Adding a "strongly" stationary subset of $\mathcal{P}_{\kappa}\lambda$ whose stationarity can be destroyed by a p.o. preserving cardinals^{*}

Sakaé Fuchino (渕野 昌, 中部大学 (Chubu Univ.))

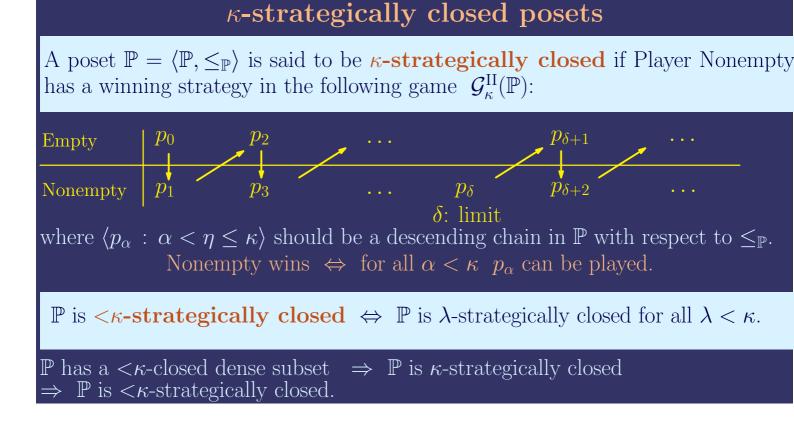
fuchino@isc.chubu.ac.jp

October 13, 2005 RIMS, Kyoto Japan

* The results are obtained in a joint work with $\mathbf{Greg}\ \mathbf{Piper}$ (Kobe Univ.)

Reference

- [1] S.F., Greg Piper, **Destructibility of stationary subsets of** $\mathcal{P}_{\kappa}\lambda$, to appear in Mathematical Logic Quarterly Vol.51 (6), (November 2005) 560-569.
- [2] S.F., A stronger version of stationarity preserved under <*κ*-strategically closed forcing, 中部大学工学部紀要, to appear.



Preservation of stationarity

定理 1 (Folklore?) (a) Suppose that κ is a regular cardinal. If $S \subseteq \kappa$ is stationary and \mathbb{P} is κ -strategically closed then $\Vdash_{\mathbb{P}}$ "S is stationary". (b) If $S \subseteq \mathcal{P}_{\omega_1} \lambda$ for a regular λ is stationary and \mathbb{P} is ω_1 -strategically closed, then $\parallel_{\mathbb{P}}$ "S is stationary".

定理 2 (... and T. Usuba 200?) Suppose that $\kappa < \lambda$ are regular cardinals and κ is $\lambda^{<\kappa}$ -supercompact. Then there are stationary $S \subseteq \mathcal{P}_{\kappa}\lambda$ and κ -strategically closed κ^+ -c.c. \mathbb{P} s.t. $\Vdash_{\mathbb{P}}$ "S is not stationary".

Internally approachable filter over $\mathcal{P}_{\kappa}\lambda$

$$\begin{split} M \prec \mathcal{H}(\theta) \text{ is (strongly) internally approachable ((s.)i.a. for short) } \Leftrightarrow \text{ there is} \\ \text{an increasing sequence } \langle M_{\alpha} : \alpha < \delta \rangle \text{ of elementary submodels of } M \text{ s.t. (1)} \\ M = \bigcup_{\alpha < \delta} M_{\alpha} \text{ and (2) } \forall \gamma < \delta \ \langle M_{\alpha} : \alpha < \gamma \rangle \in M_{\gamma}; \\ \Big((3) \forall \gamma < \delta \ \mathcal{P}(\gamma) \in M_{\gamma} \Big). \end{split}$$
For $a \in \mathcal{H}(\theta)$, let $S_{\kappa}^{\text{IA},\theta,a} \lambda = \{\lambda \cap M : M \prec \mathcal{H}(\theta), M \text{ is i.a., } \kappa, \lambda, a \in M, |M| < \kappa\}.$ $\mathcal{F}_{\kappa}^{\text{IA}} \lambda = \text{the filter over } \mathcal{P}_{\kappa} \lambda \text{ generated by} \\ \{S_{\kappa}^{\text{IA},\theta,a} \lambda : \theta \text{ is sufficiently large, } a \in \mathcal{H}(\theta)\} \end{cases}$ $S_{\kappa}^{\text{SIA},\theta,a} \lambda, \mathcal{F}_{\kappa}^{\text{SIA}} \lambda: S_{\kappa}^{\text{IA},\theta,a} \lambda, \mathcal{F}_{\kappa}^{\text{IA}} \lambda \text{ with "i.a." replaced by "s.i.a".} \end{cases}$ $\vec{H} \Xi 3. \mathcal{F}_{\kappa}^{\text{IA}} \lambda (\mathcal{F}_{\kappa}^{\text{SIA}} \lambda) \text{ is a normal filter. In particular, for } X \subseteq \mathcal{P}_{\kappa} \lambda, X \text{ is} \mathcal{F}_{\kappa}^{\text{IA}} \lambda \text{-stationary} (\Leftrightarrow X \in ((\mathcal{F}_{\kappa}^{\text{IA}} \lambda)^{*})^{+}) \Rightarrow X \text{ is stationary.} \end{split}$ Stationary sets of $\mathcal{P}_{\kappa}\lambda$ whose stationarity is preserved in generic extensions by a strategically closed poset

定理 4. (S.F. and G.Piper [1]) Suppose that $S \subseteq \mathcal{P}_{\kappa}\lambda$ is $\mathcal{F}_{\kappa}^{\mathrm{IA}}\lambda$ -stationary. Then, for any κ -strategically closed poset \mathbb{P} , $\parallel_{\mathbb{P}}$ "S is $\mathcal{F}_{\kappa}^{\mathrm{IA}}\lambda$ -stationary".

定理 5. (S.F. [2]) Suppose that κ is inaccessible and so that $S \subseteq \{x \in \mathcal{P}_{\kappa}\lambda : x \cap \kappa \text{ is not a regular cardinal}\}$ is $\mathcal{F}_{\kappa}^{\text{SIA}}\lambda$ -stationary. Then, for any $<\kappa$ -strategically closed poset \mathbb{P} , we have $\Vdash_{\mathbb{P}}$ "S is $\mathcal{F}_{\kappa}^{\text{SIA}}\lambda$ -stationary"

定理 6. (S.F. and G.Piper [1]) "(<) κ -strategically closed" in 定理 5,6 cannot be replaced e.g. by "P does not add any new element of $\mathcal{P}_{\kappa}\lambda + \kappa^+$ -c.c."

定理 6. in detail

定理 6. (S.F. and G.Piper [1])

Suppose that κ is a regular cardinal with $\kappa^{<\kappa} = \kappa$ and $\kappa \leq \lambda$. Then there are a $<\kappa$ -closed κ^+ -c.c. poset \mathbb{P}_0 , a strongly κ -strategically closed κ^+ -c.c. poset \mathbb{Q}_0 and a \mathbb{P}_0 -name S s.t. $\mathbb{P}_0 \leq \mathbb{Q}_0$ and

 $\Vdash_{\mathbb{P}_0}$ " $\underset{\sim}{S}$ is a $\mathcal{F}_{\kappa}^{IA}\lambda$ -stationary subset of $\mathcal{P}_{\kappa}\lambda$ "

but $\Vdash_{\mathbb{Q}_0}$ " $\underset{\sim}{S}$ is not stationary". Further, if κ is inaccessible, we have

 $\Vdash_{\mathbb{P}_0} " \underset{\sim}{S} \cap \{ x \in \mathcal{P}_{\kappa} \lambda : x \cap \kappa \text{ is a singular ordinal} \} \text{ is a } \mathcal{F}_{\kappa}^{SIA} \lambda \text{-stationary}$ subset of $\mathcal{P}_{\kappa} \lambda$ ".

Construction of \mathbb{P}_0 and \mathbb{Q}_0

Let θ be sufficiently large. $p \in \mathbb{P}_0 \Leftrightarrow p = \langle M^p, s^p \rangle; \kappa, \lambda \in M^p \prec \mathcal{H}(\theta) \text{ or } M^p = \emptyset; |M^p| < \kappa;$ $s^p \subseteq \mathcal{P}(\lambda \cap M^p) \cap M^p.$ For $p, p' \in \mathbb{P}_0, p' \leq_{\mathbb{P}_0} p \Leftrightarrow M^p \subseteq M^{p'} \land s^p \subseteq s^{p'} \land s^{p'} \cap \mathcal{P}(\lambda \cap M^p) = s^p.$ Let $S_G = \bigcup \{s^p : p \in G\}$ for a (V, \mathbb{P}_0) -generic filter G and S a \mathbb{P}_0 -name of $S_G.$ $\langle p, q \rangle \in \mathbb{Q}_0 \Leftrightarrow p \in \mathbb{P}_0; q = \langle M^q, s^q \rangle; \kappa, \lambda \in M^q \prec \mathcal{H}(\theta) \text{ or } M^q = \emptyset; |M^q| < \kappa;$ $s^q \subseteq \mathcal{P}(\lambda \cap M^q); M^q \subseteq M^p; b^q \in s^q \cap M^q \text{ for } b^q = \bigcup s^q;$ $s^q \cap M^q = s^q$ (in particular, $\overline{s^q} = s^q$); $s^p \cap s^q = \emptyset$, where, for $s \subseteq \mathcal{P}(x), \overline{s}$ = the closure of s w.r.t. union of increasing chain of length $< \kappa$. For $\langle p, q \rangle, \langle p', q' \rangle \in \mathbb{Q}_0, \langle p', q' \rangle \leq_{\mathbb{Q}_0} \langle p, q \rangle \Leftrightarrow p' \leq_{\mathbb{P}_0} p, M^q \subseteq M^{q'}, s^q \subseteq s^{q'}$ $s^q' \text{ and } s^{q'} \cap \mathcal{P}(\lambda \cap M^q) = s^q.$ $\mathbb{P}_0 \hookrightarrow \mathbb{Q}_0; p \mapsto \langle p, \langle \emptyset, \emptyset \rangle$