$\mathcal{L}_{\infty\kappa}$ -Cohen algebras

Sakaé Fuchino*

Aug. 18, 1992

Abstract

A Boolean algebra A is called $\mathcal{L}_{\infty\kappa}$ -Cohen if A is $\mathcal{L}_{\infty\kappa}$ -elementarily equivalent to the Cohen algebra \mathbb{C}_{κ} with π -weight κ . In this paper we study the class of $\mathcal{L}_{\infty\kappa}$ -Cohen algebras for various κ 's.

^{*}Supported by the Deutsche Forschungsgemeinschaft grant Ko490/5-1.

I would like to thank Sabine Koppelberg for carefully reading an earlier version and for making a lot of comments and suggestions for improvements. Thanks are also due to Ulrich Fuchs, Martin Goldstern and Lutz Heindorf for helpful discussions.

0 Introduction

Let κ be an infinite cardinal. Let us recall that $\mathcal{L}_{\infty\kappa}$ is the logic whose formulas are constructed recursively just like in first order logic with the difference that conjunction and disjunction of any set of formulas as well as quantification over a block of free variables of cardinality $< \kappa$ is allowed.

 \mathbb{C}_{κ} is the completion of the free Boolean algebra Fr κ on free generators κ . A complete Boolean algebra of the form \mathbb{C}_{κ} is called a Cohen algebra. A Boolean algebra A is called $\mathcal{L}_{\infty\kappa}$ -Cohen algebra when A is $\mathcal{L}_{\infty\kappa}$ -elementarily equivalent to the Cohen algebra \mathbb{C}_{κ} . In this paper we shall study $\mathcal{L}_{\infty\kappa}$ -Cohen algebras for various κ 's.

A Boolean algebra B is called $\mathcal{L}_{\infty\kappa}$ -free if B is $\mathcal{L}_{\infty\kappa}$ -elementarily equivalent to the free Boolean algebra Fr κ (see [9]). In Section 2 we give an algebraic characterization of $\mathcal{L}_{\infty\kappa}$ -Cohen algebras for regular κ (Theorem 2.3) which is quite similar to Kueker's algebraic characterization of $\mathcal{L}_{\infty\kappa}$ -free Boolean algebras (see Theorem 1.5 below). From this characterization of $\mathcal{L}_{\infty\kappa}$ -Cohen algebras it follows that the σ -completion of an $\mathcal{L}_{\infty\kappa}$ -free Boolean algebra is an $\mathcal{L}_{\infty\kappa}$ -Cohen algebra (Corollary 2.4). We still do not know if there are $\mathcal{L}_{\infty\kappa}$ -Cohen algebras which are not σ -completion of $\mathcal{L}_{\infty\kappa}$ -free Boolean algebras. Since every $\mathcal{L}_{\infty\kappa}$ -free Boolean algebra B for $\kappa > \aleph_1$ satisfies the ccc, the σ -completion of B is actually the completion of B. Hence for $\kappa > \aleph_1$, the completion of any $\mathcal{L}_{\infty\kappa}$ -free Boolean algebra is $\mathcal{L}_{\infty\kappa}$ -Cohen. However this is not true for $\kappa = \aleph_1$ (see the remark at the end of Section 2).

In Section 3 we show that, for a singular λ , every $\mathcal{L}_{\infty\lambda}$ -Cohen algebra of π -weight λ is isomorphic to \mathbb{C}_{λ} (Theorem 3.1). The proof of the theorem is similar to the proof of a special case of Shelah's Singular Compactness Theorem ([23]) given in Hodges [11].

In [9] it was shown that the existence of $\mathcal{L}_{\infty\aleph_1}$ -free nonfree Boolean algebras of cardinality \aleph_1 satisfying the ccc as well as $\mathcal{L}_{\infty\aleph_2}$ -free nonfree Boolean algebras of cardinality \aleph_2 is provable in ZFC. However the construction given there does not guarantee that the completion of the Boolean algebra constructed is not isomorphic to a Cohen algebras. In Section 4 we give a modified construction (in ZFC) of $\mathcal{L}_{\infty\aleph_1}$ -free Boolean algebras in \aleph_1 which satisfy the ccc but whose completions are not isomorphic to \mathbb{C}_{\aleph_1} (Corollary 4.2 (a)). Under V = L the same construction can be also applied to every non weakly compact regular κ to get $\mathcal{L}_{\infty\kappa}$ -free Boolean algebras in κ whose completions are not isomorphic to the Cohen algebra \mathbb{C}_{κ} . Using a result by L. B. Shapiro we also construct (in ZFC) an $\mathcal{L}_{\infty\aleph_2}$ -free Boolean algebra of π -weight \aleph_2 whose completion is not isomorphic to any Cohen algebra (Corollary 4.8).

Complete $\mathcal{L}_{\infty\aleph_1}$ -Cohen algebras are already quite similar to Cohen algebras in the following sence: if C is a complete $\mathcal{L}_{\infty\aleph_1}$ -Cohen algebra in a ground model V then every real in V^C is obtained in the generic extension of V by adding a Cohen real (Corollary 2.7). This means that we cannot distinguish complete $\mathcal{L}_{\infty\aleph_1}$ -Cohen algebras from Cohen algebras only by looking at indivisual reals added by the algebras. Yet the global structure of a complete $\mathcal{L}_{\infty\kappa}$ -Cohen algebra can be quite different from that of a Cohen algebra: in Section 5 we shall show that there exist complete $\mathcal{L}_{\infty\aleph_1}$ -Cohen algebras having no factor

isomorphic to \mathbb{C}_{\aleph_1} (Theorem $\ref{eq:solution}.$

1 Preliminaries

The notation used here is standard. For the basic facts about Boolean algebras the reader may consult [15], and [12, 18] for set theory. The basic facts about the logic $\mathcal{L}_{\infty\kappa}$ can be found in [1].

For Boolean algebra A, A^+ denotes the partial ordering $A \setminus \{0\}$ and \overline{A} the completion of A. We always assume that A is a dense subalgebra of \overline{A} . For Boolean algebras A, B we denote by $A \oplus B$ the free product of A and B. In forcing, the completion of $A \oplus B$ corresponds to the product of partial orderings A^+ and B^+ . Without loss of generality we may assume that $A \oplus B \leq A' \oplus B'$ holds for A, A', B, B' such that $A \leq A'$ and $B \leq B'$.

If A is a subalgebra of a Boolean algebra B, this is denoted by $A \leq B$. A subalgebra A of a Boolean algebra B is relatively complete in B $(A \leq_{\rm rc} B)$ if for every $b \in B^+$ there exists the greatest element a of A such that $a \leq b$. We shall denote such a by $\operatorname{pr}_A^B(b)$. If $A \leq B$ and if A is not a relatively complete subalgebra of B, this is denoted by $A \leq_{\rm rc} B$.

A subalgebra A of a Boolean algebra B is said to be a regular subalgebra of B $(A \leq_{\text{reg}} B)$ if, for every $S \subseteq A$ such that $\sum^A S$ exists, $\sum^B S$ also exists and $\sum^A S = \sum^B S$ holds. (Equivalently, if every maximal antichain in A is maximal in B.) If $A \leq_{\text{rec}} B$ holds then it follows that $A \leq_{\text{reg}} B$. If B is a complete Boolean algebra then a subalgebra A of B is a complete subalgebra if for every $S \subseteq A$, $\sum^B S \in A$. Thus A is a complete subalgebra of B if and only if it is a regular subalgebra of B and complete.

For a complete Boolean algebra B and $X \subseteq B$, $\langle X \rangle_B^{cm}$ denotes the subalgebra of B completely generated by X. In general $\langle X \rangle_B^{cm}$ is not equal to the completion of the subalgebra $[X]_B$ of B generated by X. However it is the case when $[X]_B$ is a regular subalgebra of B. $\langle X \rangle_B^{\sigma-cm}$ is the smallest σ -complete subalgebra of B containing X. If B satisfies the ccc then we have $\langle X \rangle_B^{\sigma-cm} = \langle X \rangle_B^{cm}$.

For any set X, Fr X denotes the free Boolean algebra over the free generators X. For X, Y such that $X \subseteq Y$ we always regard Fr X as a subalgebra of Fr Y by the canonical embedding. For a cardinal κ , \mathbb{C}_{κ} is the completion of Fr κ . A complete Boolean algebra of the form \mathbb{C}_{κ} is called a Cohen algebra. We always consider that Fr κ is a dense subalgebra of \mathbb{C}_{κ} . For $X \subseteq \kappa (\subseteq \operatorname{Fr} \kappa)$ the complete subalgebra $\langle X \rangle_{\mathbb{C}_{\kappa}}^{cm}$ of \mathbb{C}_{κ} is denoted by \mathbb{C}_{X} . Also for $\lambda \leq \kappa$ we assume that \mathbb{C}_{λ} is a complete subalgebra of \mathbb{C}_{κ} in the above sense.

For a Boolean algebra B and $b \in B$, $B \upharpoonright b$ denotes the Boolean algebra $\{a \in B : a \leq b\}$ with the partial ordering induced from the partial ordering of B. For Boolean algebras A, B such that $A \leq B$ and $b \in B$, $A \cdot b$ denotes the subalgebra of $B \upharpoonright b$ with the underlying set $\{a \cdot b : a \in A\}$.

For a Boolean algebra B the π -weight of B is defined by $\pi(B) = \min\{ |X| : X \subseteq B, X \text{ is dense in } B \}$. A Boolean algebra B is π -homogeneous if $\pi(B \upharpoonright b) = \pi(B)$ for every $b \in B^+$. Note that $\pi(B) = \pi(\overline{B})$ holds. The following lemma is well-known:

Lemma 1.1 A complete Boolean algebra B is isomorphic to \mathbb{Q}_{\aleph_0} if and only if B is atomless and $\pi(B) = \aleph_0$.

For Boolean algebras A, B such that $A \leq_{\text{reg}} B$, $\pi(B/A) = \min\{ | X | : X \subseteq B, A[X] \}$ is dense in B is called the π -weight of B over A. B is π -homogeneous over A if $\pi(B \upharpoonright b/A \cdot b) = \pi(B/A)$ for every $b \in B^+$. Note that, if B satisfies the ccc and $\pi(\overline{B}/\overline{A}) \geq \aleph_0$, then $\pi(B/A) = \pi(\overline{B}/\overline{A})$ holds and B is π -homogeneous over A if and only if B is π -homogeneous over A.

A complete Boolean algebra B and its complete subalgebra A correspond to a two step iteration of generic extensions in the following sense (Solovay and Tennenbaum [24]): If A is a complete Boolean algebra and \dot{C} is an A-name of a complete Boolean algebra in the generic extension then $A*\dot{C}$ is the complete Boolean algebra (in the ground model) with the underlying set D which is a maximal set of A-names with the property that

if
$$\dot{c} \in D$$
 then \parallel_A " $\dot{c} \in \dot{C}$ "; if $\dot{c}_1, \dot{c}_2 \in D$ and $\dot{c}_1 \neq \dot{c}_2$, then $\not\parallel_A$ " $\dot{c}_1 = \dot{c}_2$ ".

The partial ordering of D is defined by: $\dot{c}_1 \leq \dot{c}_2 \Leftrightarrow \Vdash_A \ "\dot{c}_1 \leq \dot{c}_2 "$ for $\dot{c}_1, \dot{c}_2 \in D$. For $a \in A \setminus \{0_A, 1_A\}$ let e(a) be the unique element \dot{d} of D such that $a \Vdash_A \ "\dot{d} = 1_{\dot{C}} "$ and $-a \Vdash_A \ "\dot{d} = 0_{\dot{C}} "$, and $e(0_A)$ and $e(1_A)$ be the uniquely determined elements \dot{d}_0, \dot{d}_1 of D such that $\Vdash_A \ "\dot{d}_0 = 0_{\dot{C}} "$ and $\Vdash_A \ "\dot{d}_1 = 1_{\dot{C}} "$. The mapping e then embeds A regularly into $A * \dot{C}$. We shall always identify $a \in A$ with e(a) and consider that $A \leq_{\text{reg}} A * \dot{C}$.

Conversely, for complete Boolean algebras A, B such that $A \leq_{\text{reg}} B$, let \dot{G}_A^B be an A-name of the filter on B generated from the generic filter on A and (B:A) an A-name of " B/\dot{G}_A^B ". Then we have \models_A "(B:A) is a complete Boolean algebra".

For Boolean algebras A, B_1 and B_2 such that $A \leq B_1$ and $A \leq B_2$ we say that B_1 and B_2 are isomorphic over A (notation: $B_1 \cong_A B_2$) if there is an isomorphism from B_1 to B_2 extending the identity mapping on A.

- **Lemma 1.2** (a) For a complete Boolean algebra A and A-names \dot{C} , \dot{C}' of complete Boolean algebras \Vdash_A " $\dot{C} \cong \dot{C}'$ " holds if and only if $A*\dot{C}$ and $A*\dot{C}'$ are isomorphic over A.
- (b) For complete Boolean algebras A, B such that $A \leq_{\text{reg}} B$, B and A * (B : A) are isomorphic over A.
- (c) For a complete Boolean algebra A and an A-name \dot{C} of a complete Boolean algebra we have that \Vdash_A " $(A * \dot{C} : A) \cong \dot{C}$ ".
- (d) For complete Boolean algebras A, B, C such that $A \leq_{\text{reg}} B$ if \Vdash_A " $(B:A) \cong$ the completion of C" then $B \cong_A \overline{A \oplus C}$ holds.
- (e) For complete Boolean algebras A and B it holds that \Vdash_A " $(\overline{A \oplus B}^V : A) \cong \overline{B}$ ".

For more details see e.g. pp 232 - 237 in [12].

A complete subalgebra A of a complete Boolean algebra B is said to be a factor of B if there exists a complete Boolean algebra C such that $B \cong_A \overline{A \oplus C}$. Note that if A is a factor of B then every automorphism of A can be extended to an automorphism on B. For complete Boolean algebras A, B isomorphic to Cohen algebras such that $A \leq B$ we write $A \parallel B$ if $B \cong_A \overline{A \oplus \mathbb{C}_{\kappa}}$ for some κ and $A \not\parallel B$ if this is not the case for any κ .

Lemma 1.3 Let A be a complete subalgebra of a complete Boolean algebra B. If B is π -homogeneous over A and $\pi(B/A) = \aleph_0$ then $B \cong_A \overline{A \oplus \mathbb{C}_{\aleph_0}}$ holds.

Proof By the assumption we have that \Vdash_A "(B:A) is π -homogeneous and $\pi((B:A)) = \aleph_0$ ". By Lemma 1.1 it follows that \Vdash_A " $(B:A) \cong \mathbb{C}_{\aleph_0}$ ". Hence by Lemma 1.2 (d) it holds that $B \cong_A \overline{A \oplus \mathbb{C}_{\aleph_0}}$.

Lemma 1.4 Let A and C be complete Boolean algebras. If A satisfies the ccc and $\overline{A \oplus C} \cong_A \overline{A \oplus \mathbb{C}_{\kappa}}$ for a cardinal κ , then it follows that $C \cong \mathbb{C}_{\kappa}$.

Proof By Lemma 1.2 (a) we have that \Vdash_A " $(\overline{A \oplus C}^V : A) \cong (\overline{A \oplus \mathbb{C}_{\kappa}^V}^V : A)$ ". By Lemma 1.2 (e) it follows that \Vdash_A " $\overline{C} \cong \overline{\mathbb{C}_{\kappa}^V}$ ". Since A satisfies the ccc it follows that $C \cong \mathbb{C}_{\kappa}$ (see [7]).

It is easily seen that the assumption of the ccc of A can not be omitted from the lemma above: e.g. let A be the completion of $Fn(\aleph_1, \aleph_2, \aleph_1)$. We have that $\Vdash_A \text{``}\mathbb{C}_{\aleph_1}^V \cong \mathbb{C}_{\aleph_2}^V$." Hence by Lemma 1.2 (a) it follows that $\overline{A \oplus \mathbb{C}_{\aleph_1}} \cong_A \overline{A \oplus \mathbb{C}_{\aleph_2}}$.

By Kueker's theorem, $\mathcal{L}_{\infty\kappa}$ -free algebras enjoy a purely algebraic characterization ([17], see also [4]). For Boolean algebras the theorem can be formulated as follows. For a subalgebra A of a Boolean algebra B we write $A \mid B$ if $B \cong_A A \oplus \operatorname{Fr} \lambda$ for some cardinal λ .

Theorem 1.5 (D. Kueker) Let κ be a regular cardinal. A Boolean algebra C is $\mathcal{L}_{\infty\kappa}$ -free if and only if there exists a set S of subalgebras of C such that

- (0') Every $A \in S$ is a relatively complete subalgebra of B, A is free and of cardinality $\langle \kappa;$
- (1') For every $S' \subseteq S$ such that $|S'| < \kappa$ there exists a $B \in S$ such that $A \mid B$ for every $A \in S'$;

$$(2') \cup S = C.$$

In Section 4, some rudiments of the theory of projective algebras are used. We shall summarize here the facts needed in the section. For the proof the reader may consult [16]. A Boolean algebra B is projective over a subalgebra A of B ($A \leq_{\text{proj}} B$) if $B \oplus \text{Fr } \kappa \cong_A A \oplus \text{Fr } \kappa$ holds for $\kappa = |B| + \aleph_0$. Note, that this definition differs from the original one of the projectivity. A Boolean algebra B is countably generated over a subalgebra A if there exists a countable set $X \subseteq B$ such that B = A[X] holds.

Lemma 1.6 ([16]) For a Boolean algebra B, $A \leq B$ and $b \in B$, if $A \leq_{\rm rc} B$ then $A(b) \leq_{\rm rc} B$.

Theorem 1.7 (Haydon, see [16]) For a Boolean algebra B and $A \leq B$, the following are equivalent:

- (a) B is projective over A;
- (b) There exist an ordinal ρ and a continuously increasing sequence $(B_{\alpha})_{\alpha<\rho}$ of subalgebras of B such that: $B_0=A,\ B_{\alpha}\leq_{\mathrm{rc}}B_{\alpha+1},\ B_{\alpha+1}$ is countably generated over B_{α} for every $\alpha<\rho$ and $\bigcup_{\alpha<\rho}B_{\alpha}=B$.

2 Characterization of $\mathcal{L}_{\infty\kappa}$ -Cohen algebras

In this section we shall give an algebraic characterization of $\mathcal{L}_{\infty\kappa}$ -Cohen algebras which is quite similar to the characterization of $\mathcal{L}_{\infty\kappa}$ -free algebras mentioned in the last section.

For Boolean algebras A, B such that $A \leq B$, (B, A) denotes the structure B with a unary relation consisting of all elements of A. Note that $(B, A) \cong (B', A')$ if and only if there exists an isomorphism of B and B' extending an isomorphism of A and A'.

Lemma 2.1 Let λ , κ be cardinals such that $\lambda < \kappa$ and let $B \leq \mathbb{C}_{\kappa}$. If $(\mathbb{C}_{\kappa}, B) \equiv_{\mathcal{L}_{\infty\kappa}} (\mathbb{C}_{\kappa}, \mathbb{C}_{\lambda})$ then we have $(\mathbb{C}_{\kappa}, B) \cong (\mathbb{C}_{\kappa}, \mathbb{C}_{\lambda})$.

Proof Let $\varphi((x_{\alpha})_{\alpha<\lambda})$ be an $\mathcal{L}_{\infty\kappa}$ -formula with free variables $(x_{\alpha})_{\alpha<\lambda}$ such that for any sequence $(c_{\alpha})_{\alpha<\lambda}$ of elements of \mathbb{C}_{κ} we have $\mathbb{C}_{\kappa} \models \varphi[(c_{\alpha})_{\alpha<\lambda}]$ if and only if $(\mathbb{C}_{\kappa}, \alpha)_{\alpha<\lambda} \equiv_{\mathcal{L}_{\infty\kappa}} (\mathbb{C}_{\kappa}, c_{\alpha})_{\alpha<\lambda}$ holds where λ in $(\mathbb{C}_{\kappa}, \alpha)_{\alpha<\lambda}$ is seen as the set of free generators of Fr $\lambda \subseteq \mathbb{C}_{\lambda}$. We have that $\mathbb{C}_{\kappa} \models \psi[(\alpha)_{\alpha<\lambda}]$ where

$$\psi((x_{\alpha})_{\alpha<\lambda}) \longleftrightarrow$$

 $\forall (y_{\alpha})_{\alpha<\lambda} \exists (z_{\alpha})_{\alpha<\lambda} \quad [\quad \varphi((z_{\alpha})_{\alpha<\lambda}) \, \wedge \, \text{``} \, \{ \, y_{\alpha} \, : \, \alpha<\lambda \, \} \text{ and the subalgebra } A$ completely generated by $\{ \, x_{\alpha} \, : \, \alpha<\lambda \, \}$ are included in the subalgebra A' completely generated by $\{ \, z_{\alpha} \, : \, \alpha<\lambda \, \}$ and $A'\cong_A \overline{A\oplus \mathbb{C}_{\lambda}}$ holds''].

Hence we have

(*)
$$\mathbb{C}_{\kappa} \models \forall (x_{\alpha})_{\alpha \leq \lambda} [\varphi((x_{\alpha})_{\alpha \leq \lambda}) \rightarrow \psi((x_{\alpha})_{\alpha \leq \lambda})].$$

By the assumption it follows that B is completely generated by some $\{b_{\alpha} : \alpha < \lambda\}$ such that $\mathbb{C}_{\kappa} \models \varphi[(b_{\alpha})_{\alpha < \lambda}]$. By (*) we can construct an increasing sequence $(B_n)_{n \in \omega}$ of subalgebras of \mathbb{C}_{κ} and an increasing sequence $(X_n)_{n \in \omega}$, $X_n \in [\kappa]^{\lambda}$, such that $B_0 = B$ and; $B_n \subseteq \mathbb{C}_{X_n} \subseteq B_{n+1}$, $|X_{n+1} \setminus X_n| = \lambda$, $(\mathbb{C}_{\kappa}, B_n) \equiv_{\mathcal{L}_{\infty\kappa}} (\mathbb{C}_{\kappa}, \mathbb{C}_{\lambda})$ and $B_{n+1} \cong_{B_n} \overline{B_n \oplus \mathbb{C}_{\lambda}}$ for every $n \in \omega$ hold.

Let $X = \bigcup_{n \in \omega} X_n$. Then $\bigcup_{n \in \omega} B_n = \bigcup_{n \in \omega} \mathbb{C}_{X_n}$ is dense in \mathbb{C}_X . By the construction we have that $(\bigcup_{n \in \omega} B_n, B) \cong (\bigcup_{n \in \omega} \mathbb{C}_{X_n}, \mathbb{C}_{X_0})$. It follows that $(\mathbb{C}_X, B) \cong (\mathbb{C}_X, \mathbb{C}_{X_0})$. Since \mathbb{C}_X is a factor of \mathbb{C}_{κ} it follows that $(\mathbb{C}_{\kappa}, B) \cong (\mathbb{C}_{\kappa}, \mathbb{C}_{X_0})$. Since $(\mathbb{C}_{\kappa}, \mathbb{C}_{X_0}) \cong (\mathbb{C}_{\kappa}, \mathbb{C}_{\lambda})$ we obtain that $(\mathbb{C}_{\kappa}, B) \cong (\mathbb{C}_{\kappa}, \mathbb{C}_{\lambda})$.

Lemma 2.2 Let B, C be complete Boolean algebras such that $B \leq C \leq \mathbb{C}_{\kappa}$, $(\mathbb{C}_{\kappa}, B) \equiv_{\mathcal{L}_{\infty\kappa}} (\mathbb{C}_{\kappa}, \mathbb{C}_{\lambda})$ and $(\mathbb{C}_{\kappa}, C) \equiv_{\mathcal{L}_{\infty\kappa}} (\mathbb{C}_{\kappa}, \mathbb{C}_{\mu})$ for some $\lambda \leq \mu < \kappa$. Then it holds $B \parallel \overline{C \oplus \mathbb{C}_{\mu}}$. If $\lambda < \mu$ then we have $B \parallel C$.

Proof By Lemma 2.1 we have $B \parallel \mathbb{Q}_{\kappa}$ and $C \parallel \mathbb{Q}_{\kappa}$. Let $\{u_{\alpha} : \alpha < \kappa\}$ and $\{v_{\alpha} : \alpha < \kappa\}$ be free generators of dense subalgebras of \mathbb{Q}_{κ} such that $B = \langle \{u_{\alpha} : \alpha < \lambda\} \rangle_{\mathbb{Q}_{\kappa}}^{cm}$ and

 $C = \langle \{ v_{\alpha} : \alpha < \mu \} \rangle_{\mathcal{C}_{\kappa}}^{cm}$ hold. Let $(X_n)_{n \in \omega}$ and $(Y_n)_{n \in \omega}$ be increasing sequences in $[\lambda]^{\mu}$ such that $X_0 = Y_0 = \mu + \mu$ and

$$\langle \{ u_{\alpha} : \alpha \in X_n \} \rangle_{\mathcal{C}_{\kappa}}^{cm} \subseteq \langle \{ v_{\alpha} : \alpha \in Y_n \} \rangle_{\mathcal{C}_{\kappa}}^{cm} \subseteq \langle \{ u_{\alpha} : \alpha \in X_{n+1} \} \rangle_{\mathcal{C}_{\kappa}}^{cm}$$

holds for every $n \in \omega$. Let $X = \bigcup_{n \in \omega} X_n$ and $Y = \bigcup_{n \in \omega} Y_n$. We have $|X| = |Y| = \mu$ and $\langle \{ u_\alpha : \alpha \in X \} \rangle_{\mathcal{C}_\kappa}^{cm} = \langle \{ v_\alpha : \alpha \in Y \} \rangle_{\mathcal{C}_\kappa}^{cm}$. Let $D = \langle \{ u_\alpha : \alpha \in X \} \rangle_{\mathcal{C}_\kappa}^{cm}$. Then $D \cong \mathcal{C}_\mu$, $B \parallel D$ and $D \cong_C \overline{C \oplus \mathcal{C}_\mu}$. It follows that $B \parallel \overline{C \oplus \mathcal{C}_\mu}$.

If $\lambda < \mu$ then there exists a subalgebra C' of C such that $B \leq C'$, $(\mathbb{C}_{\kappa}, C') \equiv_{\mathcal{L}_{\infty\kappa}} (\mathbb{C}_{\kappa}, \mathbb{C}_{\mu})$ and $C \cong_{C'} \overline{C' \oplus \mathbb{C}_{\mu}}$. Hence from the first part of the lemma it follows that $B \parallel C$.

Theorem 2.3 Let κ be a regular cardinal. A Boolean algebra C is $\mathcal{L}_{\infty\kappa}$ -Cohen if and only if there exists a set S of subalgebras of C such that

- (0) Every $A \in S$ is a regular subalgebra of B, A is isomorphic to \mathbb{C}_{λ} for some $\lambda < \kappa$;
- (1) For every $S' \subseteq S$ such that $|S'| < \kappa$ there exists a $B \in S$ such that $A \parallel B$ for every $A \in S'$;
- (2) $\bigcup S = C$.

Proof " \Leftarrow ": Let S be a set of subalgebras of C satisfying the properties (0), (1) and (2). Then

$$\mathcal{F} = \{ f : f \text{ is an isomorphism from an } A \in S \text{ to } \mathbb{C}_X \text{ for some } X \in [\kappa]^{<\kappa} \}$$

is a family of partial isomorphisms from C to \mathbb{Q}_{κ} satisfying the back-and-forth property relevant to the $\mathcal{L}_{\infty\kappa}$ -elementary equivalence.

" \Rightarrow ": Assume that C is an $\mathcal{L}_{\infty\kappa}$ -Cohen algebra. Let

$$S^* = \{ A : A \leq \mathbb{C}_{\kappa}, (\mathbb{C}_{\kappa}, \mathbb{C}_{\lambda}) \equiv_{\mathcal{L}_{\infty\kappa}} (\mathbb{C}_{\kappa}, A) \text{ for some } \lambda < \kappa \}.$$

Clearly S^* satisfies the conditions (θ) and (2). S^* also satisfies the condition (1): Let $S' \subseteq S^*$ be such that $|S'| < \kappa$. Let $X \in [\kappa]^{<\kappa}$ be such that $\bigcup S' \subseteq \mathbb{C}_X$. Let $Y \subseteq \kappa \setminus X$ be such that |X| = |Y|. Since $\mathbb{C}_{X \cup Y} \cong_{\mathbb{C}_X} \overline{\mathbb{C}_X \oplus \mathbb{C}_{|X|}}$, it follows by Lemma 2.2 that $A \parallel \mathbb{C}_{X \cup Y}$ holds for every $A \in S'$. Since we can express " $S^* \models (0)$, (1), (2)" in an $\mathcal{L}_{\infty\kappa}$ -sentence (in the language of Boolean algebra) we conclude that

$$S = \{ A : A \leq C, (\mathbb{C}_{\kappa}, \mathbb{C}_{\lambda}) \equiv_{\mathcal{L}_{m\kappa}} (C, A) \text{ for some } \lambda < \kappa \}$$

also satisfies the conditions (0), (1) and (2). \blacksquare (Theorem 2.3)

Corollary 2.4 For regular κ if A is an $\mathcal{L}_{\infty\kappa}$ -free Boolean algebra then the σ -completion of A is an $\mathcal{L}_{\infty\kappa}$ -Cohen algebra.

Proof Let A be an $\mathcal{L}_{\infty\kappa}$ -free Boolean algebra and C be the σ -completion of A. Let S be a set of subalgebras of A which satisfies the conditions (θ') , (1') and (2') in Theorem 1.5. Let

$$\bar{S} = \{ \langle B \rangle_C^{cm} : B \in S \}.$$

(Note that $\langle B \rangle_C^{cm} = \langle B \rangle_C^{\sigma-cm}$ holds since $B \in S$ satisfies the ccc.) \bar{S} satisfies the conditions (0), (1) and (2) in Theorem 2.3.

Theorem 2.5 A complete Boolean algebra C is $\mathcal{L}_{\infty\aleph_1}$ -Cohen algebra if and only if

- (*) $\min\{\pi(C \upharpoonright c) : c \in C^+\} \ge \aleph_1$ and
- (*) Every countably generated complete subalgebra of C has π -weight $\leq \aleph_0$.

Proof " \Rightarrow ": Suppose that C is a complete $\mathcal{L}_{\infty\aleph_1}$ -Cohen algebra. Since the statement: "any countable set of positive elements below a positive element is not dense below this element" can be formulated in $\mathcal{L}_{\infty\aleph_1}$ and is satisfied in \mathbb{C}_{\aleph_1} , this is also true in C. Hence (*) holds.

Similarly, since the statement (*) can be formulated in $\mathcal{L}_{\infty\aleph_1}$ and is satisfied in \mathbb{C}_{\aleph_1} , it holds also in C.

"\(\infty\)": Let C be a complete Boolean algebra satisfying (*) and (*). Let

$$S = \{ B : B \leq_{\text{reg}} C, B \cong \mathbb{C}_{\aleph_0} \}.$$

S satisfies the conditions (0), (1) and (2) in Theorem 2.3: (0) follows immediately from the definition. By $\binom{*}{*}$, (2) also holds. To show (1) let $S' \subseteq S$ be a countable set. For each $B' \in S'$ let $U_{B'}$ a countable dense subset of B'. Let $U = \bigcup_{B' \in S'} U_{B'}$. By $\binom{*}{*}$ there exists a countable regular subalgebra D of C such that $B = \langle D \rangle_C^{cm}$ includes U (and hence every $B' \in S'$). By (*) we can choose D so that, for every $d \in D^+$ and for every finite $U \subseteq D$, $\{u \cdot d : u \in U\}$ is not dense in $B \upharpoonright d$. Then for every $B' \in S'$, B is π -homogeneous over B' with $\pi(B/B') = \aleph_0$. By Lemma 1.3 it follows that $B' \parallel B$ for every $B' \in S'$.

Corollary 2.6 A complete Boolean algebra C is a complete subalgebra of a complete $\mathcal{L}_{\infty\aleph_1}$ -Cohen algebra if and only if C satisfies the condition (*) of Theorem 2.5.

Proof If C is a complete subalgebra of a complete $\mathcal{L}_{\infty\aleph_1}$ -Cohen algebra A then every countably generated complete subalgebra A of C is a countably generated complete subalgebra of \tilde{C} . By Theorem 2.5 it follows that $\pi(A) \leq \aleph_0$. Conversely if C satisfies the condition $\binom{*}{*}$ then $\overline{C \oplus \mathbb{C}_{\aleph_1}}$ satisfies the conditions $\binom{*}{*}$ and $\binom{*}{*}$.

Theorem 2.5 can be also formulated in the language of forcing. Let V be the model of set theory in which we are "working". Let G be a V-generic filter over a complete Boolean algebra B in V. $r \in \mathbb{R}^{V[G]} \setminus \mathbb{R}^V$ is said to be almost Cohen over V if there exists a V-generic filter H over $\mathbb{C}_{\aleph_0}^V$ such that V[r] = V[H]. Note that for any V-generic filter G over a Cohen algebra (in V) every $r \in \mathbb{R}^{V[G]} \setminus \mathbb{R}^V$ is almost Cohen over V.

Note that the condition (*) in Theorem 2.5 is equivalent to the assertion that , for any V-generic filter G over C, every $r \in \mathbb{R}^{V[G]} \setminus \mathbb{R}^V$ is almost Cohen over V.

Corollary 2.7 A complete Boolean algebra C is $\mathcal{L}_{\infty\aleph_1}$ -Cohen algebra if and only if $\min\{\pi(C \upharpoonright c) : c \in C^+\} \geq \aleph_1$ and, for any V-generic filter G over C, every $r \in \mathbb{R}^{V[G]} \setminus \mathbb{R}^V$ is almost Cohen over V.

It is still open if every π -homogeneous complete subalgebra of a Cohen algebra is isomorphic to a Cohen algebra. The following corollary says that a π -homogeneous complete subalgebra of a Cohen algebra of uncountable π -weight is $\mathcal{L}_{\infty\aleph_1}$ -Cohen.

Corollary 2.8 Let C be a complete $\mathcal{L}_{\infty\aleph_1}$ -Cohen algebra. Then every complete subalgebra B of C with $\min\{\pi(B \upharpoonright b) : b \in B^+\} \ge \aleph_1$ is an $\mathcal{L}_{\infty\aleph_1}$ -Cohen algebra. In particular every complete subalgebra B of a Cohen algebra with $\min\{\pi(B \upharpoonright b) : b \in B^+\} \ge \aleph_1$ is an $\mathcal{L}_{\infty\aleph_1}$ -Cohen algebra.

Proof B satisfies the condition $\binom{*}{*}$ in Theorem 2.5. \blacksquare (Corollary 2.8)

From Corollary 2.7 it follows that every complete $\mathcal{L}_{\infty\aleph_1}$ -Cohen algebra C does not collapse \aleph_1 : If $V[G] \models |\omega_1^V| = \aleph_0$ for a V-generic filter over C, there exists a real r in V[G] which codes the order type ω_1^V . Such r cannot be almost Cohen.

In [9] it is shown that for any ω_1 -tree T the algebra $B = \text{Treealg}(T) \oplus \text{Fr } \aleph_1$ is an $\mathcal{L}_{\infty\aleph_1}$ -free Boolean algebra where Treealg(T) denotes the tree algebra over T (see [15]). By Corollary 2.4 the σ -completion of such B is an $\mathcal{L}_{\infty\aleph_1}$ -Cohen algebra. However the full completion of B in general is not an $\mathcal{L}_{\infty\aleph_1}$ -Cohen algebra. For example if T is a special Aronszajn tree, the completion \overline{B} of $B = \text{Treealg}(T) \oplus \text{Fr } \aleph_1$ collapses \aleph_1 . Thus, by the remark above, \overline{B} is not an $\mathcal{L}_{\infty\aleph_1}$ -Cohen algebra.

3 A Singular Compactness Theorem

By Shelah's Singular Compactness Theorem it holds that, for a singular λ , every $\mathcal{L}_{\infty\lambda}$ -free Boolean algebra of cardinality λ is isomorphic to Fr λ . In this section we shall show that a similar theorem holds for $\mathcal{L}_{\infty\lambda}$ -Cohen algebras:

Theorem 3.1 If λ is singular then every $\mathcal{L}_{\infty\lambda}$ -Cohen algebra C of π -weight λ is isomorphic to \mathbb{C}_{λ} .

The proof is a modification of the proof of Shelah's Singular Compactness Theorem in Hodges [11]. The following lemma is the set-theoretic core of the proof.

Lemma 3.2 Let λ be a singular cardinal with cof $\lambda = \kappa$. Let A be a complete Boolean algebra which satisfies the following condition:

(0) For any $X \subseteq A$ it holds that $\pi(\langle X \rangle_A^{cm}) \leq |X| + \aleph_0$.

Let $(\lambda_{\alpha})_{\alpha < \kappa}$ be a continuously increasing sequence of cardinals $< \lambda$ such that $\kappa < \lambda_0$ and $\sup\{\lambda_{\alpha} : \alpha < \kappa\} = \lambda$ hold. Further let $(X_{\alpha})_{\alpha < \kappa}$ be a sequence of subsets of A such that $|X_{\alpha}| \leq \lambda_{\alpha}$ for $\alpha < \kappa$ holds. Then there exists an increasing sequence $(A_{\alpha})_{\alpha < \kappa}$ of subalgebras of A such that

- (1) $X_{\alpha} \subseteq A_{\alpha}$ for $\alpha < \kappa$;
- (2) $\pi(A_{\alpha}) \leq \lambda_{\alpha}$;
- (3) $\bigcup_{\alpha<\gamma} A_{\alpha}$ is dense in A_{γ} for every limit $\gamma<\kappa$.

Proof By induction on $n \in \omega$ we construct sequences $(A_{\alpha}^n)_{\alpha < \kappa}$ and $\{a_{\alpha,\beta}^n\}_{\beta < \lambda_{\alpha}}$ for $\alpha < \kappa$ so that

- (a) for every $n \in \omega$, $(A_{\alpha}^{n})_{\alpha < \kappa}$ is an increasing sequence of complete subalgebras such that $\tau(A_{\alpha}^{n}) \leq \lambda_{\alpha}$ for $\alpha < \kappa$;
- (b) $X_{\alpha} \subseteq A_{\alpha}^{0}$ for $\alpha < \kappa$;
- (c) $\{a_{\alpha,\beta}^n : \beta < \lambda_{\alpha}\}\$ is a dense subset of $(A_{\alpha}^n)^+$;
- $(d) \ A_{\alpha}^{n+1} \supseteq \{ a_{\alpha',\beta}^n : \alpha' < \kappa, \, \beta < \lambda_{\alpha} \} \cup A_{\alpha}^n.$

For $\alpha < \kappa$ let $A_{\alpha} = \bigcup_{n \in \omega} A_{\alpha}^{n}$. We show that $(A_{\alpha})_{\alpha < \kappa}$ is as desired: (1) follows from (b). For (2) let

$$Y_{\alpha} = \{ a_{\alpha,\beta}^n : \beta < \lambda_{\alpha}, n \in \omega \}.$$

Then Y_{α} is dense in A_{α} and $\langle Y_{\alpha} \rangle_{A}^{cm} \supseteq A_{\alpha}$. For (3) let $\gamma < \kappa$ be a limit ordinal and let $a \in A_{\gamma}$. By (c) there exist $n \in \omega$ and $\beta < \lambda_{\gamma}$ such that $a_{\gamma,\beta}^{n} \le a$. By the continuity of $(\lambda_{\alpha})_{\alpha < \kappa}$, there exists $\alpha < \gamma$ such that $\beta < \lambda_{\alpha}$. By (d) it holds that $a_{\gamma,\beta}^{n} \in A_{\alpha}^{n+1} \subseteq A_{\alpha}$.

\[(Lemma 3.2)

Proof of Theorem 3.1: Let $X = \{a_{\beta} : \beta < \lambda\}$ be a dense subset of C. Let $\kappa = \cot \lambda$ and let $(\lambda_{\alpha})_{\alpha < \kappa}$ be a continuously increasing sequence of cardinals $< \lambda$ such that $\lambda_0 > \kappa$ and $\bigcup_{\alpha < \kappa} \lambda_{\alpha} = \lambda$. By induction on $n \in \omega$ we define a sequences $(A_n^{\alpha})_{\alpha < \kappa}$, $(B_n^{\alpha})_{\alpha < \kappa}$, $(C_n^{\alpha})_{\alpha < \kappa}$, $(X_n^{\alpha})_{\alpha < \kappa}$ such that

- (0) $(A_n^{\alpha})_{\alpha < \kappa}$, $(B_n^{\alpha})_{\alpha < \kappa}$, $(C_n^{\alpha})_{\alpha < \kappa}$ are sequences of subalgebras of C such that $\tau^C(A_n^{\alpha}) = \pi(B_n^{\alpha}) = \pi(C_n^{\alpha}) = \lambda_{\alpha}$ for $\alpha < \kappa$. $X_n^{\alpha} \subseteq C$ and $|X_n^{\alpha}| \le \lambda_{\alpha}$;
- (1) For $\alpha < \kappa$ and $n \in \omega$, $C_n^{\alpha} \leq B_n^{\alpha} \leq A_n^{\alpha} \leq C_{n+1}^{\alpha} \leq B_{n+1}^{\alpha} \leq A_{n+1}^{\alpha}$ and $X_n^{\alpha} \subseteq X_{n+1}^{\alpha}$;
- (2) $C_0^{\alpha} = \langle \{ a_{\beta} : \beta < \lambda_{\alpha} \} \rangle_C^{cm} \text{ for } \alpha < \kappa;$
- (3) $B_n^{\alpha} = \langle X_n^{\alpha} \rangle_C^{cm}$ and X_n^{α} is such that for some enumeration $\{x_{\xi}\}_{\xi < \lambda_{\alpha}}$ of X_n^{α} it holds that $(\mathbb{C}_{\lambda}, \xi)_{\xi < \lambda_{\alpha}} \equiv_{\mathcal{L}_{\infty\lambda}} (C, x_{\xi})_{\xi < \lambda_{\alpha}}$.
- (4) $(A_n^{\alpha})_{\alpha < \kappa}$ is an increasing sequence and $\bigcup_{\alpha < \gamma} A_n^{\alpha}$ is dense in A_n^{γ} for every limit $\gamma < \kappa$.
- (5) For $\alpha < \kappa$, $n \in \omega$ and $k \le n$ there exists a $Y_{n,k}^{\alpha} \subseteq X_k^{\alpha+1}$ such that $C_{n+1}^{\alpha} \cap B_k^{\alpha+1} = \langle Y_{n,k}^{\alpha} \rangle_C^{cn}$.

It is easy to see that the construction above goes through. In particular (4) is possible by Lemma 3.2.

For $\alpha < \kappa$ let $C^{\alpha} = \bigcup_{n \in \omega} A_{\alpha_n} (= \bigcup_{n \in \omega} B_{\alpha_n} = \bigcup_{n \in \omega} C_{\alpha_n})$. By (0) and (1), $(C^{\alpha})_{\alpha < \kappa}$ an increasing sequence of subalgebras of C. By (2) $\bigcup_{\alpha < \kappa} C^{\alpha}$ is dense in C. By (3), Lemma 2.2 and (5) we have $(\overline{C^{\alpha+1}}, \overline{C^{\alpha}}) \cong (\mathbb{C}_{\lambda_{\alpha+1}}, \mathbb{C}_{\lambda_{\alpha}})$. By (4), $\bigcup_{\alpha < \gamma} C^{\alpha}$ is dense in C^{γ} for every limit $\gamma < \lambda$. Hence it follows that $C \cong \overline{\bigcup_{\alpha < \kappa} A_{\alpha}} \cong \mathbb{C}_{\lambda}$.

We still do not know if a theorem similar to Theorem 3.1 holds for a weakly compact κ . This is also connected with the following open problem:

Problem 3.3 Is every π -homogeneous complete subalgebra C of a Cohen algebra isomorphic to a Cohen algebra?

If $\pi(C) \leq \aleph_1$ the answer is known to be positive ([14]). By (a) of the next proposition, we would obtain a theorem similar to Theorem 3.1 if we had a positive answer to Problem 3.3.

Proposition 3.4 Let κ be a weakly compact cardinal.

- (a) Every $\mathcal{L}_{\infty\kappa}$ -Cohen algebra C of cardinality κ can be embedded into \mathbb{Q}_{κ} as a complete subalgebra.
- (b) If B is an $\mathcal{L}_{\infty\kappa}$ -free Boolean algebra of cardinality κ then the completion \overline{B} of B is isomorphic to \mathbb{C}_{κ} .

Proof (a): Let U be a unary relation symbol and, for each $a \in C$, let c_a be a constant symbol. Let Φ be the set of the following $\mathcal{L}_{\infty\kappa}$ sentences in the language of Boolean algebras with the new symbols above:

axioms of Boolean algebras;

" $U(\cdot)$ is a set of free generators of a dense subalgebra";

$$\{ \varphi(c_{a_0},\ldots,c_{a_k}) : \varphi \text{ is a quantifier-free formula in the language of Boolean algebras,} C \models \varphi[a_0,\ldots,a_k], \ a_0,\ldots,a_k \in C \};$$

{ "the sum of
$$\{c_a : a \in X\}$$
 is 1": $X \in [C]^{\aleph_0}$, $\sum^C X = 1$ }.

 Φ says that C is embeddable into a Cohen algebra as a regular subalgebra. Since C is $\mathcal{L}_{\infty\kappa}$ -Cohen algebra Φ is κ satisfiable. By the weak compactness of κ it follows that Φ is satisfiable and hence C is embeddable into a Cohen algebra as a regular subalgebra.

(b): An argument similar to the proof of (a) shows that B is embeddable into Fr κ . Since \overline{B} is π -homogeneous and of π -weight κ , it follows from the theorem in [21] that \overline{B} is isomorphic to \mathbb{C}_{κ} .

Proposition 3.5 (a) **consis(** "every $\mathcal{L}_{\infty 2^{\aleph_0}}$ -Cohen algebra of π -weight 2^{\aleph_0} is isomorphic to $\mathbb{C}_{2^{\aleph_0}}$ ").

(b) If $\operatorname{\mathbf{consis}}$ (" $\exists a \text{ weakly compact cardinal}$ ") then $\operatorname{\mathbf{consis}}$ (" 2^{\aleph_0} is regular and every $\mathcal{L}_{\infty 2^{\aleph_0}}$ -Cohen algebra of π -weight 2^{\aleph_0} is embeddable in $\mathbb{C}_{2^{\aleph_0}}$ as a complete subalgebra").

Proof (a): By Theorem 3.1 the assertion holds if e.g. $2^{\aleph_0} = \aleph_{\omega_1}$ holds.

(b): Let κ be a weakly compact cardinal. We show that \mathbb{C}_{κ} forces the assertion. Note that $\Vdash_{\mathbb{C}_{\kappa}}$ " $2^{\aleph_0} = \kappa$ " holds.

Let \dot{C} be a \mathbb{C}_{κ} -name of an $\mathcal{L}_{\infty\kappa}$ -Cohen algebra of π -weight κ .

Claim 3.5.1 There exists a complete Boolean algebra D isomorphic to \mathbb{C}_{κ} such that $\mathbb{C}_{\kappa} * \dot{C} \leq_{\text{reg}} D$ and $\mathbb{C}_{\kappa} \parallel D$.

Proof of Claim 3.5.1 Let U be a unary relation symbol and, for each $\dot{a} \in \mathbb{C}_{\kappa} * \dot{C}$, let $c_{\dot{a}}$ be a constant symbol. Let Ψ be the following set of $\mathcal{L}_{\infty\kappa}$ sentences in the language of Boolean algebras with the new symbols above:

axioms of Boolean algebras;

" $U(\cdot)$ is a set of free generators of a dense subalgebra";

$$\{U(c_{\alpha}): \alpha \in \kappa (\subseteq \operatorname{Fr} \kappa \subseteq \mathbb{C}_{\kappa} \subseteq \mathbb{C}_{\kappa} * \dot{C})\};$$

 $\{ \varphi(c_{\dot{a}_0}, \dots, c_{\dot{a}_k}) : \varphi \text{ is a quantifier-free formula in the language of Boolean algebras,}$ $\mathbb{C}_{\kappa} * \dot{C} \models \varphi[\dot{a}_0, \dots, \dot{a}_k], \ \dot{a}_0, \dots, \dot{a}_k \in \mathbb{C}_{\kappa} * \dot{C} \};$

$$\{ \text{ "the sum of } \{ \, c_{\dot{a}} \, : \, \dot{a} \in X \, \} \text{ is } 1 \, \text{"} : \, X \in [\mathbb{Q}_{\kappa} * \dot{C}]^{\aleph_0}, \, \sum^{\mathbb{Q}_{\kappa} * \dot{C}} X = 1 \, \}.$$

Ψ is κ-satisfiable: Let $Y \subseteq \mathbb{C}_{\kappa} * \dot{C}$ such that $|Y| < \kappa$. Let Ψ' be the subset of Ψ consisting of formulas of Ψ which contain only constant symbols of the form $c_{\dot{a}}$, $\dot{a} \in Y$ and 0, 1. We show that Ψ' is satisfiable. Since $\Vdash_{\mathbb{C}_{\kappa}}$ " \dot{C} is an $\mathcal{L}_{\infty\kappa}$ -Cohen algebra" there exists a \mathbb{C}_{κ} -name \dot{A} such that $\Vdash_{\mathbb{C}_{\kappa}}$ " $\dot{A} \leq_{\text{reg}} \dot{C}$ ", $\Vdash_{\mathbb{C}_{\kappa}}$ " \dot{A} is isomorphic to \mathbb{C}_{λ} " for some $\lambda < \kappa$ and $\Vdash_{\mathbb{C}_{\kappa}}$ " $\dot{a} \in \dot{A}$ " for all $\dot{a} \in Y$. By Lemma 1.2 (a) and (c) we have that $\mathbb{C}_{\kappa} * \dot{A} \cong_{\mathbb{C}_{\kappa}} \overline{\mathbb{C}_{\kappa} \oplus \mathbb{C}_{\lambda}}$. Hence we can expand $\mathbb{C}_{\kappa} * \dot{A}$ to a model of Ψ'.

By weak compactness of κ there exists a model D of Ψ of cardinality κ . By identifying each $\dot{a} \in \mathbb{C}_{\kappa} * \dot{C}$ with $c_{\dot{a}}{}^{D}$ this D is as desired.

Let D be as in Claim 3.5.1. For any generic filter G over \mathbb{C}_{κ} we have $\dot{C}^G \leq_{\text{reg}} (D : \mathbb{C}_{\kappa})^G$. But since $\mathbb{C}_{\kappa} \parallel D$ it follows that $(D : \mathbb{C}_{\kappa})^G$ is isomorphic to a Cohen algebra. \blacksquare (Proposition 3.5)

Similarly to Theorem 2.8 in [9] we have the following:

Proposition 3.6 Let κ be a weakly compact cardinal. If a Boolean algebra A of cardinality κ is represented as the union of continuously increasing sequence $(A_{\alpha})_{\alpha<\kappa}$ of subalgebras of A such that $\overline{A_{\alpha}}$ is a Cohen algebra of π -weight $<\kappa$ for every $\alpha<\kappa$, then \overline{A} is isomorphic to \mathbb{Q}_{κ} .

Proof Let κ , A and $(A_{\alpha})_{{\alpha}<\kappa}$ be as above. By modifying the sequence $(A_{\alpha})_{{\alpha}<\kappa}$ we may assume that $|A_{\alpha}| \leq |\alpha| + \aleph_0$ holds for every ${\alpha} < \kappa$.

Assume that \overline{A} is not isomorphic to \mathbb{C}_{κ} . Let

$$\mathcal{S}_{\alpha} = \{ \beta < \kappa : \alpha \leq \beta, \, \overline{A_{\alpha}} \not | \! | \overline{A_{\beta}} \}$$

for $\alpha < \kappa$.

Claim 3.6.1 $S = \{ \alpha < \kappa : S_{\alpha} \text{ is stationary } \}$ is stationary subset of κ .

Proof of Claim 3.6.1 Otherwise there would be a club set

$$\mathcal{C} \subseteq \{ \, \alpha < \kappa \, : \, \{ \, \beta < \kappa \, : \, \overline{A_{\alpha}} \parallel \overline{A_{\beta}} \, \} \text{ contains a club subset } \}.$$

Hence we can choose a continuously increasing sequence $(\gamma_{\alpha})_{\alpha < \kappa}$ of ordinals $\in \mathcal{C}$ such that $\overline{A}_{\gamma_{\alpha}} \parallel \overline{A_{\gamma_{\beta}}}$ holds for every $\alpha < \gamma < \kappa$. It follows that \overline{A} is isomorphic to \mathbb{C}_{κ} . This is a contradiction to our assumption.

By weak compactness of κ there exists a $\lambda < \kappa$ such that \mathcal{S} and every \mathcal{S}_{α} for $\alpha \in \mathcal{S} \cap \lambda$ are stationary below λ . It follows that $\overline{A_{\lambda}}$ is not isomorphic to a Cohen algebra. This is a contradiction.

4 $\mathcal{L}_{\infty\kappa}$ -Cohen algebras constructed from $\mathcal{L}_{\infty\kappa}$ -free Boolean algebras

In [9] it is shown that for every cardinal κ there exists an $\mathcal{L}_{\infty\aleph_1}$ -free Boolean algebra B which does not satisfy the κ -cc. The σ -completion C of B is an $\mathcal{L}_{\infty\aleph_1}$ -Cohen algebra by Corollary 2.4 but C does not satisfy the κ -cc. If T is a Suslin tree and Treealg(T) is its tree algebra then $B = \text{Treealg}(T) \oplus \text{Fr } \aleph_1$ is an $\mathcal{L}_{\infty\aleph_1}$ -free Boolean algebra ([9]). B satisfies the ccc but is not absolutely ccc. Let C be the completion of B. Then again C is an $\mathcal{L}_{\infty\kappa}$ -Cohen algebra by Corollary 2.4. C has the π -weight \aleph_1 and satisfies the ccc. But since C is not absolutely ccc, C is not isomorphic to \mathbb{C}_{\aleph_1} .

We shall show that $\operatorname{ccc} \mathcal{L}_{\infty\aleph_1}$ -Cohen algebras of π -weight \aleph_1 not isomorphic to \mathbb{C}_{\aleph_1} can be constructed already in ZFC.

Theorem 4.1 Let κ be a regular cardinal and $S \subseteq \{ \delta < \kappa : \operatorname{cof}(\delta) = \omega \}$ be a stationary non-reflecting subset of κ (i.e. for every limit $\gamma < \kappa$, $S \cap \gamma$ is not stationary in γ .). Then there exists a continuously increasing sequence $(A_{\alpha})_{\alpha < \kappa}$ of Boolean algebras such that

- (0) $|A_{\alpha}| < \kappa \text{ and } A_{\alpha} \cong \operatorname{Fr}(|A_{\alpha} + \omega|) \text{ for every } \alpha < \kappa;$
- (1) $A_{\alpha} \mid A_{\beta}$ for every $\alpha < \beta < \kappa$ such that $\alpha, \beta \in \kappa \setminus S$;
- (2) A_{α} is not a regular subalgebra of $A_{\alpha+1}$ for every $\alpha \in S$.

Theorem 4.1 is proved after Lemma 4.4. The proof is a modification of a construction by S. Koppelberg.

Corollary 4.2 (a) There exists an $\mathcal{L}_{\infty\aleph_1}$ -free Boolean algebra A of cardinality \aleph_1 such that A satisfies the ccc and \overline{A} is not isomorphic to \mathbb{C}_{\aleph_1} .

(b) (V = L) Let κ be a non weakly compact regular cardinal. There exists an $\mathcal{L}_{\infty\kappa}$ -free Boolean algebra A of cardinality κ such that \overline{A} is not isomorphic to \mathbb{C}_{κ} .

Note that, by Theorem 2.4, the completion of A in (a) (in (b) resp.) is an $\mathcal{L}_{\infty\aleph_1}$ -Cohen algebra (an $\mathcal{L}_{\infty\kappa}$ -Cohen algebra resp.). Also note that for $\kappa > \aleph_1$ every $\mathcal{L}_{\infty\kappa}$ -free Boolean algebra satisfies the ccc.

Proof (a): Let $S \subseteq \{ \alpha < \omega_1 : \alpha \text{ is a limit } \}$ be a stationary co-stationary set. S is non-reflecting. Hence there exists a continuously increasing sequence of countable Boolean algebras $(A_{\alpha})_{\alpha < \omega_1}$ satisfying (0), (1) and (2) in Theorem 4.1. $A = \bigcup_{\alpha < \omega_1} A_{\alpha}$ is as desired: By (1) and Theorem 1.5, A is an $\mathcal{L}_{\infty\aleph_1}$ -free Boolean algebra. Since (1) of Theorem 4.1 holds for stationary many α , $\beta < \kappa$, A satisfies the ccc (see [24]). If \overline{A} were isomorphic to \mathbb{C}_{ω_1} then there would be club many $\alpha < \kappa$ such that $\overline{A}_{\alpha} \parallel \overline{A}$. But if $\alpha \in S$ then \overline{A}_{α} is not a regular subalgebra of \overline{A} .

(b): Under V = L there exists a non-reflecting stationary $S \subseteq \{ \delta < \kappa : \operatorname{cof}(\delta) = \omega \}$ for

every non weakly compact regular κ (see e.g. [13]). Hence by the same argument as in (a) we obtain an A with the desired property. \blacksquare (Corollary 4.2)

For the proof of Theorem 4.1 we need the following lemmas:

Lemma 4.3 Let $(B_{\alpha})_{\alpha < \kappa}$ be a continuously increasing chain of Boolean algebras such that $B_{\alpha} \leq_{\text{proj}} B_{\alpha+1}$. Let $B = \bigcup_{\alpha < \kappa} B_{\alpha}$. Let $A \geq B$ and $x \in A$ be such that A = B(x). If $B_{\alpha} \leq_{\text{rc}} B(x)$ for every $\alpha < \kappa$ then it holds that $B_{\alpha} \leq_{\text{proj}} B(x)$ for every $\alpha < \kappa$.

Proof Let $\alpha < \kappa$. By Theorem 1.7 there exists a continuously increasing chain $(C_{\eta})_{\eta < \delta}$ of subalgebras of B such that $C_0 = B_{\alpha}$; $C_{\eta} \leq_{\omega_{\text{rc}}} C_{\eta+1}$ for all $\eta < \delta$ which is a refinement of the chain $(B_{\beta})_{\alpha \leq \beta < \kappa}$. By the assumption we have $C_{\eta} \leq_{\text{rc}} B(x)$ for every $\eta < \delta$.

Let $D_0 = C_0$ (= B_α) and $D_\eta = C_\eta(x)$ for $0 < \eta < \delta$. $(D_\eta)_{\eta < \delta}$ is a continuously increasing chain of subalgebras of B(x) and $\bigcup_{\eta < \delta} D_\eta = B(x)$ holds.

For every $\eta < \delta$, $D_{\eta+1}$ is countably generated over D_{η} : Let X be a countable subset of $C_{\eta+1}$ such that $C_{\eta}[X] = C_{\eta+1}$. Then $D_{\eta+1} = D_{\eta}[X \cup \{x\}]$.

For every $\eta < \delta$ it holds that $D_{\eta} \leq_{\operatorname{rc}} D_{\eta+1}$: For $\eta = 0$ we have that $D_0 = B_{\alpha} \leq_{\operatorname{rc}} B(x)$ by the assumption. Since $D_0 \leq D_1 \leq B(x)$ it follows that $D_0 \leq_{\operatorname{rc}} D_1$. For $0 < \eta < \delta$ we have that $C_{\eta} \leq_{\operatorname{rc}} B(x)$. By Lemma 1.6 it follows that $D_{\eta} = C_{\eta}(x) \leq_{\operatorname{rc}} B(x)$. Hence $D_{\eta} \leq_{\operatorname{rc}} D_{\eta+1}$.

By Theorem 1.7 it follows that $B_{\alpha} \leq_{\text{proj}} B(x)$.

[Lemma 4.3]

Lemma 4.4 Let $(B_{\alpha})_{\alpha < \kappa}$ be an increasing chain of Boolean algebras such that $B_{\alpha} \leq_{\rm rc} B_{\beta}$ for every $\alpha \leq \beta < \kappa$. Let $B = \bigcup_{\alpha < \kappa} B_{\alpha}$. Let $A \geq B$ and let $x \in A$ be such that A = B(x). If there exist greatest elements p_{α} and q_{α} of $\{b \in B_{\alpha} : b \leq x\}$ and $\{b \in B_{\alpha} : b \leq -x\}$ respectively for every $\alpha < \kappa$ then $B_{\alpha} \leq_{\rm rc} A$ holds for every $\alpha < \kappa$.

Proof Let $y \in A$, say $y = b \cdot x + b' \cdot -x$ for some $b, b' \in B$. For $\alpha < \omega_1$ let $\beta < \omega_1$ be such that $\alpha \leq \beta$ and $b, b' \in B_{\beta}$. For any $a \in B_{\alpha}$ we have:

$$a \leq y \iff a \cdot x \leq b \text{ and } a \cdot -x \leq b'$$

$$\Leftrightarrow a \cdot -b \leq -x \text{ and } a \cdot -b' \leq x$$

$$\Leftrightarrow a \cdot -b \leq q_{\beta} \text{ and } a \cdot -b' \leq p_{\beta}$$

$$\Leftrightarrow a \leq (b + q_{\beta}) \cdot (b' + p_{\beta})$$

$$\Leftrightarrow a \leq \operatorname{pr}_{B_{\alpha}}^{B_{\beta}}((b + q_{\beta}) \cdot (b' + p_{\beta})).$$

Hence $\operatorname{pr}_{B_{\alpha}}^{B_{\beta}}((b+q_{\beta})\cdot(b'+p_{\beta}))$ is the greatest element of $\{a\in B_{\alpha}:a\leq y\}$. \blacksquare (Lemma 4.4)

Proof of Theorem 4.1: For $\alpha < \kappa$ let A_{α} be defined inductively so that, for every $\alpha < \kappa$,

 $(*_{\alpha})$ $A_{\alpha} \cong \operatorname{Fr} | \alpha + \omega |$; for every $\beta < \alpha$ if $\beta \notin S$ then $A_{\beta} | A_{\alpha}$ holds and if $\beta \in S$ then $A_{\beta} \leq_{\neg \operatorname{rc}} A_{\alpha}$

holds. Suppose for $\alpha < \kappa$, $(A_{\beta})_{\beta < \alpha}$ has been already chosen so that $(*_{\beta})$ for all $\beta < \alpha$ is satisfied.

Case I α is a limit: Let $A_{\alpha} = \bigcup_{\beta < \alpha} A_{\beta}$. Since $\alpha \cap S$ is not stationary in α there exists a club $X \subseteq \alpha$ such that for every $\beta, \beta' \in X$ such that $\beta < \beta'$ we have $A_{\beta}|A_{\beta'}$. Since $A_{\alpha} = \bigcup_{\beta \in X} A_{\beta}$ it follows that $A_{\alpha} \cong \operatorname{Fr}(|\alpha + \omega|)$. Clearly $(*_{\alpha})$ is satisfied.

Case II $\alpha = \gamma + 1$ for some $\gamma \in \kappa \setminus S$: Let $A_{\alpha} = A_{\gamma} \oplus \operatorname{Fr}(|\gamma + \omega|)$.

Case III $\alpha = \gamma + 1$ for some $\gamma \in S$: In this case we have that $\operatorname{cof}(\gamma) = \omega$. Let $(\beta_n)_{n \in \omega}$ be a strictly increasing sequence of ordinals $< \gamma$ such that $\beta_n \notin S$ for all $n \in \omega$ and $\bigcup_{n \in \omega} \beta_n = \gamma$. Hence $A_{\gamma} = \bigcup_{n \in \omega} A_{\beta_n}$. Since $(*_{\beta})$ holds for all $\beta \leq \gamma$, we have that $A_{\beta_n} | A_{\beta_{n+1}}$ and $A_{\beta_n} \cong \operatorname{Fr}(|\beta_n + \omega|)$. Let $(a_n)_{n \in \omega}$ be a sequence of elements of A_{γ} such that $a_n \in A_{\beta_n}$, $\operatorname{pr}_{A_{\beta_n}}^{A_{\beta_{n+1}}}(a_{n+1}) = a_n$ and $\sum_{n \in \omega}^{A_{\gamma}} a_n = 1$. Let $I = \{b \in A_{\gamma} : b \leq a_n \text{ for some } n \in \omega\}$. Let x (in some Boolean algebra extending A_{γ}) be such that $\{b \in A_{\gamma} : b \leq x\} = I$ and $\{b \in A_{\gamma} : b \leq -x\} = \{0\}$ hold. By Lemma 4.4 it holds that $A_{\beta_n} \leq_{\operatorname{rc}} A_{\gamma}(x)$ for every $n \in \omega$. Since $\sum_{n \in \omega}^{A_{\gamma}(x)} a_n \leq x < 1$, A_{γ} is not relatively complete in $A_{\gamma}(x)$. Let $A_{\alpha} = A_{\gamma}(x) \oplus \operatorname{Fr}(|\gamma|)$. Then $A_{\beta_n} | A_{\alpha}$ and A_{γ} is not a regular subalgebra of A_{α} . For $\beta < \gamma$ such that $\beta \notin S$ let $n \in \omega$ be such that $\beta \leq \beta_n$. By $(*_{\beta_n})$ we have $A_{\beta} | A_{\beta_n}$. It follows that $A_{\beta} | A_{\alpha}$.

By L. B. Shapiro [22] there exist Boolean algebras S^0 , S^1 with the following properties¹:

```
S^0 \cong S^1 \cong \operatorname{Fr} \aleph_1;

S^0 \leq_{\operatorname{rc}} S^1;

S^1 is \pi-homogeneous over S^0 and \pi(S^1/S^0) = \aleph_1;

\overline{S^0} \not \Vdash \overline{S^1}:
```

there exists a continuously increasing chain $(S^0_\alpha)_{\alpha<\omega_1}$ of subalgebras of S^0 such that

- $S^0_{\alpha} \cong \operatorname{Fr} \aleph_0$ for every $\alpha < \omega_1$;
- $S^0 = \bigcup_{\alpha < \omega_1} S^0_{\alpha};$
- $S_{\alpha}^{0} \mid S_{\alpha+1}^{0}$ for every $\alpha < \omega_{1}$ and
- $S_{\alpha}^{0} \mid S^{1}$ for every $\alpha < \omega_{1}$.

 S^0, S^1 as above show that Lemma 1.3 with \aleph_2 in place of \aleph_1 does not hold.

Using S^0 , S^1 as above we shall construct (in ZFC) an $\mathcal{L}_{\infty\aleph_2}$ -free Boolean algebra of cardinality \aleph_2 whose completion is not isomorphic to \mathbb{C}_{\aleph_2} .

¹I would like to thank Ingo Bandlow who made me familiar with this result.

- (a) For any complete Boolean algebra C such that $B \leq_{\text{reg}} C$ we have that $A \not\parallel C$.
- (b) For any ccc complete Boolean algebra C we have that $\overline{A \oplus C} \not | \overline{B \oplus C}$.

Proof (a): If there were a complete Boolean algebra C such that $B \leq_{\text{reg}} C$ and $A \parallel C$, we may assume that $C \cong_A \overline{A \oplus \mathbb{C}_{\aleph_1}}$ by $\pi(B/A) = \aleph_1$. Then we would have

$$\Vdash_A$$
 " $(B:A) \leq_{\text{reg}} (C:A) \cong \mathbb{C}_{\aleph_1}$ ".

By the assumption we have

$$\Vdash_A$$
 " $(B:A)$ is π -homogeneous and $\pi((B:A)) = \aleph_1$ ".

Hence, by a theorem in [14], it follows that \Vdash_A " $(B:A) \cong \mathbb{C}_{\aleph_1}$ ". By Lemma 1.4 it follows that $B \cong_A \overline{A \oplus \mathbb{C}_{\aleph_1}}$. This is a contradiction to the assumption: $A \not \Vdash B$.

(b): Assume that $\overline{A \oplus C} \parallel \overline{B \oplus C}$ holds for some complete Boolean algebra C. Then it follows that $A \parallel \overline{B \oplus C}$. By a this is a contradiction.

Lemma 4.6 Let $(A_{\alpha})_{\alpha<\omega_1}$ be a continuously increasing sequence of free Boolean algebras such that $A_{\alpha+1} \cong_{A_{\alpha}} A_{\alpha} \oplus \operatorname{Fr} \kappa_{\alpha}$ for some infinite cardinal κ_{α} and for $\alpha < \beta < \omega_1$. Let $A = \bigcup_{\alpha<\omega_1} A_{\alpha}$. Then there exists a free Boolean algebra B such that; $A \leq_{\operatorname{rc}} B$, B is π -homogeneous over A and $\pi(B/A) = \aleph_1$, $\overline{A} \not \parallel \overline{B}$ and $\overline{A}_{\alpha} \not \parallel \overline{B}$ for every $\alpha < \omega_1$.

Proof Let S^0 , S^1 be Boolean algebras as above. Let $\kappa = \sup_{\alpha < \omega_1} \kappa_\alpha$ and let $(X_\alpha)_{\alpha < \kappa}$ be a partition of κ such that $|X_\alpha| = \kappa_\alpha$ for all $\alpha < \omega_1$. Let $T^0 = S^0 \oplus \operatorname{Fr} \kappa$ and $T^1 = S^1 \oplus \operatorname{Fr} \kappa$. Then T^0 and T^1 are free Boolean algebras and $T^0 \leq_{\operatorname{rc}} T^1$. By Lemma 4.5 (b) we have $\overline{T^0} \not \Vdash \overline{T^1}$. For $\alpha < \kappa$ let $T^0_\alpha = S^0_\alpha \oplus \operatorname{Fr}(\bigcup_{\beta < \alpha} X_\beta)$. Then $T^0 = \bigcup_{\alpha < \omega_1} T^0_\alpha$ and $(A_\alpha)_{\alpha < \omega_1}$ is isomorphic to $(T^0_\alpha)_{\alpha < \omega_1}$. Hence by identifying T^0_α with A_α , the Boolean algebra $B = T^1$ is as desired.

Theorem 4.7 Let κ be a regular cardinal and $S \subseteq \{\delta < \kappa : \operatorname{cof}(\delta) = \omega_1\}$ be a non-reflecting stationary subset of κ . Then there exists a continuously increasing sequence $(A_{\alpha})_{\alpha < \kappa}$ of Boolean algebras such that

- (0) $|A_{\alpha}| < \kappa$ and A_{α} is free for every $\alpha < \kappa$. $A_{\alpha} \leq_{\rm rc} A_{\alpha+1}$ for every $\alpha < \kappa$;
- (1) $A_{\alpha} \mid A_{\beta}$ for every $\alpha < \beta < \kappa$ such that $\alpha, \beta \in \kappa \setminus S$;
- (2) $A_{\alpha+1}$ is π -homogeneous over A_{α} but $\overline{A_{\alpha}} \not || \overline{A_{\alpha+1}}$ for every $\alpha \in S$.

Proof Similarly to the proof of Theorem 4.1 we can take A_{α} , $\alpha < \kappa$ inductively. At the $\alpha + 1$ st step for $\alpha \in S$ use Lemma 4.6.

Corollary 4.8 (a) There exists an $\mathcal{L}_{\infty\aleph_2}$ -free Boolean algebra A of cardinality \aleph_2 such that \overline{A} is not isomorphic to \mathbb{C}_{\aleph_2} .

(b) Let κ be a regular cardinal. If there exists a non-reflecting stationary $S \subseteq \{ \delta < \kappa : \text{cof}(\delta) = \omega_1 \}$ then there exists an $\mathcal{L}_{\infty\kappa}$ -free Boolean algebra A of cardinality κ such that \overline{A} is not isomorphic to \mathbb{C}_{κ} .

Proof (a): Let $S = \{ \alpha < \omega_2 : \operatorname{cof}(\alpha) = \omega_1 \}$. Then S is a non-reflecting stationary subset of ω_2 . Let $(A_{\alpha})_{\alpha < \omega_2}$ be as in Theorem 4.7 for this S. Let $A = \bigcup_{\alpha < \omega_2} A_{\alpha}$. By (1) in Theorem 4.7 and Theorem 1.5 A is an $\mathcal{L}_{\infty\aleph_2}$ -free Boolean algebra. \overline{A} is not isomorphic to \mathbb{C}_{\aleph_2} : Otherwise there would exist an $\alpha \in S$ such that $\overline{A_{\alpha}} \parallel \overline{A}$. But by Lemma 4.5 (a) this is a contradiction.

(b): Similar.
$$\blacksquare$$
 (Corollary 4.8)

Note that the Boolean algebra A in Corollary 4.8 is represented as a union of a continuously increasing chain of relatively complete free subalgebras. A Boolean algebra A is said to be *openly generated* if the set $\{C: C \leq_{\rm rc} B, \text{ and } C \text{ is countable}\}$ contains a club subset of $[B]^{\aleph_0}$. By Ščepin [19] union of a continuously increasing chain of openly generated relatively complete subalgebras is again openly generated. It follows that the Boolean algebra A in Corollary 4.8 is openly generated.

Since we need a non-reflecting stationary subset of $\{\alpha < \omega_2 : \operatorname{cof}(\alpha) = \omega\}$ for the construction of $\mathcal{L}_{\infty\aleph_2}$ -free Boolean algebra in Theorem 4.1 and this is the only known construction of non openly generated $\mathcal{L}_{\infty\aleph_2}$ -free Boolean algebras, one may ask if the assertion: "every $\mathcal{L}_{\infty\aleph_2}$ -free Boolean algebra is openly generated" is consistent with ZFC. Ideed it is proved in [8] that this assertion follows from Martin's Maximum.

References

- [1] J. Barwise and S. Feferman (Eds.), Model-Theoretic Logics, (Springer-Verlag, New York, Heidelberg, Berlin, 1985)
- [2] S. Ben-David, On Shelah's compactness of cardinals, Israel J. of Math. Vol. 31, No. 1, (1978)
- [3] K. J. Devlin, Constructiblility, (Springer-Verlag, 1984)
- [4] P. C. Eklof, Applications to Algebra, in [1](1985), 423–441.
- [5] P. C. Eklof and A. H. Mekler, Categoricity results for $\mathcal{L}_{\infty\kappa}$ -free algebras, Ann. Pure and Appl. Logic Vol. 37 (1988), 81–99.
- [6] _____, Almost Free Modules, (North-Holland, Amsterdam, New York, Oxford, Tokyo, 1990)
- [7] S. Fuchino, Potential embedding and versions of Martin's axiom, submitted.
- [8] _____, Some remarks on openly generated Boolean algebras, submitted.
- [9] S. Fuchino, S. Koppelberg and M. Takahashi, On $\mathcal{L}_{\infty\kappa}$ -free Boolean algebras, Ann. of Pure and Appl. Logic 55 (1992), 265–284.
- [10] S. Fuchino, S. Koppelberg and S. Shelah, More on $\mathcal{L}_{\infty\kappa}$ -free Boolean algebras, in preparation.
- [11] W. Hodges, In singular cardinality, locally free algebras are free, Algebra Universalis Vol. 12 (1981), 205–220.
- [12] T. Jech, Set Theory, (Academic Press, New York, 1978)
- [13] A. Kanamori and M. Magidor; Large cardinal axioms in set theory, in "Higher Set Theory", Proceedings, Oberwohlfach, Germany (1977), Lecture Notes in Mathematics 669, Springer-Verlag.
- [14] S. Koppelberg, Characterizations of Cohen algebras, preprint.
- [15] ______, General Theory of Boolean Algebras, in: Handbook of Boolean Algebras,
 J. D. Monk with R. Bonnet(Eds.) Vol. 1, (North-Holland, 1989)
- [16] _____, Projective Boolean Algebras, in: Handbook of Boolean Algebras, J. D. Monk with R. Bonnet(Eds.) Vol. 3, (North-Holland, 1989), 741–773.
- [17] D. Kueker, $\mathcal{L}_{\infty\omega_1}$ -elementarily equivalent models of power ω_1 , in: Logic Year 1979-80, Lecture Notes in Math. Vol. 859, (Springer-Verlag, 1981), 120–131.
- [18] K. Kunen, Set Theory, (North-Holland, 1980)

- [19] E. V. Ščepin, Functors and uncountable products of compact spaces, Uspechi Mat. Nauk. 36: 3 (1981).
- [20] L. B. Shapiro, On spaces coabsolute to a generalized Cantor discontinuum, Soviet Math. Dokl. 33,3 (1986), 870–874.
- [21] _____, On spaces coabsolute to dyadic bicompacta, Soviet Math. Dokl. 35,2 (1987), 434–438.
- [22] ____, unpublished.
- [23] S. Shelah, A compactness theorem for singular cardinals, free algebras, Whitehead problem and transversals, Israel J. Math. Vol. 21 (1975), 319–349.
- [24] R. M. Solovay and S. Tennenbaum, Iterated Cohen extensions and Souslin's problem, Ann. of Math. 94 (1971), 201–245.

Sakaé Fuchino

Institut für Mathematik II, Freie Universität Berlin Arnimallee 3, W-1000 Berlin 33, Federal Republic of Germany e-mail: fuchino@math.fu-berlin.de