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Abstract

A ccc-generically supercompact cardinal κ can be smaller than or equal

to the continuum. On the other hand, such a cardinal κ still satisfies diverse

largeness properties, like that it is a stationary limit of ccc-generically mea-

surable cardinals (Theorem 4.1). This is in a strong contrast to P-generically

supercompact cardinals for the class P of all σ-closed posets, which can be

ℵn for any n > 1.
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1 Introduction and preliminaries.

introFor a class P of posets, we say that a cardinal κ is P-generically measurable (P-g.

measurable, for short) if there is P ∈ P such that, for a (V,P)-generic G, there

are j, M ⊆ V[G] such that V[G] |= j : V
≺→κ M holds1) . If κ is {P}-generically

measurable, we shall also say that κ is P-generically measurable.

A cardinal κ is P-generically λ-supercompact (P-g. λ-supercompact, for short)

for a given cardinal λ ≥ κ, for short) if there is P ∈ P with a (V,P)-generic G and

j, M ⊆ V[G] with

(1.1) x-intro-0V[G] |= j : V
≺→κ M , j(κ) > λ, j ′′λ ∈ M .

A cardinal κ is P-generically supercompact (P-g. supercompact, for short) if it

is P-g. λ-supercompact for all λ ≥ κ.

Clearly, for κ < λ < λ′, P-g. λ′-supercompactness of κ implies P-g. λ-super-

compactness of κ and P-g. κ-supercompactness of κ is equivalent to P-g. measur-

ability of κ.

In the following we mainly consider the cases in which P is the class of all ν-cc

posets for some uncountable ν. In this case, we shall say ν-cc-generically mea-

surable (ν-cc-g. measurable, for short), or ν-cc-generically λ-supercompact (ν-cc-g.

λ-supercompact, for short), in place of P-generically measurable or P-generically

λ-supercompact, respectively.

Starting from a measurable (supercompact, resp.) cardinal κ, it is easy to

obtain a model in which a ccc-g. measurable (supercompact, resp.) cardinal is less

than or equal to the continuum. Actually, forcing with Fn(λ, 2) for any λ ≥ κ will

create such a model.

We can also consider the generic versions of weak compactness: A cardinal κ

is said to be P-generically weakly compact for a class P of posets (or P-g. weakly

compact, for short), if, for any A ⊆ κ (A ∈ V), there is a transitive set model M

of ZFC− with κ, A ∈ M such that, for some P ∈ P and (V,P)-generic G, we have

j : M
≺→κ N for some j, N ∈ V[G].

We shall also say ν-cc-g. weakly compact etc. similarly to above.

Kôkyûroku volume on RIMS set theory workshop 2021. All additional details not to be contained
in the submitted version of the paper are either typeset in dark electric blue (the color in which
this paragraph is typeset) or put in separate appendices. The numbering of the assertions is kept
identical with the submitted version.

The most up-to-date file of this extended version is downloadable as:
https://fuchino.ddo.jp/papers/RIMS2021-ccc-gen-supercompact-x.pdf

1)When we write j : N
≺→κ M , we mean N is a transitive model (possibly a class model) of

ZFC−, j is an elementary embedding of V into M , M is transitive, and κ is the critical point of j.
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Lemma 1.1 P-intro-0For a class P of posets, if κ is P-generically measurable then κ is

P-generically weakly compact.

Proof. Suppose that P ∈ P and (V,P)-generic G are such that there are j∗,

M∗ ⊆ V[G] with j∗ : V
≺→κ M∗. Let M := H(κ+), N := H(j∗(κ)+

M∗
)M

∗
and

j := j∗ ↾ M . Then, these M , P, G, j, N are witnesses of the property in the

definition of the P-g. weakly compactness for all A ⊆ κ. (Lemma 1.1)

We refer mainly [14] for results in connection with precipitousness and generic

ultrapower while our notation tend to be more compatible with that of [15]. Names

in forcing are denoted by alphabets with undertilde adopting the notation of [17].

2 Generically weakly compact cardinals

large

Lemma 2.1 P-ccc-gen-0Suppose that κ is ν-cc-g. weakly compact for a ν < κ. Then

( 1 ) κ is weakly Mahlo.

( 2 ) κ has the tree property.

Proof. Assume that κ is ν-cc-g. weakly compact.

(1): (a) First, we prove that κ is not a successor cardinal2) . Suppose, toward

a contradiction, that κ is a successor cardinal, say κ = µ+. Note that ν ≤ µ.

Let A ⊆ κ be a set which codes 〈sξ : ξ < κ〉 where each sξ for 0 < ξ < κ is a

surjection from µ to ξ.

Let M be a transitive model of ZFC− such that κ, A ∈ M and there is a ν-cc

poset P with (V,P)-generic G such that there are j, N ∈ V[G] such that

(2.1) x-ccc-gen-0V[G] |= j : M
≺→κ N .

Now, since A ∈ M , we have M |= κ = µ+ and, since j(µ) = µ by µ < κ, we

have N |=“ j(κ) = µ+” by elementarity. Thus

j(κ) = (µ+)N ≤ (µ+)V [G]

since P preserves cardinals >ν
by the ν-cc of P︷︸︸︷

= (µ+)V = κ.

This is a contradiction to κ = crit(j).

(b) Next, we prove that κ is regular. Suppose, again toward a contradiction,

that κ is singular and let 〈κξ : ξ < δ〉 be a strictly increasing sequence of cardinals

2)We can skip (a) since (b) implies (c) and this establishes (1) (see Lemma 3.1).
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< κ cofinal in κ and such that δ < κ. Let A ⊆ κ be a set which codes the sequence

〈κξ : ξ < δ〉.
Let M be a transitive model of ZFC− such that κ, A ∈ M and there is a ν-cc

poset P with (V,P)-generic G such that there are j, N ∈ V[G] such that (2.1) holds.

By A ∈ M , we have 〈κξ : ξ < δ〉 ∈ M . By elementarity and crit(j) = κ,

j(〈κξ : ξ < δ〉) = 〈κξ : ξ < δ〉. Hence

N |=“ j(κ) = lim(j(〈κξ : ξ < δ〉)) = lim(〈κξ : ξ < δ〉) = κ”.

This is contradiction to κ = crit(j) 3) .

(c) Finally, we prove that κ is weakly Mahlo. Suppose that C ⊆ κ is a club.

Let A ⊆ κ be such that it codes C as well as witnesses of singularity of all singular

cardinals and successorship of the successor cardinals < κ.

Let M be a transitive model of ZFC− such that κ, A ∈ M and there is a ν-cc

poset P with (V,P)-generic G such that there are j, N ∈ V[G] such that (2.1) holds.

Since C ∈ M by A ∈ M and M |=“C is a club subset of j(κ)”, we have N |=
“ j(C) is a club subset of κ” by elementarity. Since j(C)∩κ = C by crit(j) = κ, it

follows that κ ∈ j(C). κ is regular by (b). Since P preserves cardinality and cofinal-

ity ≥ ν by its ν-cc, V[G] |=“κ is regular”. It follows that N |=“κ is regular”. Thus

N |=“ j(C) contains a regular cardinal” and M |=“C contains a regular cardinal”

by elementarity. By the choice of A the weakly inaccessible cardinal in C ∩M is

really weakly inaccessible.

Since C was arbitrary, this shows that κ is a weakly Mahlo cardinal.

(2): Suppose that T is a κ-tree. We want to show that T has a κ-branch.

Since we have |T | = κ, we may assume without loss of generality that the

underlying set of T is κ.

Let A ⊆ κ code the tree ordering ≤T as well as the witnesses asserting that T

is a κ-tree. Let M be a transitive model of ZFC− such that κ, A ∈ M and there

is a ν-cc poset P with (V,P)-generic G such that there are j, N ∈ V[G] such that

(2.1) holds.

We have T ∈ M and M |= “T is a κ-tree” by A ∈ M . It follows that N |=
“ j(T ) is a j(κ)-tree” by elementarity, and j(T )<κ = T . Since j(κ) > κ, there is

t∗ ∈ j(T ) such that N |=“ t∗ ∈ j(T )κ”.

Let ≤
∼

and t∼ be P-names of j(≤T ) and t∗.

Back in V, let

T0 := {t ∈ T : ‖–P“ ť ≤∼ t∼”}.

3)Actually, we do not need the ν-cc or any other condition on P to prove (b).
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T0 is a tree of height κ and, by the ν-cc of P, it is of width ≤ ν and ν+ < κ (in

V). By a theorem of Kurepa (Proposition 7.90 in [15]), it follows that there is a

κ-branch b in T0. Clearly b0 is also a κ-branch of T . (Lemma 2.1)

3 Generically measurable cardinals

measLet us call a cardinal κ greatly weakly Mahlo if κ is weakly inaccessible and there

exists a non-trivial <κ-complete normal filter F over κ such that {µ < κ : µ is a

regular cardinal} ∈ F , and F is closed with respect to the Mahlo operation 4) :

(3.1) x-gen-a-a-a-0S 7→ Mℓ (S) := {α ∈ S : α has uncountable cofinality and

S ∩ α is stationary in α}.

This definition of the Mahlo operation is slightly different from the one given in

[2].

For α ∈ On, we define the notion of α-weakly Mahloness for all cardinals κ by

induction on α.

(3.2) x-gen-a-a-0κ is 0-weakly Mahlo if κ is weakly Mahlo;

(3.3) x-gen-a-0κ is 1-weakly Mahlo if κ is weakly Mahlo5) and {µ < κ : µ is weakly Mahlo}
is stationary;

(3.4) x-gen-a-1for 1 < α ≤ κ, κ is α-weakly Mahlo if {µ < κ : µ is β-weakly Mahlo} is

stationary in κ for all β < α.

(3.5) x-gen-a-2κ is hyper-weakly Mahlo if 4α<κ{µ < κ : µ is α-weakly Mahlo} is sta-

tionary6) .

Lemma 3.1 P-gen-0-0For an ordinal κ, if S ⊆ κ is a stationary set consisting of regular

cardinals, then κ is also regular and hence κ is weakly Mahlo.

Proof. Suppose that S is as above but κ is not regular.

We have cf κ > ω, since if cf(κ) = ω, then any increasing ω-sequence of

successor ordinals cofinal in κ is a club in κ disjoint from S.

4)Closedness here means that for any S ∈ F , we have Mℓ (S) ∈ F .

6)The definition of “hyper Mahloness” (i.e. the strongly Mahlo version of the hyper-weakly
Mahloness defined here) has several deviations: in some cases κ-Mahloness (which is apparently
slightly weaker than the hyper Mahloness parallel to the hyper-weakly Mahloness as defined here)
is called hyper Mahlo.

6)By Lemma 3.1, the weak Mahloness of κ follows from the second condition.
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Say, cf(κ) = µ < κ. Let 〈ξα : α < µ〉 be a continuously increasing sequence

of ordinals cofinal in κ such that ξ0 > µ. By the assumption on S, there is

λ ∈ S ∩ {ξα : α < µ}. Say, λ = ξα∗ . Then cf(λ) ≤ α∗ < µ < λ. This is a

contradiction since λ as an element of S must be regular. (Lemma 3.1)

Lemma 3.2 P-gen-0-0-0Suppose α ≤ β ≤ κ. If κ is β-weakly Mahlo, then κ is α-weakly

Mahlo.

Proof. By induction on β. (Lemma 3.2)

For S ⊆ κ and α < κ, let Mℓ α(S) be defined inductively by

(3.6) x-gen-0Mℓ 0(S) := S;

(3.7) x-gen-1Mℓ α+1(S) := Mℓ (Mℓ α(S));

(3.8) x-gen-2Mℓ γ(S) :=
⋂

α<γ Mℓ α(S) for a limit γ < κ.

Finally, let

(3.9) x-gen-3Mℓ κ(S) := 4α<κMℓ α(S).

Note that stationary sets are not necessarily closed with respect to intersection

of decreasing sequence of short length: Let κ be an uncountable cardinal with

κ ≥ ωω. For n ∈ ω, let Sn := {α < κ : ωn ≤ cf(α) < ωω}. Then each Sn, n ∈ ω is

stationary. But
⋂

n∈ω Sn = ∅.

Lemma 3.3 P-gen-1( 1 ) For a regular κ, a filter F over κ is uniform (i.e. every end-

segment of κ is in F) and normal, if and only if F is non-principal, <κ-complete

and normal.

( 2 ) If F is a uniform normal filter over a regular κ, then C ∈ F for all club

C ⊆ κ. It follows that all S ∈ F are stationary in κ.

( 3 ) If κ is greatly weakly Mahlo and F is as in the definition of the greatly weak

Mahloness of κ, then for all α < κ {ξ < κ : ξ is α-Mahlo} ∈ F .

Proof. (1): “⇐” is trivial. For “⇒”, suppose that δ < κ and Sα ∈ F for all

α < δ.

For α < κ, let

S∗
α =

{
Sα \ δ, if α < δ;

κ otherwise.

We have S∗
α ∈ F for α < δ as κ \ δ ∈ F since F is uniform.

Then F 3 4α<κS
∗
α =

⋂
α<κ Sα \ δ ⊆

⋂
α<κ Sα. Thus ∩α<κSα ∈ G.
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(2): We show first that Lim(κ) (= {α < κ : α is a limit ordinal}) is an element

of F . This follows from Lim(κ) = 4α<κκ \ (α + 1) ∈ F .

For a club C ⊆ κ, let 〈cα : α < κ〉 be an increasing enumeration of C. Then

we have C ⊇ Lim(κ) ∩4α<κκ \ cα ∈ F .

For an S ∈ F , S ∩ C ∈ F and hence S ∩ C 6= ∅ for all club C ⊆ κ. Thus S is

stationary in κ.

(3): By induction on α. (LemmaA3.0)

The following Proposition is a variant of Proposition 16.8 in [15].

Proposition 3.4 P-gen-0-1Suppose that κ is greatly weakly Mahlo, and let F be a non-trivial

<κ-complete normal filter over κ such that

(3.10) x-gen-4-0Reg(κ) := {µ < κ : µ is regular } ∈ F , and

(3.11) x-gen-4-1F is closed with respect to the Mahlo operation (as defined in (3.1)).

Then, for any 1 ≤ α < κ,

( 1 ) Mℓ α(Reg(κ)) ∈ F ,

( 2 ) Mℓ α(Reg(κ)) = {µ < κ : µ is β-weakly Mahlo for all β < α}
= {µ < κ : µ is α0-weakly Mahlo} for all 1 ≤ α < ω where α0 is such that

α = α0 + 1;

Mℓ α(Reg(κ)) = {µ < κ : µ is β-weakly Mahlo for all β ≤ α}
= {µ < κ : µ is α-weakly Mahlo} for all ω ≤ α < κ,

( 3 ) κ is hyper-weakly Mahlo.

Proof. We first prove (1) and (2) simultaneously by induction on 1 ≤ α < κ.

Note that the last equality in both of the cases in (2) follows from Lemma 3.2.

For α = 1, we have

F 3︸︷︷︸
by (3.10) and (3.11)

Mℓ (Reg(κ))= Mℓ 1(Reg(κ))

= {µ ∈ Reg(κ) : µ ∩ Reg(κ) is stationary in µ}
= {µ ∈ Reg(κ) : µ is weakly Mahlo}.
= {µ ∈ Reg(κ) : µ is 0-weakly Mahlo}.

Suppose that γ < κ is a limit ordinal, and (1), (2) hold for all α < γ. Then

Mℓ γ(Reg(κ)) =︸︷︷︸
by (3.8)

⋂
α<γ Mℓ α(Reg(κ)) ∈ F

by the induction hypothesis about (1) and <κ-completeness of F .
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Suppose that µ ∈ Mℓ γ(Reg(κ)). Then, by the induction hypothesis about

(2), µ is (β + 1)-weakly Mahlo for all β < γ. By (3.4), it follows that {ξ < µ :

ξ is β-weakly Mahlo} is stationary in µ. Thus, again by (3.4), µ is γ-weakly Mahlo.

Conversely, if µ < κ is γ-weakly Mahlo, then, by Lemma 3.2, µ is α-weakly

Mahlo for all α < γ. Thus, by the induction hypothesis about (2),

µ ∈
⋂

α<γ Mℓ α(Reg(κ)) = Mℓ γ(Reg(κ)). This shows that (2) holds for γ.

Suppose now that (1) and (2) hold for 1 ≤ α < κ.

If α < ω, this means in particular that for α0 such that α = α0 + 1,

Mℓ α(Reg(κ)) = {µ < κ : µ is α0-weakly Mahlo} ∈ F .

By the definition (3.7) of the iteration of Mahlo operation and (3.11), we have

Mℓ α+1(Reg(κ)) = {µ < κ : µ is (α0 + 1)︸ ︷︷ ︸
= α

-weakly Mahlo} ∈ F .

If ω ≤ α < ω, our assumption is

Mℓ α(Reg(κ)) = {µ < κ : µ is α-weakly Mahlo} ∈ F .

Thus, similarly to above, we obtain

Mℓ α+1(Reg(κ)) = {µ < κ : µ is (α + 1)-weakly Mahlo} ∈ F .

(1) and (2) imply (3):

4α<κ{µ < κ : µ is α-weakly Mahlo} =︸︷︷︸
by (2)

4α<κMℓ α(Reg(κ)) ∈︸︷︷︸
by (1) and normality of F

F .

In particular 4α<κ{µ < κ : µ is α-weakly Mahlo} is stationary, and this proves

that κ is hyper-weakly Mahlo. (Proposition 3.4)

The following theorem actually holds already for a ν-cc-g. weakly compact κ

for some ν < κ. This will be addressed in the forthcoming [13].

Theorem 3.5 P-gen-2If κ is a ν-cc-g. measurable cardinal for a ν < κ, then κ is greatly

weakly Mahlo.

Proof. Let P be a ccc poset with (V,P)-generic G such that there are classes j,

M ⊆ V[G] with j : V
≺→κ M .

Note that, since generically large cardinals are definable (see [12]), we may

apply forcing theorems in the arguments which involve j and M . In particular, we

may assume that

(3.12) x-gen-5‖–P“ j : V
≺→κ M ”.
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In V[G], let F̃ := {S ⊆ κ : S ∈ V, j(S) 3 κ} and let F∼ be a P-name of F̃ .

In V, let F := {S ⊆ κ : ‖–P“ Š ε F∼ ”} = {S ⊆ κ : ‖–P“ j(Š) 3 κ ”}. Then

Claim 3.5.1 cl-gen-0( 1 ) F is a non-trivial <κ-complete normal filter.

( 2 ) Reg(κ) ∈ F .

( 3 ) F is closed with respect to Mahlo operation.

` (1): It is clear that F is a non-trivial filter.

Suppose that S⃗ := 〈Sα : α < µ〉 ∈ V for some µ < κ is a sequence of length µ

of elements of F . Then ‖–P“ S⃗ is a sequence of elements of F∼ of length µ ”. Since

‖–P“ j(S⃗) = 〈j(Sα) : α < µ〉 ” by (3.12), we have

‖–P“ j(
⋂

S⃗) =
⋂

j(S⃗) =
⋂
{j(Sα) : α < µ} 3 κ ”.

Thus ‖–P“
⋂
S⃗ ∈ F∼ ”, and hence

⋂
S⃗ ∈ F .

If S⃗ := 〈Sα : α < κ〉 is a sequence in V of elements of F . then

‖–P“κ ∈
⋂
{j(Sα) : α < κ} =

⋂(
(j(S⃗)) ↾ κ ”

)
.

Since ‖–P“κ ∈
⋂(

(j(S⃗)) ↾ κ
)

⇔ κ ∈ 4j(S⃗)• = j(4S⃗) ”, it follows that

‖–P“4S⃗ ∈ F∼ ” and thus 4S⃗ ∈ F .

(2): Let R := Reg(κ) \ ν. Then we have ‖–P“ j(R) = Reg(j(κ))M \ ν ” by

(3.12). By the ν-cc of P, it follows that ‖–P“κ is regular and κ > ν ”. Thus

‖–P“κ ∈ j(R) ”, and hence R ∈ F .

(3): If S ∈ F , then S is stationary by (1) and Lemma 3.3, (2).

Since P is ν-cc, ‖–P“V
P |= S is stationary in κ ”.

Since ‖–P“S = j(S) ∩ κ ”, it follows that

‖–P“κ ∈ MℓM(j(S)) = j(Mℓ V(S)) ”.

Thus, ‖–P“Mℓ V(S) ∈ F∼ ” and hence Mℓ (S) ∈ F . a (Claim 3.5.1)

(Theorem 3.5)

Proposition 3.6 P-gen-3For a regular cardinals κ, ν with ν < κ, the following are equiv-

alent:

( a ) κ is ν-cc-g. measurable.

( b ) There is a non-trivial, non-principal and ν-saturated <κ-complete ideal over

κ.

( c ) there are a ν-cc poset P, a (V,P)-generic filter G, and j, M ⊆ V[G] such

that V[G] |=“ j : V
≺→κ M” and (κM)V[G] ⊆ M .
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Proof. “(c) ⇒ (a)”: is clear. So we shall prove “(a) ⇒ (b)” and “(b) ⇒ (c)”.

“(a) ⇒ (b)”: Let P be a ν-cc poset such that, for (V,P)-generic G and j,

M ⊆ V[G], we have V[G] |= j : V
≺→κ M .

In V, let I := {A ⊆ κ : ‖–P“κ 6∈ j(Ǎ) ”}. Note that I is the dual ideal of the

filter of F in the proof of Proposition 3.4.

Claim 3.6.1 I is <κ-complete and ν-saturated ideal (in V).

Proof. <κ-completeness follows from Claim 3.5.1, (1).

In the following, we argue in V. To prove that I is ν-saturated, assume, toward

a contradiction, that 〈Aξ : ξ < ν〉 is a pairwise incompatible sequence of elements

in P(κ) \ I. By the <κ-completeness of I, we may choose the sequence such that

Aξ, ξ < ν are pairwise disjoint. For each ξ < ν, since Aξ 6∈ I, there is pξ ∈ P, such

that pξ ‖–P“κ ∈ j(Ǎξ) ”. By ν-cc of P, there are ξ < η < ν such that pξ and pη

are compatible, say r ≤P pξ, pη. But then r ‖–P“κ ∈ j(Ǎξ) ∩ j(Ǎη) ” and hence

r ‖–P“ Ǎξ ∩ Ǎη 6= ∅ ”. It follows that Aξ ∩ Aη 6= ∅. This is a contradiction to the

choice of Aξ, ξ < ν. a (Claim 3.6.1)

“(b) ⇒ (c)”: Let I be a ν-saturated κ-complete ideal over κ. PI := P(κ) \ I
satisfies then the ν-cc.

I is precipitous (see e.g. Lemma 22.22 in [14]). Let G be a (V,PI)-generic

filter, and let j : V
≺→κ M be the canonical elementary embedding of V into the

Mostowski collapse of the generic ultrapower by G. By Lemma 22.31 in [14], we

have (κM)V[G] ⊆ M . (Proposition 3.6)

Theorem 3.7 P-gen-4Suppose that κ is a ν-cc-g. measurable cardinal for some regular

ν < κ. Then κ is the stationary limit of ν-cc-g. weakly compact cardinals.

Proof. Suppose that κ is ν-cc-g. measurable and let C ⊆ κ be an arbitrary club

subset of κ. We have to show that C contains a ν-cc-g. weakly compact cardinal.

Let P be a ν-cc poset with a (V,P)-generic G and j,M ⊆ V[G] such that j : V
≺→κ M

and

(3.13) x-gen-6(κM)V[G] ⊆ M

(see Proposition 3.6).

Since M |=“ j(C) is a club subset of j(κ)” and κ ∈ j(C) by the closedness, the

following claim completes the proof.

Claim 3.7.1 cl-gen-1M |=“κ is ν-cc-g. weakly compact”.
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` In M , suppose A ⊆ κ. We have to show in M that there is a transitive model

M0 of ZFC− with κ, A ∈ M0 and j0 : M0
≺→κ N0 for some j0, N0 in some ν-cc

generic extension.

By Proposition 3.6, there is a ν-saturated <κ-complete ideal I on κ in V.

In V[G], let J be the ideal over κ generated by I. By ν-cc of P, it is easy

to see that J is <κ-complete (in V[G]). J is ν-saturated (in V[G]) by Prikry’s

Theorem (see e.g. Theorem 17.1 in [15]). Let PJ := (P(κ) \ J )V[G]. Then V[G] |=
“PJ has the ν-cc”.

Working further in V[G], let θ be sufficiently large and let M1 be such that

(3.14) x-gen-7M1 ≺ H(θ),

(3.15) x-gen-8κ+ 1 ∪ {A,J } ⊆ M1, and

(3.16) x-gen-10|M1 | = κ.

Let m : M1 → M0 be the Mostowski collapse. Note that

(3.17) x-gen-11m ↾ κ+ 1 = id κ+1

by (3.15). M0 ∈ M by (3.13).

By A ⊆ κ and (3.17), we have A = m(A) ∈ M0.

Let J0 := m(J ). J0 ∈ M0 by this definition and J0 = J ∩ M0 by (3.17).

By the elementarity (3.14) (and since θ is taken sufficiently large), we have M1 |=
“J is a ν-saturated, <κ-complete ideal over κ”. It follows that

M0 |=“J0 is a ν-saturated, <κ-complete ideal over κ”.

In particular, J0 is precipitous in connection with M0 by Lemma 22.22 in [14].

Let Q := (P(κ) \ J0)
M0 (note that Q ∈ M since M0 ∈ M). m−1 ↾ Q = id Q is

then an order-preserving and incompatibility preserving embedding of Q into PJ .

Since PJ is ν-cc in V[G], Q is also ν-cc in V[G]. It follows that Q is also ν-cc in M

(note that (ν+)M = (ν+)V[G] by (3.13)).

Let H be a (M,Q)-generic filter and let j0 : M0
≺→κ N0 where N0 is the

Mostowski collapse of the generic ultrapower of M0 by H (in M [H]).

Clearly, M0 together with these j0 and N0 is as desired. a (Claim 3.7.1)

(Theorem 3.7)

4 Generically supercompact cardinals

gen-sc

Theorem 4.1 P-gen-5Suppose that κ is ν-cc-g. 2κ-supercompact for some uncountable

cardinal ν < κ. Then κ is the stationary limit of ν-cc-g. measurable cardinals.
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Proof. Let P be a ν-cc poset with a (V,P)-generic filter G and j, M ⊆ V[G] such

that, in V[G], j : V
≺→κ M , j(κ) > (2κ)V and

(4.1) x-gen-13j ′′(2κ)V ∈ M .

As in the proof of Theorem 3.7, it is enough to show that M |= “κ is ν-cc-g.

measurable”. Thus, by Proposition 3.6, we are done by showing that M |=
“ there is a ν-saturated, <κ-complete ideal over κ”.

Since κ is ν-cc g. measurable, there is a ν-saturated, <κ-complete ideal I over

κ in V by Proposition 3.6. In V[G], let J be the ideal over κ generated by I. By

Prikry’s theorem, we have

(4.2) x-gen-14V[G] |=“J is ν-saturated, <κ-complete ideal”.

Note that

J = {A ∈ P(κ)V[G] : A ⊆ B for some B ∈ I}
= {A ∈ P(κ)V[G] : A ⊆ j(B) for some B ∈ I}
= {A ∈ P(κ)V[G] : A ⊆ C for some C ∈ j ′′I}.

Since j ′′I ∈ M by (4.1), it follows that

J ∩M = {A ∈ P(κ)M : A ⊆ C for some C ∈ j ′′I}

is an element of M .

Thus, we have M |= “J ∩ M is ν-saturated, <κ-complete ideal” by (4.2).

(Theorem 4.1)

5 Reflection properties down to < a generically

supercompact cardinal

reflAn interesting fact about the notion of generic large cardinals is that the continuum

can be generic large, or in some cases the continuum can be strictly larger than

many generic large cardinals (cf. Theorem 3.7, Theorem 4.1). This is in particu-

lar the case with ccc-generically supercompact cardinals (e.g. obtained by starting

from a model with a supercompact κ and then by forcing by Fn(κ, 2)). The large-

ness properties of generic supercompact cardinals for forcing with chain condition

discussed in the previous sections can thus also be situations with the continuum.

Since generic large cardinals are reflection points of diverse reflection statements

(as discussed below), the continuum can be also the reflection point of the same

reflection statements.
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Let S be a class of (not necessarily first-order) structures with a notion vS

of substructure relation where (S,vS) should satisfy certain reasonable properties

like that

(5.1) x-gen-15A ∈ S and A ∼= B imply B ∈ S,
vS is transitive,

A vS B and 〈B,A〉 ∼= 〈B′,A′〉 imply A′ vS B′,

etc.

We also assume that S is absolute and vS is upward absolute, meaning that

if M , N are transitive (class or set) models of ZFC− and M is an inner model of

N , then, for any A, B ∈ M , M |= A ∈ S ⇔ N |= A ∈ S and M |= A vS B ⇒
N |= A vS B. For a structure A, we denote by |A| the underlying set of A and

by ‖A‖ the cardinality of the underlying set of the structure A.

Given such a class S = (S,vS) of structures, and a property P , the reflection

number of P (in connection with S) is defined as

refl stat(S, P ) := min{κ ∈ Reg : for any A ∈ S with A |= P and ‖A‖ ≥ κ,

the set { |B| : B vS A,B |= P, ‖B‖ < κ}
is stationary subset of [ |A| ]<κ }

where we define min ∅ := ∞.

The reflection spectrum of P is

REFL stat(S, P ) := {κ ∈ Reg : for any A ∈ S with A |= P and ‖A‖ ≥ κ,

the set { |B| : B vS A,B |= P, ‖B‖ < κ}
is stationary subset of [ |A| ]<κ }

Example 5.1 Ex-gen-0Let S be the class of all first countable topological spaces X = 〈X, τ〉
where τ is an open basis for the space. vS is the subspace relation.

For P = non-metrizability, the consistency of refl stat(S, P ) = ℵ2 is known as

Hamburger’s Problem which has been open for almost a half century.

A property P is downward absolute if, for any transitive (class or set) models

M , N of ZFC− such that M is an inner model of N , and for any structure A, if

N |=“A |= P” implies M |=“A |= P”.

For a class P of posets, P preserves P , if A |= P then for any P ∈ P , ‖–P“A |=
P ” holds.

Theorem 5.2 P-gen-6Suppose that S = (S,vS) is a class of structures, P a class of

posets, and κ a P-g. supercompact cardinal. If a property P satisfies:

13



(5.2) x-gen-15-0P is downward absolute and

(5.3) x-gen-15-1P preserves P ,

then κ ∈ REFL stat(S, P ) and hence refl stat(S, P ) ≤ κ.

Proof. Suppose that A ∈ S and ‖A‖ ≥ κ. By replacing A with an isomorphic

structure, we may assume that |A| = λ ∈ Card (see (5.1)).

Let P ∈ P be such that for an (V,P)-generic G and j, M ⊆ V[G], we have

V[G] |=“ j : V
≺→κ M”,

(5.4) x-gen-16j(κ) > µ and j ′′µ ∈ M where µ = ℶn(λ) for sufficiently large n.7)

By the last condition (5.4), we have j(A) ↾ j ′′λ ∈ M .

V[G] |= “A |= P” by (5.3). By V[G] |= “A ∼= j(A) ↾ j ′′λ”, it follows that

V[G] |= “ j(A) ↾ j ′′λ |= P”. Since |j(A) ↾ j ′′λ| = j ′′λ ∈ M by (5.4), we have

j(A) ↾ j ′′λ ∈ M and hence M |=“A ↾ j ′′λ |= P” by (5.2).

Suppose D is an arbitrary club subset of [λ]<κ in V. Since M |=“ j ′′D is cofinal

in [j ′′λ]<κ”, we have M |=“ j ′′λ =
⋃
(j ′′D) ∈ j(D)”.

In V, let S0 = {B : B vS A, ‖B‖ < κ}. Since j( |B| ) = j ′′ |B| for all B ∈ S0,

it follows that
⋃
{ |C| : C ∈ j ′′S0} = j ′′λ. Thus, M |=“ j(A) ↾ j ′′λ vS j(A)” (for

this, we have to assume that S satisfies the the property that the union of upward

directed system of vS-substructures is a vS-substructure and certain Downward

Löwenheim-Skolem theorem on vS-substructures of a given structure in S). with

respect to vS).

By elementarity, it follows that { |B| : B vS A, ‖B‖ < κ} is stationary in

[λ]<κ. (Theorem 5.2)

The following are some applications of the theorem above.

Corollary 5.3 Suppose that κ is a ccc-g. supercompact cardinal and S = (S,≤) is

a variety and A ∈ S with ‖A‖ ≥ κ is not free. Then there are stationarily many

non-free B ≤ A of cardinality < κ. In particular, with P being “being non-free”,

we have REFL stat(S, P ) 3 κ and refl stat(S, P ) ≤ κ.

Proof. ccc posets preserve non-freeness of algebras in any variety (see [5]).

(Corollary 5.3)

Note that the Corollary above applies e.g. to groups, abelian groups, Boolean

algebras, etc.

7)We need ℶn(λ) here since the elements of S may be (n+ 1)-th order structures for n ≥ 1.
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We shall call posets of the form Fn(λ, 2) generalized Cohen posets. For P =

{P : P is forcing equivalent to some Fn(λ, 2)}, P-g. supercompactness for this P
will be also called Cohen-g. supercompactness.

In the following Corollaries, stationarity may be replaced with clubness since

any topological space containing a non-metrizable subspace is non-metrizable and

any tree containing a non-special subtree is non-special.

Corollary 5.4 Suppose that κ is a Cohen-g. supercompact cardinal. Then any

first countable non-metrizable topological space of cardinality ≥ κ have club many

subspaces of size <κ which are non-metrizable.

Proof. Generalized Cohen posets preserve non-metrizability (see Dow, Tall and

Weiss [4]). (Corollary 5.4)

Corollary 5.5 Suppose that κ is a Cohen-g. supercompact. Then any non-special

tree T has club many non-special subtrees of size < κ.

Proof. Generalized Cohen posets preserve non-specialty of trees (Todorčević, see

[6]). (Corollary 5.5)

The Cohen-g. supercompactness in Corollary 5.5 cannot be replaced by ccc-g.

supercompactness:

We can prove (in ZFC) that there is a non-special tree of size 2ℵ0 without

branches of length ω1 (e.g. T := {t : t : α → ω, t is 1-1 for some α < ω1} with the

ordering t/ ≤T t′ :⇔ t ⊆ t′ is such a tree).

By Baumgartner, Malitz, and Reinhardt [1], all trees of size < 2ℵ0 without

branches of length ω1 are special under Martin’s Axiom.

The reflection number refl stat(C, P ) for C := trees and P := non-special by

refl RC is related to Rado’s Conjecture (which is the satement refl stat(C, P ) = ℵ2).

If we denote this by refl RC, the results cited above can be put togetehr to show:

Proposition 5.6 (MA) refl RC > 2ℵ0.

Also, for S and P as in Example 5.1, we have refl stat(S, P ) > b (see [10]). Thus,

denoting this reflection number connected to Hamburger’s Problem (more presicely

Hamburger’s Problem is the question about the consistency of refl stat(S, P ) = ℵ2)

by refl HP, we have

Proposition 5.7 (MA) refl HP > 2ℵ0.

If we start from a supercompact κ and force MA together with 2ℵ0 = κ by

the standard forcing construction, then in the resulting model κ (= 2ℵ0) is ccc-g.
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supercompact and MA holds. This shows (under the assumption of the consistency

strength of a supercompact cardinal) that the assertion “the continuum is ccc-g.

supercompact” is consistent with the non-reflection refl RC, refl HP > 2ℵ0 .

On the other hand, it is consistent that 2ℵ0 is ccc-g. supercompact, MA holds

but a reasonably strong reflection principle with the reflection point <ℵ2 still holds:

Start from a model of ZFC with two supercompact cardinals. Use the smaller

supercompact to force Fodor-type Reflection Principle (FRP, which is a reflection

principle with the reflection point <ℵ2, and FRP follows from RC). Then force by

the standard ccc forcing for MA to make the larger supercompact cardinal (which

survives the first extension) to make it the continuum. In [7], it is shown that FRP

is preserved by ccc generic extension. Thus in the resulting model, we still have

FRP together with MA and that the continuum is ccc-g. supercompact.

Corollary 5.8 (König [16] see also [8]) Suppose that κ is P-g. supercompact where

P is the class of all σ-closed posets. Then any non-special tree T has club many

non-special subtrees of size < κ.

Proof. σ-closed posets preserve non-specialty of trees (Todorčević, see [18]).

(Corollary 5.8)

Corollary 5.9 (Diagonal Reflection Principle, see [3], [8]) P-gen-7Let

S := {〈M, 〈Sa : a ∈ M〉〉 : M 6= ∅, Sa ⊆ [M ]ℵ0 for all a ∈ M}.

For 〈M, 〈Sa : a ∈ M〉〉, 〈N, 〈Sa : a ∈ N〉〉 ∈ S, let

〈M, 〈SM
a : a ∈ M〉〉 vS 〈N, 〈SN

a : a ∈ N〉〉 :⇔
M ⊆ N , and SM

a = SN
a ∩ [M ]ℵ0 for all a ∈ M .

Let the property P be defined by stipulating that P holds in 〈M, 〈Sa : a ∈ M〉〉 ∈
S if and only if Sa is a stationary subset of [M ]ℵ0 for all a ∈ M .

Suppose that P is a class of posets such that all elements of P are proper. If κ

is a P-g. supercompact, then we have refl stat(S, P ) ≤ κ.

The inequality refl stat(S, P ) ≤ κ in Corollary 5.9 is optimal in the following

sense: Suppose that κ is supercompact and µ < κ is such that there is a non-

reflecting stationary set S ⊆ [µ]ℵ0 .8) If P := Fn(κ, 2) and G is a (V,P)-generic

filter, then κ is Cohen-g. supercompact in V[G]. Since S remains a non-reflecting

stationary subset of [µ]ℵ0 in V[G], we have V[G] |=“µ < refl stat(S, P ) ≤ κ = 2ℵ0”.

8)For this argument we only need here the “non-reflectingness” of the sort that there are club
many X ∈ [µ]<µ such that S ∩ [X]ℵ0 is not stationary in [X]ℵ0 .
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On the other hand, it is also consistent (modulo large cardinals) that refl stat(S, P )

< κ = 2ℵ0 holds for a ccc-g. supercompact cardinal κ: Suppose that κ0 < κ are two

supercompact cardinals and P and G are as above. Then, in V[G], κ0 and κ are both

Cohen-g. supercompact. Thus, by Corollary 5.9, we have V[G] |= refl stat(S, P ) ≤
κ0 < κ = 2ℵ0 .

The equality V[G] |=“µ < refl stat(S, P )” above can be seen using the following

facts. All of them, possibly except LemmaA 5.2, (1), are trivial and well-known.

LemmaA5.1 P-gen-8Suppose X ⊆ X ′ with |X | ≥ ℵ1. ( 1 ) If S is a stationary subset

of [X]ℵ0, then

(ℵ5.1) x-gen-16-0S ′ := {x ∈ [X ′]ℵ0 : x ∩X ∈ S}

is a stationary subset of [X ′]ℵ0.

( 2 ) If S is a non stationary subset of [X]ℵ0 then S ′ defined as above is a non

stationary subset of [X ′]ℵ0.

Proof. (1): Suppose that C ′ ⊆ [X ′]ℵ0 is club. Let

(ℵ5.2) x-gen-17C := {x ∩X : | x ∩X | = ℵ0, x ∈ C ′}.

Claim 5.9.1 Cl-gen-0C contains a club set ⊆ [X]ℵ0.

` Let θ be sufficiently large and M = 〈H(θ),∈, C ′, X ′,v〉 where C ′ and X ′ are

thought to be unary relations and v is a well-ordering on H(θ). Note that v
introduces a build-in Skolem hull operator for the structure M. The Skolem hull

operator will be denoted by skM(·).
Let C0 := {y ∈ [X]ℵ0 : skM(y) ∩X = y}. Then it is easy to see that C0 ⊆ C

(note that skM(y) ∩ X ′ ∈ C ′ for any y ∈ [X]ℵ0), and that C0 is a club subset of

[X]ℵ0 . a (Claim 5.9.1)

By Claim 5.9.1 and since S is stationary in [X]ℵ0 , we have S ∩C 6= ∅. Suppose
y ∈ S ∩C. Then there is x ∈ C ′ with x∩X = y by the definition (ℵ5.2) of C. We

also have y ∈ S ′ by the definition (ℵ5.1) of S ′. Thus y ∈ S ′ ∩ C ′.

(2): Suppose that C is a club subset of [X]ℵ0 such that C ∩ S = ∅. Then

C ′ := {x ∈ [x′]ℵ0 : x ∩ X ∈ C} is a club subset of [X ′]ℵ0 and C ′ ∩ S ′ = ∅.
(LemmaA5.1)

LemmaA5.2 P-gen-9( 1 ) Suppose that there is a non-reflecting stationary E ⊆ Eµ
ω

subset of a regular µ > ℵ1. Then there is a stationary S ⊆ [µ]ℵ0 such that
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(ℵ5.3) x-gen-17-0S∩[X]ℵ0 is non-stationary subset of [X]ℵ0 for any X ∈ [µ]<µ with ω1 ⊆ X.

( 2 ) For any µ > ℵ1, if S ⊆ [µ]ℵ0 is a stationary subset of [µ]ℵ0 such that S∩[X]ℵ0

is non-stationary in [X]ℵ0 for all X ∈ [µ]<µ with ω1 ⊆ X, then, for any λ ≥ µ,

S ′ := {x ∈ [λ]ℵ0 : x ∩ µ ∈ S}

is a stationary subset of [λ]ℵ0 such that, for all X ∈ [λ]<µ with ω1 ⊆ X, S ′ ∩ [X]ℵ0

is non-stationary in [X]ℵ0.

The proof of LemmaA5.2 uses the following Theorem by Shelah:

TheoremA5.3 P-gen-10(Shelah [19]) For any regular µ > ℵ1, if 〈Eξ : ξ < µ〉 is a pairwise

disjoint sequence of stationary subsets of Eµ
ω, then

(ℵ5.4) x-gen-18S = {a ∈ [µ]ℵ0 : a ∩ ω1 ∈ ω1, sup
+(a) ∈ Ea∩ω1}

is a stationary subset of [µ]ℵ0. Here, sup+(a) for a ⊆ On denotes the ordinal

sup({ξ + 1 : ξ ∈ a}).

Proof of LemmaA5.2: (1): Let E ⊆ Eµ
ω be a non-reflecting stationary subset

of a regular µ > ℵ1. That E is stationary in µ but E ∩ α is not stationary in α for

all α < µ with cf(α) > ω.

Let 〈Eξ : ξ < µ〉 be a partition of E into stationary subsets of µ (such a

partition exists always by a theorem of Solovay).

Let S be the stationary subset of [µ]ℵ0 defined by (ℵ5.4) for this sequence

〈Eξ : ξ < µ〉. S is stationary by Theorem 5.3. Thus, we are done by showing that

this S satisfies (ℵ5.3).
Let X ∈ [µ]<µ be such that ω1 ⊆ X.

Case I. X has the maximal element, say α. Note that all elements a of S do not

have the maximal element (since otherwise sup+(a) would be a successor ordinal

6∈ Ea∩ω1). Thus, α is not covered by S ∩ [X]ℵ0 and hence it is not stationary.

Case II. sup+(X) is of cofinality > ω. Let α = sup+(X). By assumption there is

a club C ⊆ α such that C ∩ E = ∅. The set

{a ∈ [X]ℵ0 : sup+(a) ∈ C}

is a club in [X]ℵ0 disjoint from S ∩ [X]ℵ0 .

Case III. sup+(X) is of cofinality ω. Let α = sup+(X).

If α 6∈ E then Then

{a ∈ [X]ℵ0 : sup+(a) = α}
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is a club in [X]ℵ0 disjoint from S ∩ [X]ℵ0 .

Otherwise, there is ξ < µ such that α ∈ Eξ. In this case,

{a ∈ [X]ℵ0 : sup+(a) = α, a ∩ ω1 > ξ}

is a club in [X]ℵ0 disjoint from S ∩ [X]ℵ0 .

(2): S ′ is stationary by Lemma 5.1, (1). For any X ∈ [λ]<µ with ω1 ⊆ X,

S ∩ [X ∩ µ]ℵ0 is non stationary in [X ∩ µ]ℵ0 . By Lemma 5.1, (2), it follows that

S ′ ∩ [X]ℵ0 = {x ∈ [λ]ℵ0 : x ∩ µ ∈ S, s ⊆ X}
= {x ∈ [X]ℵ0 : x ∩ (X ∩ µ) ∈ S ∩ [X ∩ µ]ℵ0}

is non-stationary. (LemmaA5.3)
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[5] Sakaé Fuchino, On potential embedding and versions of Martin’s axiom, Notre

Dame Journal of Logic, Vol.33, No.4, (1992), 481–492.
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Kôkyûroku, No.1988, 1–16, (2016).
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Löwenheim-Skolem theorems for stationary logics, I, Archive for Mathematical

Logic, Volume 60, issue 1-2, (2021), 17–47.

https://fuchino.ddo.jp/papers/SDLS-x.pdf
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[13] Fuchino, Sakaé, and Sakai, Hiroshi, Generically and Laver-generically super-

compact cardinals by forcing with chain conditions, in preparation.

[14] Thomas Jech, Set Theory, The Third Millennium Edition, Springer

(2001/2006).

[15] Akihiro Kanamori, The Higher Infinite, Springer–Verlag (1994/2003).

[16] Bernhard König, Generic compactness reformulated, Archive for Mathematical

Logic 43, (2004), 311–326.

[17] Saharon Shelah, Proper and Improper Forcing, Second edition, Springer–

Verlag (1998).
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