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Abstract

In this purely expository note, we examine the roles of Axiom of Choice

and its weak variants in topology with emphasis on their connections with

Tychonoff Theorem and its variations.
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1 Introduction and preliminaries.

introIn this expository note, we examine the roles of Axiom of Choice (AC) and its weak

variants in topology — in connection with Tychonoff Theorem and its variations,

in particular. Most of the materials presented here can be also found e.g. in [5].

Exceptions are the second proof of Theorem 3.1 and its applications: these should

be also well-known results though I could not find appropriate references. Never-

theless, we tried hard to streamline the description. The formulation of this note

is rather textbook-like. This is because we want to present the details so that the

readers can see clearly which instance of Axiom of Choice is used/not used in which

part of the proofs.

In reverse mathematics, it is proved that five weak systems of second-order

arithmetic (the Big Five) are proved to be equivalent to one of many well-known

mathematical theorems over the base theory RCA0. For example, the system WKL0

is proved to be equivalent to Heine-Borel theorem over the base theory RCA0. This

result may be interpreted as one showing the significance of the system WKL0 but it

can also be interpreted as a result showing the significance of Heine-Borel theorem

in terms of the hierarchy of some kind of complexity of mathematical theorems.

Similar situations are also observed over base theories much stronger than

RCA0. The following is such an example.

Recall that a linear ordering v on a non-empty set X is a well-ordering if each

non-empty subset of X has the least element with respect to v. This is equivalent

to say that we can perform (mathematical, transfinite) induction (and recursive

construction) along with v. A set X is said to be well-orderable if there is a

well-ordering on X.

For a set X and a cardinal κ, we denote

[X]κ := {s ∈ P(X) : | s | = κ}.

[X]<κ, [X]≤κ are defined similarly.

A set X is equinumerous with another set Y if there is a bijection from X to

Y .

Theorem 1.1 p-intro-0The following are equivalent over ZF:

(A) Axiom of Choice. (A’) Every set is is well-orderable.

(B) (Tarski [11]) For all infinite set X, X2 is equinumerous with X.

(C) For all infinite set X, [X]2 is equinumerous with X.
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(D) (Tychonoff Theorem, Kelley [9]) For any index set I and any sequence

〈Xi : i ∈ I〉 of compact topological spaces, the product space
∏

i∈I Xi is

also compact.

(A) ⇔ (A’) is classical: it is first proved by Zermelo in [14]. Nevertheless we

shall give below an alternative proof of this equivalence as a part of Theorem 1.4.

(A) ⇔ (B) is proved in Jech [6] as Theorem 11.7 (and Theorem 2.4). (A)

⇔ (C) can be obtained by modifying this proof.

We shall give a detailed proof of (A) ⇔ (D) as Theorem 4.1 below.

Theorem 4.2 which gives prominence to Prime Ideal Theorem defined below is

another example of such theorems formulated in terms of the Tychonoff Theorem

for Hausdorff spaces.

Some other theorems showing the relation between other weak versions of Axiom

of Choice and variants of Tychonoff Theorem are considered in Section 4.

For discussions about reverse mathematical phenomenon over the full set-theory

ZFC as the base theory, see e.g. [2].

In the rest of the section we review some notations, and definitions of variants

of AC.

For a sequence 〈Xi : i ∈ I〉 of sets, we define the product of the sequence as∏
i∈I Xi := {f : f : I →

⋃
i∈I Xi, f(i) ∈ Xi for all i ∈ I}.

Axiom of Choice is the assertion:

(AC): For any (non-empty) index set I and any sequence 〈Xi : i ∈ I〉 of non-

empty sets,
∏

i∈I Xi is non-empty.

If Xi’s are topological spaces with Xi = (Xi,Oi),
∏

i∈I Xi also denotes the

product space of Xi’s with the usual product topology with basic open sets of the

form

[s] = {f ∈
∏

i∈I Xi : f ↾ I0 ∈
∏

i∈I0 s(i)}

for I0 ∈ [I]<ℵ0 and s : I0 →
⋃

i∈I0 Oi with s(i) ∈ Oi for all i ∈ I0.

We assume that a sequence 〈ai : i ∈ I〉 is introduced as a function f on I such

that f(i) = ai for all i ∈ I. Thus each element f ∈
∏

i∈I Xi will be also represented

as f = 〈ai : i ∈ I〉 where ai ∈ Xi for all i ∈ I.

If Xi = X for all i ∈ I,
∏

i∈I Xi is also denoted by IX. Thus

IX = {f : f : I → X}.

For an ordinal δ we write
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δ>X :=
⋃

α<δ
αX = {f : f : α → X for some α < δ}.

The Prime Ideal Theorem (PIT) is the statement that of any Boolean algebra

B, there is a prime ideal on B. The Ultrafilter Theorem (UFT) is the statement

that for any non-empty set X, and any filter F over X, there is an ultrafilter F∗

over X which extends F (we review the definition and basic properties of filter and

ultrafilter over a set, as well as ideals and prime ideals on a Boolean algebra in the

next section). AC implies PIT: in many textbooks this is proved as an application

of Zorn’s Lemma. It is known that PIT is strictly weaker than AC over ZF (see e.g.

Jech [6], Theorem 7.1). PIT and UFT are equivalent over ZFC. In Section 4 we

shall see a proof of this fact as a part of Theorem 4.2. One direction is easy to see.

In the rest of the paper “(−AC)” indicates that the given statement can be

proved in ZF without the Axiom of Choice. Note that this does not mean that the

negation of the Axiom of Choice is assumed.

Lemma 1.2 p-fltr-2-a(−AC) PIT implies UFT.

Proof. Assume that PIT holds. Suppose that F is a filter over a non-empty set

X. Let B = P(X)/F . (Since AC is not available here we consider P(X)/F to be

the set of all equivalence classes of elements of P(X) modulo F with the partial

ordering S ≤ T for S, T ∈ P(X)/F defined by A ⊆ B modulo F for all A ∈ S

and B ∈ T ). Let I be a prime ideal on B (which exists by PIT) and let F be its

dual filter. Then

F∗ := {Y ∈ P(X) : the equivalence class of Y modulo F is in F}

is an ultrafilter over X extending F . (Lemma 1.2)

A topological space X = (X,O) is compact if for any open covering U of X

there is a finite sub-covering U0 of U . It is easy to check that the standard proof

of Heine-Borel Theorem does not need Axiom of Choice 1) .

Theorem 1.3 p-fltr-2-0(Heine-Borel Theorem, −AC) Any (bounded) closed set in R (as the

subspace of R with the standard topology) is compact.

Proof. The proof given in [13] (with a slight modification) works without Axiom

of Choice.

1)Heine-Borel Theorem in connection with Reverse Mathematics is that theorem expressible
in the context of weak second-order arithmetic which is different from the same theorem in
the framework of ZF. Though in our case, the proof considered in Reverse Mathematics can be
translated to the general situation to see that we do not need the Axiom of Choice for the proof,
there is no guarantee in general that, for a theorem formulated in the framework of Reverse
Mathematics, the corresponding more general theorem in the framework of ZF do not need AC.
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[[ In the proof given there the paragraph where sequence Pn, n ∈ ω of partitions

of the unit interval [0, 1] into finitely many intervals is chosen such that Pn+1 is a

refinement of Pn for all n ∈ ω (this sequence can be taken without AC since each

of them can be concretely given) and then, for each n ∈ ω Tn ∈ Pn for n ∈ ω with

certain property are chosen such that T0 ⊇ T1 ⊇ T2 ⊇ · · · holds. Here, it may look

like the Axiom of Choice is needed. However, since each Fn is finite, we can always

choose the left-most interval (for example) among the relevant intervals to avoid

AC. ]] (Theorem 1.3)

One of the consequences of PIT (⇔ UFT) is AC for finite sets which is defined

as:

(AC(fin)): For any sequence 〈Xi : i ∈ I〉 of non-empty finite sets,
∏

i∈I Xi 6= ∅.

One way to see that AC(fin) follows from PIT is to show first the equivalence

of PIT with (model-theoretic) compactness theorem and apply it. Actually it is

easy to see that the compactness theorem proves that every partial ordering on

an arbitrary set can be extended to a total (i.e. linear) ordering, and it is also

immediate to see that AC(fin) follows from this statement.

AC(fin) can be further weakened by restricting the sequences with well-ordered

index set. For a cardinal κ, we define

(ACκ(fin)): For any sequence 〈Xα : α ∈ κ〉 of non-empty finite sets,∏
α∈κ Xκ 6= ∅.

We also consider further the three types of principles DCκ, ACκ and ACWO
κ : DCκ

for an infinite cardinal κ is the Dependent Choice of length κ:

(DCκ): For any set S and any binary relation R ⊆ κ>S×S, if for any f ∈ αS for

any α < κ there is s ∈ S such that f R s, then there is f ∈ κS such that

f ↾ α R f(α) for all α < κ.

Theorem 1.4 p-fltr-2-1The following are equivalent: (A) AC.

(A’) Any set is well-orderable.

(A”) ∀κDCκ.

Proof. “(A) ⇒ (A’) ”: Assume that AC holds and let X be an arbitrary non-

empty set. We fix f ∈
∏

U∈P(X)\{∅} U (which exists because of AC). Using f as a

book keeping, we can try transfinitely to enumerate elements of X as a0, a1,... .

Then there must be some δ ∈ On such that 〈aα : α < δ〉 is an enumeration of X.
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The ordering a v b defined for a, b ∈ X as being a = aα and b = bβ for α < β < δ

is a well ordering on X.

“(A’) ⇒ (A”) ”: If S and R are as in the definition of DCκ, and R∗ is a well-

ordering on S, then we can construct a sequence f = 〈sα : α < κ〉 by induction on

α < κ, at the αth step of the construction we just choose R∗-minimal s ∈ S such

that fα R s where fα = 〈sξ : ξ < α〉 is the sequence of elements of S chosen so far.

“(A”) ⇒ (A’) ”: DCκ implies that every non-empty set X is either well-

orderable in order type <κ or there is a 1-1 sequence of elements of X of length κ.

Hence ∀κDCκ implies the well-orderability of an arbitrary set.

“(A’) ⇒ (A) ”: This is easy, for any sequence 〈Xi : i ∈ I〉 of non-empty sets,

if R is a well-ordering of
⋃

i∈I Xi, then we can construct f ∈
∏

i∈I Xi by choosing

f(i) for i ∈ I to be the R-minimal elements of Xi. (Theorem 1.4)

(ACκ) For any sequence 〈Xα : α < κ〉 of length κ of non-empty sets,∏
α<κ Xα 6= ∅.

For a sequence 〈Xα : α < κ〉 of non-empty sets if we define S :=
⋃

α<κ Xκ and

R ⊆ κ>S by f R s :⇔ if α < κ is the length of f then s ∈ Xi, the κ-sequence as

in the definition of DCκ is an element of
∏

α<κ Xα. Thus, for any κ, DCκ implies

ACκ. It is known that for any κ, ACκ does not imply DCω. In particular, ∀κACκ is

not equivalent to AC.

ACκ can be further weakened to obtain:

(ACWO
κ ) For any sequence 〈Xα : α < κ〉 of length κ of non-empty well-orderable

sets,
∏

α<κ Xα 6= ∅.

To finish this introduction I would like to add the following remark concerning

the relevance of the study of variations of the Axiom of Choice involved in math-

ematical theorems in “everyday” (pure) mathematics. Even if you are working in

ZFC (simply assuming the full Axiom of Choice for granted), you may want to

work in the set-theoretic universe in which many large large cardinals (this is not a

typo) exist and/or Martin’s Axiom, or even Proper Forcing Axiom or double plused

version of Martin’s Maximum holds. In such a universe of mathematics (i.e. set

theory), there are full of inner models which do not satisfy the Axiom of Choice but

diverse fragments of it: L(R) is a prominent example of such inner models — under

the existence of a sufficiently large cardinal L(R) satisfies the Axiom of Determinacy

and hence does not satisfy any known weakenings of AC except dependent choice

(i.e. DCω in the notation introduced below). Mathematics in these inner models
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can/should be integrated to whole picture of the everyday mathematics to obtain a

richer and more fertile mathematical landscape. Besides the Reverse Mathematical

significance mentioned at the beginning of the section, the study of variants of AC

and their topological characterizations is thought to be the first step toward this

type of “inner model theory” or set-theoretic geology as Joel Hamkins put it.

A conversation with Atsushi Yamashita via twitter motivated the author to

write this article. The author would like to thank Dr. Yamashita for pushing him

toward this occasion.

2 Convergence of filters and ultrafilters in a topo-

logical space

filterLet X = (X,O) be a topological space where the topology of X is given here by

the set O of all open sets in X. For p ∈ X, Op := {O ∈ O : p ∈ O} denotes the

open neighborhood of p.

F is a filter over X if it is a non-empty subset of P(X) satisfying

(2.1) x-fltr-0If A ∈ F and A ⊆ B ⊆ X, then B ∈ F , and

(2.2) x-fltr-1For any A, B ∈ F , A ∩ B ∈ F .

In the following we consider only non-trivial filters, that is, we always assume

additionally that

(2.3) x-fltr-2∅ 6∈ F .

For any non-empty X, and S ⊆ P(X), S has the finite intersection property

(the fip, for short) if S0 ∩ · · ·Sn−1 6= ∅ for any n ∈ ω and S0, ..., Sn−1 ∈ S.

Lemma 2.1 (−AC) p-fltr-0For non-empty X and S ⊆ P(X), S has the fip ⇔ there is

a filter F over X with S ⊆ F . Furthermore, we can uniquely specify the minimal

F among such filters F .

Proof. “⇐”: is clear by the property (2.2) (and (2.3))of the filter F with S ⊆ F .

“⇒”: Assume that S ⊆ P(X) has the fip. Then

F := {A ∈ P(X) : A ⊇ S0 ∩ · · · ∩ Sn for some n ∈ ω and S0, ..., Sn ∈ S}

is a filter over X with S ⊆ F . It is clear that this F is the unique minimal filter

containing S. (Lemma 2.1)

We can generalize the notion of filter and ultrafilter in the context of Boolean

algebras. For a Boolean algebra B = 〈B,∧,∨,¬, 0, 1〉, F ⊆ B is said to be a filter

on B if for any a, a′, b ∈ B,
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(2.4) a ∈ F and a ≤B b implies b ∈ F where ≤B denotes the partial ordering

on B associated with the Boolean algebraic structure of B;

(2.5) a, a′ ∈ F implies a ∧ a′ ∈ F ;

(2.6) 0 6∈ F .

F ⊆ B is an ultrafilter on B if F is a filter on B and it is maximal (with

respect to ⊆) among filters on B. A generalization of Lemma 2.1 proves that a

filter F ⊆ B is an ultrafilter, if and only if, for any a ∈ B exactly one of a ∈ F

or ¬a ∈ F holds. Note that we are talking about a filter “on” B. The notion of

a filter over X corresponds here to the filter on the (power set algebra) Boolean

algebra P(X).

I ⊆ B is an ideal if ¬I := {¬a : a ∈ I} is a filter. Note that ¬(¬I) = I. I is a

prime ideal if ¬I is an ultrafilter.

If X is a topological space there is an interesting interplay between filters over

the set X and the topology of X.

Example 2.2 Ex-fltr-0( 1 ) For a topological space X and p ∈ X,

Fp := {A ∈ P(X) : O ⊆ A for some O ∈ Op} is a filter over X with Op ⊆ Fp.

( 2 ) Let F∞ := {A ∈ P(R) : (a,∞) ⊆ A for some a ∈ R}. F∞ is a filter over R,

and, for any filter F over R extending F∞, there is no p ∈ R such that Op ⊆ F .

For a topological space X = (X,O), a filter F over X and p ∈ X, we say F
converges to p (notation: F → p) if Op ⊆ F .

The following is easy to see:

Theorem 2.3 (−AC) p-fltr-1A topological space X = (X,O) is Hausdorff if and only if,

for any filter F over X, F converges to at most a single point in X.

Proof. Suppose that X is Hausdorff, and F → p for a filter F over X and p ∈ X.

If q ∈ X is distinct from p then there are open sets Op ∈ Op and Oq ∈ Oq such

that Op ∩Oq = ∅. Since Op ⊆ F . It follows that Oq 6∈ F and hence F 6→ q.

Suppose now that X is not Hausdorff. Then there are distinct p, q ∈ X such

that for all O ∈ Op and O′ ∈ Oq we have O ∩ O′. Then Op ∪ Oq has the fip. By

Lemma 2.1 there is a filter F over X with Op∪Oq ⊆ F . Then F → p and P → q.

(Theorem 2.3)

p ∈ X is a cluster point of a filter F ⊆ P(X), if p ∈
⋂

F where F := {F :

F ∈ F}. Note that p ∈ X is a cluster point of F if and only if, for any F ∈ F ,

O ∩ F 6= ∅ for all O ∈ Op.

8



Lemma 2.4 (−AC) p-fltr-2Suppose that X is a topological space and F is a filter over

X. ( 1 ) The set of all cluster points of F is a closed subset of X.

( 2 ) F → p implies that p is a cluster point of F .

( 3 ) If p ∈ X is a cluster point of a filter F over X then there is a filter F ′ over

X extending F such that F ′ → p. Furthermore, such F ′ can be uniquely specified

as the minimal filter with these properties.

( 4 ) For an ultrafilter F over a topological space X, and p ∈ X, F converges to

p if and only if p is a cluster point of F .

Proof. (1): This is clear since the set of all cluster points is
⋂
F .

(2): If F → p then Op ⊆ F . In particular O ∩ F 6= ∅ for all O ∈ Op and

F ∈ F .

(3): If p is a cluster point of F , then F ∪Op has the fip. Thus, by Lemma 2.1,

there is a filter F ′ over X which contains F ∪ Op. Clearly F ′ → p. Uniqueness

of minimal such F ′ is clear from the construction of the filter (see the proof of

Lemma 2.1).

(4): If F converges to p ∈ X then p is a cluster point of F by (2). Suppose

that p ∈ X a cluster point of F . Then F ∪ Op has the fip. By Lemma 2.1, there

is a filter F ′ over X containing this set as a subset. In particular, F ⊆ F ′. Since

F is an ultrafilter, it follows that F = F ′. Hence Op ⊆ F i.e. F converges to p.

(Lemma 2.4)

Compactness of topological spaces can be characterized in terms of filters over

them. A filter F over a non-empty set X is called an ultrafilter if it is maximal

with respect to ⊆ among ultrafilters over X. A filter F over X is an ultrafilter if

and only if, for any A ∈ P(X), one of A and X \ A is always an element of F .

Theorem 2.5 p-fltr-3The following hold for any topological space X: ( 1 ) (−AC) (a)

X is compact ⇔ (b) For any family B of non-empty closed subset of X with the

fip,
⋂

B 6= ∅ ⇔ (c) Any filter F over X has a cluster point.

( 2 ) (UFT) X is compact ⇔ Any ultrafilter F over X converges to some point(s)

in X.

Proof. (1): “(a) ⇒ (b)”: Suppose that B is a family of non-empty closed subsets

of X with the fip but (2.7) : x-fltr-2-0

⋂
P = ∅. Let Y = {X \B : B ∈ B}.

Claim 2.5.1 U is an open covering of X without any finite subcover.

` Elements of U are open by definition U is a covering of X by (2.7).
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Suppose that X \ A0,...,X \ An−1 are elements of U where A0, ..., An−1 ∈ B.

Then

(X \ A0) ∪ ... ∪ (X \ An−1) = X \
6= ∅, by the fip of B︷ ︸︸ ︷

(A0 ∩ ... ∩ An−1) 6= X.

a (Claim 2.5.1)

“(b) ⇒ (c)”: Clear by the definition of cluster point.

“(c) ⇒ (a)”: Suppose that X is not compact and let U be an open covering of

X without finite subcovering. Then B := {X \O : O ∈ U} has the fip

[[ Suppose X \O0,...,X \On−1 ∈ B, then (X \O0) ∩ · · · ∩ (X \On−1) = X \ (O0 ∪
· · · ∪ On−1) 6= ∅ ]]. By Lemma 2.1, there is a filter F over X with B ⊆ F .

Claim 2.5.2 cl-fltr-0F does not have any cluster point.

` For any p ∈ X, there is O ∈ U with p ∈ O. F := X \ O ∈ F by the choice of

F . But O ∈ Op and O ∩ F = ∅. This implies that p is not a cluster point of F .

a (Claim 2.5.2)

(2), “⇒”: Suppose that X is a compact topological space and F is an ultrafilter

over X. By (1), F has a cluster point p. By Lemma 2.4, (2), F converges to p.

“⇐”: Suppose that X is not compact. Let U , B and F be as in the proof of (1),

“(c) ⇒ (a)”. By UFT, there is an ultrafilter F∗ over X with F ⊆ F∗. The proof

of Claim 2.5.2 is applicable to F∗ and shows that there is no cluster point of F∗.

By Lemma 2.4, (4), it follows that F∗ does not converge to any point. (Theorem 2.5)

3 Proofs of Tychonoff Theorem

tychonoffIn this section, we examine two proofs of Tychonoff’s Theorem. These proofs will be

modified to obtain variations of Tychonoff Theorem (Corollary 3.2 ∼ Corollary 3.5)

under various weakenings of AC.

Theorem 3.1 p-tych-0(Tychonoff [12], AC) For any index set I and compact spaces Xi for

i ∈ I, Y :=
∏

i∈I Xi is compact.2)

The first proof. Assume that F is an ultrafilter over Y . By Theorem 2.5, (2)

(and here we use UFT), it is enough to show that F converges to a point in Y .

2)Tychonoff formulated this theorem (indirectly)3) for Hausdorff spaces but his proof is appli-
cable for spaces which are not necessarily Hausdorff.

3) I wrote “indirectly”, since Tychonoff in [12] refers to Alexandroff and Urysohn [1] for the
setting of topology. [1] cites Hausdorff’s text book [4] for definition of topology in which Haus-
dorffness is simply one of the axioms of topological spaces.
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For each i ∈ I, let

(3.1) x-tych-0Fi := {U ⊆ Xi : {f ∈ Y : f(i) ∈ U} ∈ F}.

Then, for each i ∈ I, Fi is an ultrafilter over Xi. By Theorem 2.5, (2), there is

ai ∈ X such that Fi → ai. (We need AC here in general to choose the sequence

〈ai : i ∈ I〉.)
We are done with the following Claim:

Claim 3.1.1 F → 〈ai : i ∈ I〉.

` Suppose that O ∈ O⟨ai : i∈I⟩ where O denotes the set of all open sets in Y . We

have to show that O ∈ F . For this, we may assume that O is a basic open set of

the product space Y of the form

O = {f ∈
∏

i∈I Xi : f(i0) ∈ Oi0 for all i0 ∈ I0}

for some I0 ∈ [I]<ℵ0 and Oi0 ∈ (Oi0)ai0 for i0 ∈ I0.

By the choice of ai0 , we have Oi0 ∈ Fi0 for all i0 ∈ I0. Thus

Õi0 := {f ∈
∏

i∈I Xi : f(i0) ∈ Oi0} ∈ F

by the definition (3.1) of Fi. It follows that O =
⋂

i0∈I Õi0 ∈ F . a (Claim 3.1.1)

(Theorem 3.1)

The second proof. Suppose that F is a filter over Y =
∏

i∈I Xi. By Theo-

rem 2.5, (1) it is enough to show that F has a cluster point.

Since we are assuming AC, we may assume that the index set I is a cardinal κ.

Thus Y =
∏

α<κ Xα. Let OY be the set of open sets of the product space Y and

Xα = (Xα,Oα). For α < κ, let πα : Y → Xα; f 7→ f(α) be the projection.

By induction, we define sequences of filters F0
α ⊆ P(Xα) for α < κ, and Fα ⊆

P(Y ) for α ≤ κ such that:

(3.2) x-tych-3F0 = F ;

(3.3) x-tych-4F0
α = the filter over Xα generated by {πα

′′F : F ∈ Fα} ∪ (Oα)aα
where aα is a cluster point of the filter {πα

′′F : F ∈ Fα} over Xα (cf.

Lemma 2.4, (3) and its proof);

(3.4) x-tych-5Fα+1 = the filter generated by Fα ∪ {π−1 ′′U : U ∈ F0
α}; and,

(3.5) x-tych-6for a limit γ ≤ κ, Fγ =
⋃

α<γ Fα.

Fκ is then a filter over Y extending F .

Claim 3.1.2 Fκ → 〈aα : α < κ〉.

11



` Suppose that O is a basic open set of Y around 〈aα : α < κ〉. Let

O = [{〈α,Oα〉 : α ∈ I0}] ( = {f ∈ Y : f(α) ∈ Oα for all α ∈ I0})

for I0 ∈ [κ]<ℵ0 and Oα ∈ (Oα)aα for α ∈ I0.

By (3.3) and (3.4), πα
−1 ′′Oα ∈ Fκ. Hence, O =

⋂
α∈I0 πα

−1 ′′Oα ∈ Fκ.

a (Claim 3.1.2)

By Lemma 2.4, (2), 〈aα : α < κ〉 is a cluster point of Fκ. Hence, it is also a

cluster point of F . (Theorem 3.1)

All of the following are corollaries to the ideas of one of the two proofs of

Theorem 3.1.

Corollary 3.2 p-tych-1(UFT) For any index set I and compact Hausdorff spaces Xi for

i ∈ I, Y :=
∏

i∈I Xi is compact.

Proof. By the first proof of Theorem 3.1. Note that, by Theorem 2.3, the limit

ai of Fi is unique because of the Hausdorffness of Xi, and hence we can pick up

the sequence 〈ai : i ∈ I〉 without the help of AC. (Corollary 3.2)

Corollary 3.3 p-tych-2(DCκ) For sequence 〈Xα : α < κ〉 of compact spaces, the product∏
α<κ Xα is compact.

Proof. By a modification of the second proof of Theorem 3.1. Suppose that

〈Xα : α < κ〉 is a sequence of compact spaces and F is a filter over
∏

α<κ Xα. By

DCκ we can choose the sequences 〈aα : α < κ〉, 〈F0
α : α < κ〉, 〈Fα : α ≤ κ〉 as

in the second proof of Theorem 3.1. Then we can show that F → 〈aα : α ∈ κ〉
holds just as in the proof. (Corollary 3.3)

Corollary 3.4 p-tych-5(ACκ(fin)) For any sequence 〈Xα : α ∈ κ〉 of finite spaces,
∏

α∈κ Xκ

is compact.

Proof. A modification of the second proof of Theorem 3.1 will do. Suppose that

〈Xα : α ∈ α〉 is a sequence of finite spaces. By ACκ(fin), we can find a sequence

〈Rα : α ∈ κ〉 such that each Rα is a well-ordering of Xα. The construction with

(3.2) ∼ (3.5) goes through by choosing Rα-minimal aα for each α. (Corollary 3.4)

In some cases we can completely avoid AC:

Corollary 3.5 p-tych-3(−AC) ( 1 ) For any compact topological spaces X, Y , the product

space X × Y is compact.

( 2 ) For any cardinal κ and a sequence 〈Xα : α < κ〉 such that each Xi is

either a closed subset of an successor ordinal with the order topology or bounded
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closed subset of R with the order topology, then the product
∏

α∈I Xα is compact.

In particular, κ2, κ[0, 1] are compact for any cardinal κ.

Proof. Both (1) and (2) can be shown by the second proof of Theorem 3.1. For

(2), note that Xα, α < κ as in the statement are compact by Heine-Borel Theorem

(Theorem 1.3) and Lemma 3.6 below. If Xα is a closed subset of a successor ordinal,

we can take aα as the minimal element of Xα among the cluster points with respect

to the canonical well-ordering. If Xα is a bounded closed subset of R, the set of

cluster points is a closed subset of the space (see Lemma 2.4, (1)) and hence we

can take the minimal element among them with respect to the ordering of R.

(Corollary 3.5)

Lemma 3.6 p-tych-4(−AC) An ordinal α with its order topology is compact if and only if

it is a successor ordinal.

Proof. To show that an successor ordinal is compact, it is enough to show that

ordinal of the form α + 1 is compact where α is a limit ordinal.

Suppose that U is an open covering of α+1. Then we can find a (not necessarily

strict) decreasing sequence αn, n < ω of ordinals < α + 1, and On ∈ U for n < ω

such that

α0 = α;

(αn+1, αn + 1) ⊆ On;

αn+1 < αn if αn 6= 0.

Since there is no infinite decreasing sequence in α + 1, there is n < ω such that

αn = 0. Let O∗ ∈ U be such that 0 ∈ O∗. Then {O∗} ∪ {O0, ..., On−1} is a finite

subcovering of U .

If α is a limit ordinal then α as open covering of α has no finite subcovering.

(Lemma 3.6)

4 Characterizations of variants of AC in terms of

Tychonoff Theorem

char

Theorem 4.1 p-char-0(Kelley [9], see Theorem 1.1 in Section 1)

The following are equivalent over ZF: (A) AC.

(D) For any index set I and any sequence 〈Xi : i ∈ I〉 of compact topological

spaces, the product space
∏

i∈I Xi is also compact.
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Proof. “(A) ⇒ (D) ”: has been proved as Theorem 3.1.

“(D) ⇒ (A) ”: Assume that (D) holds. Suppose that 〈Xi : i ∈ I〉 is a

sequence of non-empty sets. We have to show that
∏

i∈I Xi 6= ∅.

Let ∞ be a set such that ∞ 6∈
⋃

i∈I Xi. Let Yi = Xi ∪ {∞} and Oi =

{∅, Xi, {∞}, Yi} for i ∈ I. Then Yi = (Yi,Oi) is a compact topological space

(it is compact since Oi is finite). Thus by the assumption of (D) , Y :=
∏

i∈I Yi is

compact.

For i ∈ I, let Ai := {f ∈ Y : f(i) ∈ Xi}. Then each Ai is a closed set in Y .

Claim 4.1.1 A := {Ai : i ∈ I} has the fip.

` Suppose that Ai0 , ..., Aik−1
∈ A. Let g ∈ Y be defined by

g(i) =

{
ai for some ai ∈ Xi, if i = iℓ for some ℓ < k;

∞ otherwise

for i ∈ I. Note that g can be chosen without AC. We have g ∈
⋂

ℓ<k Aiℓ .

a (Claim 4.1.1)

By Theorem 2.5, (1), it follows that there is h ∈
⋂
A =

∏
i∈I Xi. (Theorem 4.1)

Theorem 4.2 p-char-1( Loś and Ryll-Nardzewski [10])

The following are equivalent over ZF: ( E ) PIT.

( F ) UFT.

(G) For any index set I and any sequence 〈Xi : i ∈ I〉 of compact Hausdorff

topological spaces, the product space
∏

i∈I Xi is also compact.

Proof. “( E ) ⇒ ( F ) ”: Lemma 1.2.

“( F ) ⇒ (G) ”: Corollary 3.2.

“(G) ⇒ ( E ) ”: Assume (G) and suppose that B is a Boolean algebra. Let

S := {B0 : B0 is a finite subalgebra of B}.

For B0 ∈ S, let

XB0 := {f : f : B0 → 2, f is a Boolean homomorphism} ∪ {{∅}}

be the discrete topological space. Then each XB0 is compact Hausdorff. By the

assumption (G) , it follows that Y :=
∏

B0∈S XB0 is compact.

For any distinct B0, B
′
0 ∈ S with B0 ≤ B′

0, let

CB0,B′
0

:= {φ ∈ Y : φ(B0) ⊆ φ(B′
0)}.
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The following is clear since the topology on each XB0 for B0 ∈ S is discrete and

XB0 ×XB′
0

for B0, B
′
0 ∈ S is finite.

Claim 4.2.1 cl-char-0For any distinct B0, B
′
0 ∈ S with B0 ≤ B′

0, CB0,B′
0
is closed subset

of Y .

Let B := {CB0,B′
0

: B0, B
′
0 ∈ S, B0 ≤ B′

0}.

Claim 4.2.2 cl-char-1B has the fip.

` Suppose that B0,0, ..., B0,k−1, B
′
0,0, ..., B

′
0,k−1 ∈ S and B0,0 ≤ B′

0,0, ..., B0,k−1 ≤
B′

0,k−1. Let B∗
0 ∈ S be such that B′

0,ℓ ≤ B∗
0 for all ℓ < k. Since B∗

0 is finite we can

find a Boolean homomorphism f : B∗
0 → 2 (without appealing to AC for help). Let

φ ∈ Y be defined by

φ(B0) :=

{
f ↾ B0, if B0 = B0,ℓ or B0 = B′

0,ℓ for some ℓ < k;

{∅} otherwise

for B0 ∈ S. Then φ ∈ CB0,0,B′
0,0

∩ ... ∩ CB0,k−1,B
′
0,k−1 a (Claim 4.2.2)

Since Y is compact
⋂

B is non-empty. Let φ ∈ ∩B. Then Φ =
⋃
{φ(B0) : B0 ∈

S} is a Boolean homomorphism with Φ : B → 2, and Φ−1 ′′{0} is a prime ideal on

B. (Theorem 4.2)

Theorem 4.3 p-char-2For any infinite cardinal κ, we have the implication

(H) ⇒ ( I ) ⇒ ( J ) ⇒ (K) ⇒ ( L ) , where

(H) DCκ.

( I ) For any sequence 〈Xα : α ∈ κ〉 of compact topological spaces, the product∏
α∈κ Xα is compact.

( J ) ACκ.

(K) For any sequence 〈Xα : α ∈ κ〉 of compact topological spaces where each

set Xα (α ∈ κ) is well-orderable, the product
∏

α∈κ Xα is compact.

( L ) ACWO
κ .

Proof. “(H) ⇒ ( I ) ”: By Corollary 3.3.

“( I ) ⇒ ( J ) ”: The proof of Theorem 4.1, “(D) ⇒ (A) ” for I = κ will do.

“( J ) ⇒ (K) ”: Suppose that 〈Xα : α < κ〉 is as in the statement of (K) .

By ACκ, we can choose a sequence 〈Rα : α < κ〉 such that each Rα (α < κ) is a

well ordering of Xα. For a filter F over
∏

α<κ Xα, we can construct 〈aα : α < κ〉,
〈F0

α : α < κ〉, 〈Fα : α ≤ κ〉 as in the second proof of Theorem 3.1 using this

〈Rα : α < κ〉. The same argument as in the proof shows that F → 〈aα : α ∈ κ〉.
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“(K) ⇒ ( L ) ”: Again the proof of Theorem 4.1, “(D) ⇒ (A) ” for I = κ

works for 〈Xα : α ∈ κ〉 where each Xα is well-orderable. (Theorem 4.3)

It is clear that ACWO
κ implies ACκ(fin). The latter can be characterized by a

weakening of Tychonoff Theorem.

Theorem 4.4 p-char-3For an infinite cardinal κ, The following are equivalent:

(M) ACκ(fin).

(N) For any sequence 〈Xα : α ∈ κ〉 of finite spaces,
∏

α∈κ Xα is compact.

Proof. “(M) ⇒ (N) ”: By Corollary 3.3.

“(N) ⇒ (M) ”: The proof of Theorem 4.1, “(D) ⇒ (A) ” for I = κ will do.

Note that, if Xi is finite, then Yi in the proof of Theorem 4.1, “(D) ⇒ (A) ” is

also finite. (Theorem 4.4)
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[10] Jerzy  Loś and Czes law Ryll-Nardzewski, Effectiveness of the representation

theory for Boolean algebras, Fundamenta Mathematicae 41, (1955), 49–56. 14

[11] Alfred Tarski, Sur quelques theorems qui equivalent a l’axiome du choix, Fun-

damenta Mathematicae, 5, (1924), 147 ‒ 154. 2
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