧ ψ : ψ ∈ Ψ} and

φ ∨ (
∧∧

Ψ) ↔
∧∧

{φ ∨ ψ : ψ ∈ Ψ}

for any φ ∈ L∞(µ) and any set Ψ ⊆ L∞(µ).

Deduction Rules:

(Modus Ponens)
{φ, φ→ ψ}

ψ

(R1)
{φ→ ψ : φ ∈ Φ}∨∨

Φ → ψ

(R2)
{φ→ ψ : ψ ∈ Ψ}

φ→
∧∧

Ψ

A proof of φ ∈ L∞(µ) from Γ ⊆ L∞(µ) is a labeled tree ⟨T, f⟩ such that

13



(3.1) T = ⟨T,≤⟩ is a tree growing upwards with its root r0 and T with (≤)−1
prf-0

is well-founded;

(3.2) f : T → L∞(µ); prf-1

(3.3) f(r0) = φ; prf-1-0

(3.4) if t ∈ T is a maximal element then either f(t) ∈ Γ or t is one of the prf-2

axioms of S;

(3.5) if t ∈ T and P ⊆ T is the set of all immediate successors of t, then prf-3

{f(p) : p ∈ P}

f(t)

is one of the deduction rules.

We have to stress here that, in (3.5), we do not assume that the function

f is one-to-one since otherwise we have to choose a proof for each formula in

the set in the premises of (R1) and (R2). Thus, for example, we can deduce

T ⊢
∧∧

Φ in S from T ⊢ φ for all φ ∈ Φ without appealing to AC.

Now the proof of the following is an easy exercise:

Proposition 3.1. (1) For any B ⊆ µ, T ⊆ L∞(µ) and φ ∈ L∞(µ), if T ⊢ φ

and B |= T , then we have B |= φ.

(2) For transitive models M , N of ZF such that M is an inner model of N ,

if M |= “ ⟨T, f⟩ is a proof of φ in L∞(µ)”, then

N |= “ ⟨T, f⟩ is a proof of φ in L∞(µ)”.

Proof. (1): By induction on cofinal subtrees of a fixed proof ⟨T, f⟩ of φ. (2):

Clear by definition. (Proposition 3.1)

An alternative setting to the argument by means of a deductive system is

to make use of the following definition of M |= “Γ ⊢ φ” in the proof of Lemma

2.4:

M |= “Γ ⊢ φ” iff for any B ⊆ µ in some set-forcing extension M [G] of

M , M [G] |= B |= ψ for all ψ ∈ Γ always implies M [G] |= B |= φ.
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Note that this is definable in M using the forcing relation definable on M .

It remains to verify that this notion has the desired degree of absoluteness.

Actually we can easily prove the full absoluteness, that is, if N is a transitive

model containing M with the same ordinals as those of M then, for Γ, φ ∈ M

with M |= Γ ⊆ L∞(µ) and M |= φ ∈ L∞(µ), Γ ⊢ φ holds in M iff Γ ⊢ φ holds

in N .

First suppose that B ⊆ µ is a set of ordinals in a set-generic extension N [G]

of N such that B witnesses the failure of Γ ⊢ φ in N . Let x be a real which is

generic over N for the Lévy collapse of a sufficiently large ν to ω such that Γ and

µ become countable in the generic extension N [x]. Then x is also Lévy generic

over M and M [x] is a submodel of N [x]. By Lévy Absoluteness, it follows that

that there exists B′ ⊆ µ in M [x] which also witnesses the failure of Γ ⊢ φ in M .

Conversely, suppose that Γ ⊢ φ holds in N and let B ⊆ µ be a set of ordinals

in a set-generic extension M [G] of M such that B witnesses the failure of Γ ⊢ φ
in M . Then B also belongs to an extension of M which is generic for the Lévy

collapse of sufficently large ν to ω; choose a condition p in this forcing which

forces the existence of such a B. Now if x is Lévy-generic over N and contains

the condition p, we see that there is a counterexample to Γ ⊢ φ in N witnessed

in N [x], contrary to our assumption.

With both of the interpretations of ⊢ we can check that the arguments in

Section 2 go through.

4 An axiomatic framework for the set-generic multiverse

In this section, we consider some possible axiomatic treatments of the set-generic

multiverse. Such axiomatic treatments are also discussed e.g. in [9], [19], [22].

We introduce a conservative extension MZFC of ZFC in which we can treat

the multiverse of set-generic extensions of models of ZFC as a collection of

countable transitive models. This system or some further extension of it (which

can possibly also treat tame class forcings) may be used as a basis for direct

formulation of statements concerning the multiverse.

The language LMZF of the axiom system MZFC consists of the ϵ-relation

symbol ‘∈’, and a constant symbol ‘v’ which should represent the countable

transitive “ground model”.
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The axiom system MZFC consists of

(4.1) all axioms of ZFC; mzfc-0

(4.2) “v is a countable transitive set”; mzfc-1

(4.3) “v |= φ” for all axioms φ of ZFC; mzfc-2

By (4.1), MZFC proves the (unique) existence of the closure M of “{v}”
under forcing extension and definable “inner model” of “ZF” (here ‘ZF’ is set

in quotation marks since we can only argue in metamathematics that such

“inner model” satisfies each instance of replacement). Note that M ⊆ Hℵ1 .

Here “inner model” is actually phrased in LZF as “transitive almost universal

subset closed under Gödel operations”. If we had v |= ZFC, we would have

w |= ZF for any inner model w of v in this sense by Theorem 13.9 in [13]. In

MZFC, however, we have only v |= φ for each axiom φ of ZFC (in the meta-

mathematics). Nevertheless, for all such “inner model” w and hence for all

w ∈ M, we have w |= φ for all axiom φ of ZF by the proof of Theorem 13.9

in [13] and the Forcing Theorem. Apparently, this is enough to consider M in

this framework as the set-generic multiverse.

Similarly, we can also start from any extension of ZFC (e.g. with some ad-

ditional large cardinal axiom) and make M closed under some more operations

such as some well distinguished class of class forcing extensions.

The following theorem shows that we do not increase the consistency strength

by moving from ZFC to MZFC.

Theorem 4.1. MZFC is a conservative extension of ZFC: for any sentence ψ in

LZF, we have ZFC ⊢ ψ ⇔ MZFC ⊢ ψ. In particular, MZFC is equiconsistent

with ZFC.

Proof. “⇒” is trivial.

For “⇐”, suppose that MZFC ⊢ ψ for a formula ψ in LZF. Let P be a

proof of ψ from MZFC and let T be the finite fragment of ZFC consisting of all

axioms φ of ZFC such that v |= φ appears in P . Let Φ(x) be the formula in

LZF saying

“x is a countable transitive set and x |=
∧∧
T”.

By the Deduction Theorem, we can recast P to a proof of ZFC ⊢ ∀x(Φ(x) →
ψ). On the other hand we have ZFC ⊢ ∃xΦ(x) (by the Reflection Principle,
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Downward Löwenheim-Skolem Theorem and Mostowski’s Collapsing Theorem).

Hence we obtain a proof of ψ from ZFC alone. (Theorem 4.1)

It may be a little bit disappointing if each set-theoretic universe in the

multiverse seen from the “meta-universe” is merely a countable set. Of course

if M is an inner model of a model W of ZFC (i.e. M is a model which is a

transitive class ⊆ W and M , W |= ZFC) there are always partial ordering P
in M for which there is no (M,P)-generic set in W (e.g. any partial ordering

collapsing a cardinal of W cannot have its generic set in W ).

However, if we are content with a meta-universe which is not a model of full

ZFC, we can work with the following setting where each of the “elements” of

the set-generic multiverse is an inner model of a meta-universe: starting from

a model V of ZFC with an inaccessible cardinal κ, we generically extend it to

W = V [G] by Lévy collapsing κ to ω1. LettingM = H(κ)V , we haveM |= ZFC

andM is an inner model ofW = H(κ)V [G] = H(ω1)
V [G]. W |= ZFC− the Power

Set Axiom and for any partial ordering P in M there is a (M,P)-generic set in

W . Thus an NBG-type theory of W with a new unary predicate corresponding

to M can be used as a framework of the theory for the set-generic multiverse

(which is obtained by considering all the set-generic grounds of M , and then all

the set generic extensions of them, etc.) as a “class” of classes in W . A setting

similar to this idea was also discussed in [19].

5 Independent buttons

The multiverse view sometimes highlights problems which would be never asked

in the conventional context of forcing constructions. The existence of infinitely

many independent buttons which arose in connection with the characterization

of the modal logic of the set-generic multiverse (see [12]) is one such question.

A sentence φ in LZF is said to be a button (for set-genericity) if any set-

generic extension V [G] of the ground model V has a further set-generic extension

V [G][H] such that φ holds in all set-generic extensions of V [G][H]. Let us say

that a button φ is pushed in a set-generic extension V [G] if φ holds in all further

set-generic extensions V [G][H] of V [G] (including V [G] itself).

Formulas φn, n ∈ ω are independent buttons, if φn, n ∈ ω are unpushed

buttons and for any set-generic extension V [G] of the ground model V and any
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X ⊆ ω in V [G],

(5.1) if {n ∈ ω : V [G] |= φn is pushed} ⊆ X then there is a set-generic button-0

extension V [G][H] such that {n ∈ ω : V [G][H] |= φn is pushed} = X.

In [12], it is claimed that formulas bn, n ∈ ω form an infinite set of inde-

pendent buttons over V = L where bn is a formula asserting: “ωn
L is not a

cardinal”. This is used to prove that the principles of forcing expressible in

the modal logic of the set-theoretic multiverse as a Kripke frame where modal

operator □ is interpreted as:

(5.2) M |= □φ⇔ in all set-generic extensionsM [G] ofM we haveM [G] |= φ button-1

coincides with the modal theory S4.2 (Main Theorem 6 in [12]).

Unfortunately, it seems that there is no guarantee that (5.1) holds in an

arbitrary set-generic extension V [G] for these bn, n ∈ ω.

In the following, we introduce an alternative set of infinitely many formulas

which are actually independent buttons for any ground model of ZFC+ “GCH

below ℵω” + “ℵn = ℵL
n for all n ∈ ω” which can be used as bn, n ∈ ω in [12].

We first note that, for Main Theorem 6 in [12] we actually need only the

existence of an arbitrary finite number of independent buttons. In the case of

V = L the following formulas can be used for this: Let ψn be the statement

that ℵL
n is a cardinal and the L-least ℵL

n-Suslin tree TL
n in L (i.e., the L-least

normal tree of height ℵL
n with no antichain of size ℵL

n in L) is still ℵL
n-Suslin. If

M is a set-generic (or arbitrary) extension of L in which the button ¬ψn has

not been pushed, then by forcing with TL
n over M we push this button and do

not affect any of the other unpushed buttons ¬ψm, m ̸= n, as this forcing is

ℵn-distributive and has size ℵn. Rittberg [18] also found independent buttons

under V = L.

Now we turn to a construction of infinitely many independent buttons for

which we even do not need the existence of Suslin trees. For n ∈ ω, let φn be

the statement:

(5.3) there is an injection from ℵn+2
L to P(ℵn

L). button-2

Note that φn is pushed in a set-generic extension V [G] if and only if it holds

in V [G]. Thus φn for each n ∈ ω is a button provided that φn does not hold
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in the ground model. We show that these φn, n ∈ ω are independent buttons

(over any ground model where they are unpushed — e.g., when V = L).

Suppose that we are working in some model W of ZFC. In W , let A = {n ∈
ω : □φn holds} and B ⊆ ω be arbitrary with A ⊆ B. It is enough to prove the

following

Proposition 5.1. We can force (over W ) that φn holds for all n ∈ B and ¬φn

for all n ∈ ω \B.

Proof. In W , let κn = | ℵn
L | for n ∈ ω. We use the notation of [16] on the

partial orderings with partial functions and denote with Fn(κ, λ, µ) the set of all

partial functions from κ to λ with cardinality < µ ordered by reverse inclusion.

By ∆-System Lemma, it is easy to see that Fn(κ, λ, µ) has the (λ<µ)+-c.c. Let

(5.4) Pn =

{
Fn(κn+2, 2, κn) if n ∈ B \ A
1l otherwise.

button-3

Let P =
∏

n∈ω Pn be the full support product of Pn, n ∈ ω. Then we clearly

have ∥–P “φn ” for all n ∈ B. Thus to show that P creates a generic extension

as desired, it is enough to show that ∥–P “¬φn ” for all n ∈ ω \B.

Suppose that

(5.5) n ∈ ω \B. button-3-0

Then we have

(5.6) Pn = 1l. button-4

Since φn does not hold in W , we have κn < κn+1 < κn+2 and 2κn = κn+1 in

W . By (5.6), P factors as P ∼ P(< n)× P(> n) where P(< n) =
∏

k<n Pk and

P(> n) =
∏

k>n Pk.

We show that both P(> n) and P(< n) over P(> n) do not add any injection

from κn+2 into P(κn).

P(> n) is κn+1-closed. Thus it does not add any new subsets of κn. So if it

added an injection from κn+2 into P(κn) then it would collapse the cardinal κn+2.

Since P(> n) further factors as P(> n) ∼ Pn+1 ×
∏

k>n+1 Pk and
∏

k>n+1 Pk is

κn+2-closed the only way P(> n) could collapse κn+2 would be if Pn+1 did so.

But then, since Pn+1 has the (2<κn+1)+-c.c. with (2<κn+1)+ = (2κn)+, we would
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have 2κn ≥ κn+2. This is a contradiction to the choice (5.5) of n. So P(> n)

forces φn to fail.

In the rest of the proof, we work in W P(>n) and show that P(< n) does

not add any injection from κn+2 into P(κn). Note that, by κn+1-closedness of

P(> n), we have Fn(κm+2, 2, κm)
W = Fn(κm+2, 2, κm)

W P(>n)
for m < n.

We have the following two cases:

Case I. n − 1 ∈ A ∪ (ω \ B). Then P(< n) ∼ P(< m) for some m < n and

P(< m) has the (2κm−1)+-c.c. with (2κm−1)+ ≤ κn.

Case II. n− 1 ∈ B \ A. Then 2<κn−1 = κn and P(< n) has the κn+1-c.c.

In both cases the partial ordering P(< n) has κn+1-c.c. and hence the car-

dinals κn+1 and κn+2 are preserved. Since P(< n) has at most cardinality

2κn−1 · κn+1 = κn+1, it adds at most κn+1
κn = κn+1 new subsets of κn and thus

the size of P(κn) remains unchanged. This shows that ∥–P “¬φn ”.

(Proposition 5.1)
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