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Abstract. We give an equivalent, but simpler formulation of the axiom SEP,

which was introduced in [9] in order to capture some of the combinatorial

behaviour of models of set theory obtained by adding Cohen reals to a model of

CH. Our formulation shows that many of the consequences of the weak Freese-

Nation Property of P(ω) studied in [5] already follow from SEP. We show

that it is consistent that SEP holds while P(ω) fails to have the (ℵ1,ℵ0)-ideal

property introduced in [2]. This answers a question addressed independently

by Fuchino and by Kunen. We also consider some natural variants of SEP and

show that certain changes in the definition of SEP do not lead to a different

principle, answering a question of Blass.

1. Introduction

As far as the combinatorial properties of the reals are concerned, among the best
understood models of set theory are Cohen models, i.e., models of set theory ob-
tained by adding Cohen reals to a model of CH. In order to get rid of the technical
and meta-mathematical difficulties of forcing, it is worthwhile to isolate the com-
binatorial features of Cohen models in the form of easily applicable combinatorial
principles.

This has been done by various authors. The work of Juhász, Szentmiklóssy, and
Soukup [10, 11] can be considered as the starting point of this line of research. The
intention of the present article is to clarify the interrelations between three similar
principles that turned up in this context, namely SEP introduced by Juhász and
Kunen [9], the (ℵ1,ℵ0)-ideal property (IDP for short) of Dow and Hart [2] and
WFN(P(ω)) [5].

SEP and IDP are originally defined by the same pattern. The principles say
that for every sufficiently large regular cardinal χ there are many good elementary
submodels M of the structure (Hχ,∈) such that P(ω) ∩M is nicely embedded in
P(ω). Here Hχ denotes the family of all sets whose transitive closure is of size < χ.
Structures of the form (Hχ,∈) satisfy a large part of ZFC.

Different notions of good and many elementary submodels and nice embeddings
lead to different principles. The nice embeddings in the case of SEP and IDP are
sep-embeddings and σ-embeddings, respectively.
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Definition 1.1. Let A and B be Boolean algebras with A ≤ B, i.e., A is a subal-
gebra of B. For b ∈ B let A ¹ b = {a ∈ A : a ≤ b}. Then A ≤sep B if and only if
for every b ∈ B and every uncountable set T ⊆ A ¹ b there is a ∈ A ¹ b such that
{c ∈ T : c ≤ a} is uncountable. Let A ≤σ B if and only if for every b ∈ B, A ¹ b

has a countable cofinal subset.

Observe that A ≤σ B implies A ≤sep B.
The good elementary submodels will be the same for both SEP and IDP. Later

we show that ≤sep can be replaced by ≤σ in the following definition of SEP. The
real difference between SEP and IDP lies in the interpretation of many.

Extending the notions defined in [2] and [9], we regard SEP and IDP as properties
of general Boolean algebras, not only of P(ω).

Definition 1.2. For a cardinal χ let Mχ be the set of elementary submodels M of
Hχ such that |M |= ℵ1 and [M ]ℵ0 ∩M is cofinal in [M ]ℵ0 . For a Boolean algebra
A, SEP(A) is the statement “for all sufficiently large regular χ there are cofinally
many M ∈ Mχ such that A ∩ M ≤sep A”. The axiom SEP introduced in [9] is
SEP(P(ω)).

A has the (ℵ1,ℵ0)-ideal property (IDP) if and only if for all sufficiently large
regular χ and all M ∈ Mχ with A ∈ M , A ∩M ≤σ A holds. We write IDP(A) if
A has the IDP.

As usual, we identify an algebraic structure (A, f1, . . . , fn, R1, . . . , Rm) with its
underlying set A. It should be made clear that by “A ∈ M” we really mean
(A, f1, . . . , fn, R1, . . . , Rm) ∈ M . The role of the cardinal χ is analyzed in Section
8, where we calculate precisely when a regular cardinal is “sufficiently large” in the
definition of SEP.

Since ≤σ is stronger than ≤sep, for a Boolean algebra A, IDP(A) implies SEP(A).
In Section 2 we show that the relation ≤sep in the definition of SEP can be replaced
by ≤σ, i.e., SEP and IDP are very similar. In Section 8 we observe that it does not
make a difference in the definition of SEP if we replace “there are cofinally many
M ∈ Mχ” by “there is M ∈ Mχ” or by “there are stationarily many (in [Hχ]ℵ1)
M ∈ Mχ”. This shows the importance of the results of Section 6 and Section 7,
namely that SEP is really weaker than IDP.

If the universe is not very complex, that is, if some very weak version of the ¤-
principle together with cf([µ]ℵ0) = µ+ holds for all singular cardinals µ of countable
cofinality, or if the Boolean algebras under consideration are small, then the (ℵ1,ℵ0)-
ideal property is equivalent to the weak Freese-Nation property studied in [7]:

Definition 1.3. A Boolean algebra A has the weak Freese-Nation property (WFN)
if and only if there is a function f : A → [A]≤ℵ0 such that for all a, b ∈ A with a ≤ b

there is c ∈ f(a)∩ f(b) with a ≤ c ≤ b. f is called a WFN-function for A. We write
WFN(A) for “A has the WFN”.
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It is easy to check that if f is a WFN-function for A and B ≤ A is closed under
f , then B ≤σ A. In [7] Fuchino, Koppelberg, and Shelah characterized the WFN
using elementary submodels and σ-embeddings. They showed

Theorem 1.4. A Boolean algebra A has the WFN if and only if for all sufficiently
large χ and all M 4 Hχ with ℵ1 ⊆ M and A ∈ M , A ∩M ≤σ A.

Since ℵ1 ⊆ M for all M ∈Mχ, it is clear that for a Boolean algebra A, IDP(A)
follows from WFN(A). As mentioned above, IDP and WFN are equivalent in many
cases. Some of these cases are captured by the following lemma, which follows from
the results in [8].

Lemma 1.5. If A is a Boolean algebra of size < ℵω or if 0] does not exist, then
IDP(A) holds if and only if WFN(A) does.

The formulation using 0] is chosen here just for simplicity. As mentioned above,
what is really needed is only a certain very weak assumption at singular cardinals
of countable cofinality. On the other hand, it is known that the lemma does not
hold without any such additional assumption (see [8] or [6]).

In [5] many interesting consequences of WFN(P(ω)) have been found. Concern-
ing the combinatorics of the reals, a universe satisfying WFN(P(ω)) behaves very
similar to a Cohen model. In particular, the values of the popular cardinal invari-
ants of the continuum, that is, those studied in [1], have the same values in a model
with WFN(P(ω)) as in a Cohen model with the same size of the continuum.

Our characterization of SEP in terms of ≤σ rather than ≤sep shows that the
axiom SEP(P(ω)) is sufficient to determine at least some of the smaller cardinal
invariants of the continuum.

Juhász and Kunen already proved that another consequence of WFN(P(ω)), the
principle Cs

2(ω2) introduced in [10], follows from the weaker assumption SEP(P(ω)).

2. SEP is similar to IDP

As mentioned above, ≤σ implies ≤sep. If the subalgebras under consideration
are of size ≤ ℵ1, then the two relations are in fact the same.

Lemma 2.1. Let A and B be Boolean algebras with A ≤sep B and |A|= ℵ1. Then
A ≤σ B.

Proof. Let b ∈ B and assume for a contradiction that A ¹ b is not countably
generated. Let (aα)α<ω1 enumerate A ¹ b. By recursion on α < ω1 define a
sequence (cα)α<ω1 in A ¹ b such that for all α < ω1, aα ≤ cα and cα is not in the
ideal of A generated by {cβ : β < α}.

Now let T = {cα : α < ω1}. We claim that T is a counterexample to A ≤sep B.
For let a ∈ A ¹ b. Then there is β < ω1 with a = aβ . Thus aβ ≤ cβ . By the
construction of the sequence (cα)α<ω1 , there are only countably many elements
of T below cβ . Hence, there are only countably many elements of T below a,
contradicting A ≤sep B. ¤
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Thus, we have

Corollary 2.2. For every Boolean algebra A, SEP(A) holds if and only if for all
sufficiently large regular χ there are cofinally many M ∈Mχ with A ∩M ≤σ A.

In the rest of this article we will freely use Corollary 2.2 without out referring to
it explicitly.

Using the characterization in Corollary 2.2, it is easily seen that many interesting
consequences of WFN(P(ω)) already follow from SEP(P(ω)). In the proofs of most
of the results in [5] it is only used that under WFN(P(ω)), for some sufficiently large
χ there are cofinally many M ∈Mχ with P(ω)∩M ≤σ P(ω). The following theorem
collects some of the consequences of SEP(P(ω)) that follow from the arguments
given in [5].

A subset of [ω]ℵ0 is called groupwise dense if it is closed under taking almost
subsets and non-meager with respect to the topology on [ω]ℵ0 inherited from 2ω

when identifying [ω]ℵ0 with a subset of 2ω.

Theorem 2.3. Assume SEP(P(ω)). Then the following cardinal invariants of the
continuum are ℵ1.

1. non(M), the smallest size of a non-meager subset of R and
2. g, the smallest size of a family of groupwise dense subsets of [ω]ℵ0 with

empty intersection.

Moreover, if CH fails, then cov(M), the minimal size of a family of meager subsets
of R covering R, is at least ℵ2.

It was also proved in [5] that WFN(P(ω)) implies that a, the smallest size of
a maximal almost disjoint family in P(ω), is ℵ1. In the proof it is sufficient to
assume IDP(P(ω)). The situation with a under SEP(P(ω)) is more subtle and will
be discussed in section 8.

For more information about these cardinal invariants see e.g. [1].

3. SEP(P(ω)) holds in Cohen models

In [6] it was shown that WFN(P(ω)) can fail in a Cohen model, assuming the
consistency of some very large cardinal. In [8] it was shown that large cardinal
assumptions are necessary for this.

SEP(P(ω)) however, is always true in a Cohen model. We include a proof of this
fact (Theorem 3.1). It follows that WFN(P(ω)) does not follow from SEP(P(ω)) in
ZFC (assuming the consistency of certain large cardinals). We do not know whether
IDP(P(ω)) is always true in a Cohen model.

In Section 7 we shall show, without large cardinal assumptions, that SEP(P(ω))
does not imply IDP(P(ω)).

Theorem 3.1. Let V be a model of CH and suppose that G is Fn(κ, 2)-generic
over V . Then V [G] |= SEP(P(ω)).

The proof of this theorem relies on the following series of lemmas. The first
lemma was proved in [14].
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Lemma 3.2. Let M be a transitive model of set theory and let x ⊆ ω be a Cohen
real over M . Then P(ω) ∩M ≤σ P(ω) ∩M [x].

Lemma 3.3. Let P be a c.c.c. partial order and let M ∈Mχ be such that P ∈ M .
Let G be P -generic over the ground model V . Then M [G] ∈MV [G]

χ .

Proof. Let M and G be as above. Then M [G] 4 Hχ[G] by c.c.c. of P . Let X ⊆
M [G] be countable. In V [G], there is a countable set C ⊆ M of P -names such that
X ⊆ {ẋG : ẋ ∈ C}. Again by the c.c.c. of P , we may assume that C ∈ V and C is
countable in V . By M ∈ MV

χ , we may assume C ∈ M . Since M contains a name
for G, G ∈ M [G] and thus X ⊆ {ẋG : ẋ ∈ C} ∈ M [G]. ¤

Lemma 3.4. Assume CH. Then M ∈Mχ implies that [M ]≤ℵ0 ⊆ M .
In particular, for all M ∈ Mχ, if P ⊆ M is a c.c.c. partial order, then every

nice P -name for a subset of ω is contained in M .

Proof. Suppose that x ∈ [M ]ℵ0 . By M ∈ Mχ there is y ∈ [M ]ℵ0 ∩ M such that
x ⊆ y. By CH there is a surjection f : ω1 → P(y). By elementarity, there is such f

in M . Let α < ω1 be such that f(α) = x. Since ω1 ⊆ M , we have α ∈ M and thus
x = f(α) ∈ M .

Now let P ⊆ M be a c.c.c. partial order. Since P is c.c.c., every nice P -name for
a subset of ω is a countable subset of {ň : n ∈ ω}×P ⊆ M . By the first part of the
lemma, every such set is an element of M . ¤

Lemma 3.5. Let V and G be as in Theorem 3.1. Let χ ∈ V be large enough and let
M ∈ (Mχ)V be such that κ ∈ M . Then P(ω)∩M [G] = P(ω)∩V [G∩Fn(κ∩M, 2)].

Proof. First let x ∈ P(ω) ∩ M [G]. In M there is a name ẋ for x which is a
nice name for a subset of ω. Since Fn(κ, 2) satisfies the c.c.c., in V there is a
countable set X ⊆ κ such that ẋ is an Fn(X, 2)-name. We can find such an X

in M . Since ℵ0 ⊆ M , X ⊆ M . Therefore ẋ is an Fn(κ ∩ M, 2)-name and thus
x ∈ V [G ∩ Fn(κ ∩M, 2)].

For the converse let x ∈ V [G ∩ Fn(κ ∩M, 2)]. Pick a nice Fn(κ ∩M, 2)-name ẋ

for x. Clearly, Fn(κ∩M, 2) ⊆ M . Therefore Lemma 3.4 applies, and we get ẋ ∈ M .
This shows x ∈ M [G]. ¤

Proof of Theorem 3.1. We argue in V [G]. Let χ be sufficiently large and let M ∈
Mχ. It is sufficient to show that there is M ′ ∈Mχ with M ⊆ M ′ and P(ω)∩M ′ ≤σ

P(ω).
Since Fn(κ, 2) has the c.c.c., in V there is a set X of size ℵ1 of Fn(κ, 2)-names

such that every element of M has a name in X. Let N ∈MV
χ be such that X ⊆ N .

Clearly, M ⊆ N [G]. By Lemma 3.3, N [G] ∈ Mχ. By Lemma 3.5, P(ω) ∩N [G] =
P(ω) ∩ V [G ∩ Fn(κ ∩ N, 2)]. Since V [G] is an Fn(κ \ N, 2)-generic extension over
V [G ¹ Fn(κ ∩ N, 2)], it follows from Lemma 3.2 that P(ω) ∩ N [G] ≤σ P(ω). This
shows that, in V [G], the set of M ′ ∈ Mχ with P(ω) ∩ M ′ ≤σ P(ω) is cofinal in
[Hχ]ℵ1 . ¤



6 SAKAÉ FUCHINO AND STEFAN GESCHKE

4. IDP for partial orders

In [7] the WFN has been defined for partial orders, not only for Boolean algebras.
In this section and the next, we do the same for SEP and IDP. We have to liberalize
our definition of ≤σ.

Definition 4.1. Let P and Q be partial orders with Q ≤ P , i.e., Q ⊆ P and the
orders on Q and P agree on Q. For p ∈ P let Q ¹ p = {q ∈ Q : q ≤ p} and
Q ↑ p = {q ∈ Q : q ≥ p}. Now Q ≤σ P if and only if for all p ∈ P , Q ¹ p has a
countable cofinal subset and Q ↑ p has a countable coinitial subset.

It is clear that for Boolean algebras A and B, if A is a subalgebra of B, then
A ≤σ B holds in the Boolean algebraic sense if and only if A ≤σ B holds for the
partial orders. Now we can extend the notions IDP, SEP, and WFN to partial
orders.

Definition 4.2. For a partial order P , SEP(P ) holds if and only if for all sufficiently
large regular χ there are cofinally many M ∈Mχ with P ∩M ≤σ P .

IDP(P ) holds if and only if for all sufficiently large regular χ and for all M ∈Mχ

with P ∈ M , P ∩M ≤σ P .
WFN(P ) holds if and only if for all sufficiently large regular χ and all M 4 Hχ

with ℵ1 ⊆ M and P ∈ M , P ∩M ≤σ P .

It is easy to check that the extended versions of SEP, IDP, and WFN agree with
the old ones on Boolean algebras. For SEP this relies on Corollary 2.2, for WFN
on Theorem 1.4.

Let us look at the partial orders ([κ]≤ℵ0 ,⊆). Assuming the consistency of some
large cardinal, it was shown in [8] that WFN([ℵω]≤ℵ0) does not follow from GCH.
However, we have

Theorem 4.3. CH implies IDP([κ]≤ℵ0) for every cardinal κ.

Proof. Assume CH and let χ be sufficiently large and regular. Let M ∈Mχ be such
that [κ]≤ℵ0 ∈ M . Then we have κ ∈ M . By Lemma 3.4, M ∩ [κ]≤ℵ0 = [κ ∩M ]≤ℵ0 .

Thus it remains to show that [κ ∩ M ]≤ℵ0 ≤σ [κ]≤ℵ0 . Suppose x ∈ [κ]≤ℵ0 . If
x 6⊆ κ ∩M , then [κ ∩M ]≤ℵ0 ↑ x = ∅. Thus, [κ ∩M ]≤ℵ0 ↑ x is either empty or has
a minimal element, namely x.

[κ ∩M ]≤ℵ0 ¹ x always has a maximal element, namely x ∩M . This finishes the
proof of the theorem. ¤

This theorem can be regarded as a parallel of Theorem 3.1. It follows that,
assuming the consistency of some large cardinal, it is consistent that there is a
partial order that has the IDP, but not the WFN.

5. Complete Boolean algebras satisfying SEP

Just as the WFN, SEP is hereditary with respect to order retracts. A partial
order P is an order retract of a partial order Q if there are order preserving maps
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e : P → Q and f : Q → P such that f ◦ e = idP . If P and Q are Boolean algebras
and e and f are (Boolean) homomorphisms, then we call P a retract of Q.

Lemma 5.1. Let P and Q be partial orders such that P is an order retract of Q.
Then SEP(Q) implies SEP(P ).

Proof. Let χ be large enough and M 4 Hχ. Suppose M ∩Q ≤σ Q and P, Q ∈ M .
We show P ∩M ≤σ P .

Since M knows that P is a retract of Q, M contains order preserving maps
e : P → Q and f : Q → P such that f ◦ e = idP . Let p ∈ P . Since Q ∩M ≤σ Q,
there is a countable set C ⊆ Q ∩M such that C is cofinal in Q ∩M ¹ e(p).

Claim. f [C] is cofinal in P ∩M ¹ p.
Let q ∈ P ∩ M ¹ p. Since e(q) ∈ Q ∩ M ¹ e(p), there is c ∈ C such that

e(q) ≤ c ≤ e(p). Now q ≤ f(c) ≤ p, which proves the claim.
By the same argument, P ∩M ↑ p has a countable coinitial subset. This implies

SEP(P ). ¤

If P is a complete lattice and P embeds into Q via e, then there is a map f :
Q → P with f ◦ e = idP , namely the map defined by f(q) = sup{p ∈ P : e(p) ≤ q}
for all q ∈ Q. Thus, a complete lattice which embeds into a partial order Q with
SEP(Q) also has the property SEP.

Note that if A is a complete Boolean algebra and A embeds into B in the Boolean
algebraic sense, then A is a retract of B by Sikorski’s extension criterion. If A is
an infinite complete Boolean algebra, then A has a maximal antichain of size ℵ0

and P(ω) embeds into A, again by Sikorski’s extension criterion. Since P(ω) is
complete, it is a retract of A.

It follows that SEP(P(ω)) holds if there is any infinite complete Boolean algebra
A with SEP(A). Note that for this it is not necessary to use Sikorski’s criterion;
our statement about complete lattices suffices.

While SEP(P(ω)) is consistent with (but not a theorem of) ZFC, SEP(P(ω1))
fails. We prove this in a series of lemmas. Together with Lemma 5.1 this will imply
that all complete Boolean algebras A with SEP(A) satisfy the c.c.c. It should
be pointed out that the proof of ¬WFN(P(ω1)) given in [7] also works for SEP.
However, we believe that our argument is simpler.

In the following χ always denotes a sufficiently large regular cardinal.

Lemma 5.2. a) ¬SEP(ω2 + 1)
b) If SEP(A) holds, then A does not have a chain of order type ω2.

Proof. For a) note that for each M ∈Mχ, ω2 ∩M is an ordinal of cofinality ℵ1. It
follows that for each α ∈ ω2 \M , (ω2 + 1) ∩M ¹ α has uncountable cofinality. In
particular, (ω2 + 1) ∩M 6≤σ ω2 + 1.

For b) let A be a Boolean algebra such that ω2 embeds into A. Clearly, ω2 + 1
also embeds into A. But ω2 +1 is a complete lattice. Thus ω2 +1 is an order retract
of A. Now ¬SEP(A) follows from Lemma 5.1 together with part a). ¤

Lemma 5.3. ¬SEP(P(ω1)/[ω1]≤ℵ0)
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Proof. By Lemma 5.2, it suffices to show that P(ω1)/[ω1]≤ℵ0 has a chain of order-
type ω2.

For f, g ∈ ωω1
1 let f <∗ g if and only if {α < ω1 : f(α) ≥ g(α)} is countable.

If (fγ)γ<ω2 is a <∗-increasing sequence in ωω1
1 , then ({(α, β) ∈ ω1 × ω1 : β ≤

fγ(α)})γ<ω2 gives rise to a strictly increasing sequence in P(ω1 × ω1)/[ω1 × ω1]≤ℵ0

of order type ω2. It is thus sufficient to construct a <∗-increasing sequence of order
type ω2 in ωω1

1 . But this is easy using the natural diagonalization argument to get
an <∗-upper bound for any set F ⊆ ωω1

1 of size ≤ ℵ1. ¤

Lemma 5.4. ¬SEP(P(ω1))

Proof. Let M ∈Mχ. Suppose P(ω1) ∩M ≤σ P(ω1). We show that

(P(ω1)/[ω1]≤ℵ0) ∩M ≤σ P(ω1)/[ω1]≤ℵ0 .

This suffices for the lemma since together with Lemma 5.3 it implies that there
are not cofinally many N ∈ Mχ with P(ω1) ∩ N ≤σ P(ω1). Note that (P(ω1) ∩
M)/([ω1]≤ℵ0 ∩M) is essentially the same as (P(ω1)/[ω1]≤ℵ0)∩M since M includes
a cofinal subset of [ω1]≤ℵ0 , namely the countable ordinals.

Let a ∈ P(ω1). Let C be a cofinal subset of P(ω1) ∩M ¹ a. Let D be the set
of all classes modulo [ω1]≤ℵ0 of elements of C and let a be the class of a modulo
[ω1]≤ℵ0 .

Claim. D is cofinal in
(
(P(ω1)/[ω1]≤ℵ0) ∩M

)
¹ a.

Let b ∈ P(ω1) ∩ M be such that b \ a is countable. Let α < ω1 be such that
b\α ⊆ a. Since α ∈ M , b\α ∈ M . Therefore, there is c ∈ C such that b\α ⊆ c ⊆ a.
The claim clearly follows from this. This finishes the proof of the lemma. ¤

Let A be a complete Boolean algebra not satisfying the c.c.c. Since A is complete,
A has an maximal antichain of size ℵ1. This antichain gives rise to an embedding
of the algebra of finite-cofinite subsets of ω1 into A. Since A is complete, this
embedding extends to all of P(ω1) by Sikorski’s extension criterion. Since P(ω1) is
complete, it follows that P(ω1) is a retract of A. Using Lemma 5.1 this gives

Corollary 5.5. Let A be a complete Boolean algebra. If SEP(A) holds, then A

satisfies the c.c.c.

6. An example in ZFC

In this section we show in ZFC that there is a Boolean algebra A which satisfies
SEP(A) but not IDP(A). Our construction shows some similarities with various
constructions of thin-tall Boolean algebras as, for example, in [3].

Definition 6.1. Let Eℵ2
ℵ1

= {α < ω2 : cf(α) = ℵ1}. For all α ∈ Eℵ2
ℵ1

fix an
increasing sequence (δα

β )β<ω1 which is cofinal in α and consists of successor ordinals.
For S ⊆ Eℵ2

ℵ1
let AS be the Boolean algebra defined as follows: Let AS

0 = {0, 1}.
Suppose α < ω2 is a limit ordinal and AS

β has already been defined for all β < α.
Let AS

α =
⋃

β<α AS
β . Now suppose AS

α has been defined and α ∈ ω2 \ S. Let
AS

α+1 = AS
α(xα) where xα is independent over AS

α. Suppose that AS
α has already
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been defined and α ∈ S. Let AS
α+1 = AS

α(xα) where xα 6∈ AS
α, AS

α ¹ xα is generated
by {xδα

β
: β < ω1} and AS

α ¹ −xα is {0}. Finally let AS =
⋃

α<ω2
AS

α.

Fix a sufficiently large regular cardinal χ. Recall that for every M ∈ Mχ,
ω1 ⊆ M and thus, M ∩ ω2 ∈ ω2.

Lemma 6.2. Let X ⊆ Hχ be of size ℵ1. Then CX = {M∩ω2 : M ∈Mχ∧X ⊆ M}
includes an ℵ1-club of ω2, that is, an unbounded set which is closed under limits of
subsets of cofinality ℵ1.

Proof. By recursion, we define an increasing sequence (Mα)α<ω2 in Mχ such that

(i) X ⊆ M0,
(ii) for all α < ω2, α ∈ Mα, and
(iii) if α < ω2 is a limit ordinal of cofinality ℵ1, then Mα =

⋃
β<α Mβ .

This construction can be carried out since Mχ is cofinal in [Hχ]ℵ1 and closed under
unions of chains of length ω1. Let C = {ω2 ∩Mα : α < ω2}. Then C is unbounded
in ω2 by (ii) and closed under limits of subsets of cofinality ℵ1 by (iii). By (i),
C ⊆ CX . ¤

From Lemma 6.2 we get

Lemma 6.3. Let S be a stationary subset of ω2 such that S ⊆ Eℵ2
ℵ1

. Then for
cofinally many M ∈Mχ we have ω2 ∩M ∈ S.

Proof. Let X ∈ [Hχ]ℵ1 . By Lemma 6.2, the set CX includes an ℵ1-club C of ω2.
Let C be the closure of C, i.e., C together with all limit points of C. Then C is club
in ω2 and C = C ∩Eℵ2

ℵ1
. Since S is stationary and a subset of Eℵ2

ℵ1
, C ∩ S = C ∩ S

is non-empty and thus, there is M ∈Mχ such that X ⊆ M and M ∩ ω2 ∈ S. ¤

Using Lemma 6.3, we can show that for a suitably chosen set S, the Boolean
algebra AS constructed above satisfies SEP but not IDP.

Theorem 6.4. There is a Boolean algebra A with SEP(A) but not IDP(A).

Proof. Fix two disjoint stationary subsets S0 and S1 of ω2 with S0 ∪S1 = Eℵ2
ℵ1

. Let
A = AS1 .

Claim 1: SEP(A)
Let M ∈ Mχ be such that α = M ∩ ω2 ∈ S0 and A ∈ M . Then A ∩M = AS1

α .
Since α 6∈ S1 and by the construction of AS1 , AS1

α ≤σ A. This proves the claim
since there are cofinally many M ∈ Mχ with M ∩ ω2 ∈ S0 and A ∈ M by Lemma
6.3.

Claim 2: ¬ IDP(A)
By Lemma 6.3, there is M ∈ Mχ such that α = M ∩ ω2 ∈ S1 and A ∈ M . As

above, A ∩M = AS1
α . By the construction of AS1 , AS1

α 6≤σ A. In other words, M

witnesses the failure of IDP(A). ¤
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7. SEP(P(ω)) does not imply IDP(P(ω))

In this section we use the idea of the proof of Theorem 6.4 to construct a model of
set theory where SEP(P(ω)) holds while IDP(P(ω)) fails. Our forcing construction
is related to Shelah’s oracle chain condition forcing [13] and to the innocuous forcing
iterations introduced by Just [12]. In particular, the proof of Lemma 7.3 given below
relies of the fact that certain tails of our forcing iteration are what is called harmless
in [12].

Theorem 7.1. It is consistent that SEP(P(ω)) holds but IDP(P(ω)) fails.

Proof. Suppose the ground model V satisfies CH and let S0 and S1 be as in the
proof of Theorem 6.4. For each α ∈ Eℵ2

ℵ1
let (δα

β )β<ω1 be as in Definition 6.1.
Our strategy is to perform a finite support iteration of c.c.c. forcings over V

of length ω2 where we add only Cohen reals most of the time. However, at stage
α ∈ S1 we add a new subset xα of ω such that the Cohen reals added at the stages
δα
β , β < ω1, are almost contained in xα. Note that we consider the Cohen reals to

be subsets of ω. This construction should be viewed as the forcing version of the
construction in the proof of Theorem 6.4.

We now define the iteration (Pα, Qα)α<ω2 . The underlying sets of the Qα’s will
be absolute, but not the orders. Thus we will not define each Qα as a Pα-name but
as the underlying set of Qα in V , also named Qα, together with a Pα-name ≤̇α for
the order on Qα.

For all α 6∈ S1 let Qα be Cohen forcing, i.e., Fn(ω, 2). Let ≤̇α be the canonical
name for the usual order on Fn(ω, 2), i.e., reverse inclusion. For α ∈ S1 and β < ω1

let ẋδα
β

be a Pδα
β +1-name for the Cohen real added by Qδα

β
. Set

Qα = {(f, F ) : f ∈ <ω2, F ∈ [{δα
β : β ∈ ω1}]<ℵ0}

and let ≤̇α be a name for a relation ≤ on Qα such that (f, F ) ≤ (f ′, F ′) if and only
if f ′ ⊆ f , F ′ ⊆ F , and for all δ ∈ F ′, if n ∈ ẋδ ∩ dom(f \ f ′), then f(n) = 1.

As usual, for each α < ω2 let Pα be the finite support iteration of the Qβ ,
β < α, where each Qα = (Qα, ≤̇α) is considered as a Pα-name for the appropriate
partial order. Let P be the direct limit of the Pα, α < ω2. For convenience, by
the absoluteness of the elements of the Qα’s, we may assume that the elements of
each Pα and of P are elements of

∏
β<ω2

Qβ with finite support. For each condition
p ∈ P let supt(p) be its support.

Note that P is c.c.c. since the Qα’s are σ-centered. Let G be P -generic over V .
For α < ω2 let Gα = G ∩ Pα.

The easier part of the proof of the theorem is to show that in V [G], IDP(P(ω))
fails. To see this, we need

Lemma 7.2. For α ∈ S1, V [G] |= P(ω) ∩ V [Gα] 6≤σ P(ω).

Proof. We argue in V [G]. Let α ∈ S1. Note that P(ω) ∩ V [Gα] ≤σ P(ω) if and
only if (P(ω) ∩ V [Gα])/fin ≤σ P(ω)/fin.
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For y ∈ P(ω) let ȳ be the equivalence class of y modulo fin. Let x be the subset
of ω generically added by Qα.

Claim. (P(ω)∩V [Gα])/fin ¹ x̄ is generated by the classes modulo fin of the Co-
hen reals {xδα

β
: β < ω1} added by the Qδα

β
’s. In particular, (P(ω)∩V [Gα])/fin 6≤σ

P(ω)/fin.
It follows from the construction of Qα that for all β < ω1, x̄δα

β
≤ x̄. Let a ∈

P(ω)∩V [Gα]. Suppose that a is not almost included in the union of a finite subset
of {xδβ

α
: β < ω1}. Then for every n ∈ ω the set of conditions in Qα which force

that there is m ≥ n such that m ∈ a but m 6∈ x is easily seen to be dense in Qα.
It follows that a is not almost included in x. This shows the claim and finishes the
proof of Lemma 7.2. ¤

By Lemma 6.3, in V there is M ∈Mχ containing P such that α = M ∩ω2 ∈ S1.
Now M [G] ∩ ω2 = α since P is c.c.c. If ẋ ∈ M is a P -name for a subset of ω, then
M also contains a nice P -name ẏ for the same subset of ω. By c.c.c., ẏ only uses
countably many conditions from P . These conditions are already contained in Pβ

for some β < α. Since V satisfies CH and since Pβ ∈ M (and thus Pβ ⊆ M), ẏ ∈ M

by Lemma 3.4. It follows that P(ω) ∩ M [G] = P(ω) ∩ V [Gα]. Therefore, M [G]
shows that P(ω) does not satisfy IDP in V [G].

To see that SEP(P(ω)) holds in V [G] we need

Lemma 7.3. If α < ω2 and α 6∈ S1, then V [G] |= P(ω) ∩ V [Gα] ≤σ P(ω).

Proof. By Lemma 3.2, it is sufficient to show that for α ∈ ω2 \ S1 every real in
V [G] \ V [Gα] is contained in a Cohen extension of V [Gα].

Let α ∈ ω2 \ S1. Let x ∈ P(ω), but x 6∈ V [Gα]. Then there is an P -name ẋ ∈ V

for x. By c.c.c., we may assume that ẋ uses only countably many conditions from
P . Our plan is to find Pẋ ⊆ P such that

(1) Pα ⊆ Pẋ and Pα is completely embedded in Pẋ,
(2) ẋ is an Pẋ-name,
(3) Pẋ is completely embedded in P , and
(4) the quotient Pẋ : Gα is equivalent to Fn(ω, 2).

This suffices for the lemma. For suppose Pẋ is as above. It is not hard to see
that (3) implies that Pẋ : Gα is completely embedded in P : Gα. Note that by (1),
it is reasonable to consider Pẋ : Gα. By (2), ẋ can be regarded as a Pẋ : Gα-name.
Thus by (4), x is contained in a Cohen extension of V [Gα] and the lemma follows.

It remains to construct Pẋ and to show that it has the required properties. For
a condition p ∈ P let

supt(p) = supt(p) ∪
⋃
{F : ∃β ∈ supt(p) ∩ S1∃f(p(β) = (f, F ))}.

Let
X = α ∪

⋃
{supt(p) : ẋ uses the condition p}

and Pẋ = {p ∈ P : supt(p) ⊆ X}.
Claim. Pẋ has the properties (1)–(4).
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(1) Pα ⊆ Pẋ follows from the definitions. Pẋ can be viewed as finite support
iteration which has Pα as an initial segment. Thus Pα is completely embedded in
Pẋ.

(2) It follows from the definitions that ẋ is an Pẋ-name.
(3) We have to show the following:

(i) ∀p, q ∈ Pẋ(p ⊥Pẋ
q ⇒ p ⊥P q),

(ii) ∀p ∈ P∃q ∈ Pẋ∀r ∈ Pẋ(r ≤ q ⇒ r 6⊥P p).

For (i) observe that for all p, q ∈ P with p 6⊥P q there is r ∈ P such that r ≤ p, q

and supt(r) ⊆ supt(p) ∪ supt(q). Therefore, if p, q ∈ Pẋ are compatible in P , then
they are in Pẋ.

(ii) is what really requires work. Let p ∈ P . Let q′ ∈ Pẋ be the condition with
support supt(p)∩X such that for all β ∈ (supt(p)∩X)\S1, q′(β) = p(β) and for all
β ∈ supt(p)∩X∩S1, q′(β) = (f, F ∩X) where f and F are such that p(β) = (f, F ).
q′ does not yet work for q in (ii). We have to extend it a little.

Let q be the condition with the same support as q′ such that q(β) = q′(β) for all
β ∈ supt(q′)\S1. Now fix β ∈ supt(q′)∩S1. Let f and F be such that q′(β) = (f, F )
Let m ∈ ω be such that for all γ ∈ supt(p) \ S1, dom(p(γ)) ⊆ m. Let g ∈ 2<ω be
such that m ⊆ dom(g), f ⊆ g, and g(n) = 1 for all n ∈ dom(g) \ dom(f). Now set
q(β) = (g, F ).

Subclaim. q works for (ii).
Let r ∈ Pẋ be such that r ≤ q. We have to construct a common extension s ∈ P

of p and r. As above, we build an approximation s′ of s first. For β ∈ S1 with
p(β) = (f, F ) and r(β) = (f ′, F ′) let s′(β) = (f ∪ f ′, F ∪ F ′). Note that f ∪ f ′ is a
function since by the definition of q and by r ≤ q, we even have f ⊆ f ′ whenever
β ∈ supt(r). Note that this definition makes sense if β 6∈ supt(r)∩ supt(p) since the
largest element of Qβ is simply (∅, ∅) (for β ∈ S1).

For β ∈ ω2 \S1 let s′(β) = p(β)∪ r(β). Again, p(β)∪ r(β) is a function since for
β ∈ supt(r), p(β) ⊆ r(β) by r ≤ q and the definition of q. It is easy to see that s′

extends r.
It may happen that s′ 6≤ p. However, we can extend s′ to a condition s ≤ p by

adding some Cohen conditions (deciding more of the Cohen reals involved). Let
s(β) = s′(β) for all β ∈ S1. For β ∈ S1 we have to make sure that s ¹ β forces s(β)
to be below p(β).

For all β ∈ S1 let fβ , Fβ , f ′β , and F ′β be such that s(β) = (fβ , Fβ) and p(β) =
(f ′β , F ′β). Then for all β ∈ S1 we have f ′β ⊆ fβ and F ′β ⊆ Fβ . For all δ ∈ F ′β we
want to have δ ∈ supt(s) and s(δ) ° ∀n ∈ dom(fβ) \dom(f ′β)(fβ(n) ≥ ẋδ(n)). This
can be accomplished. Just let z be a sufficiently long finite sequence of zeros and
put s(δ) = s′(δ)_z for every δ ∈ ⋃{Fβ : β ∈ supt(s′) ∩ S1}. Note that there are
only finitely many δ’s to be considered. For every β ∈ ω2 for which s(β) has not
yet been defined let s(β) = s′(β).

It is straight forward to check that s is a common extension of r and p. This
completes the proof of the subclaim and thus shows that Pẋ is completely embedded
in P .
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(4) Note that any two elements of Pẋ that agree on [α, ω2) are equivalent in
Pẋ : Gα, i.e., they will be identified in the completion of Pẋ : Gα. But since
{δβ

γ : γ ∈ ω1} ∩ α is countable for all β ∈ [α, ω2) ∩ S1 and X \ α is countable,
there are only countably many possibilities for p ¹ [α, ω2) for p ∈ Pẋ. Therefore,
the completion of Pẋ : Gα has a countable dense subset. Since below each element
of Pẋ : Gα there are two incompatible elements (in Pẋ : Gα), Pẋ : Gα is equivalent
to Fn(ω, 2). This finishes the proof of the claim and of the lemma. ¤

Since there are cofinally many M ∈ (Mχ)V with M ∩ ω2 ∈ S0 by Lemma 6.3,
the set {M [G] : M ∈Mχ ∧M ∩ ω2 ∈ S0} is cofinal in (Mχ)V [G]. As above, for all
M ∈ (Mχ)V , α = M [G]∩ ω2 = M ∩ ω2 and P(ω)∩M [G] = P(ω)∩ V [Gα]. Now it
follows from Lemma 7.3 that SEP(P(ω)) holds in V [G]. This finishes the proof of
the theorem. ¤

8. Variants of SEP

It is tempting to define a new class of partial orders by replacing “cofinally many
M ∈ Hχ” in the definition of SEP by “stationarily many M ∈ Hχ”. However, the
class of partial orders with this modified notion of SEP coincides with the class of
partial orders with the original SEP. Also, one arrives at the same notion if “there
are cofinally M ∈ Hχ” is weakened to “there is M ∈ Hχ”.

For a partial order P and a regular cardinal χ such that P ∈ Hχ let

M(P, χ) = {M ∈Mχ : P ∈ M ∧ P ∩M ≤σ P}.

Theorem 8.1. Let P be any partial order. Then for κ = max(|trcl(P )|,ℵ1) the
following are equivalent:

(1) SEP(P )
(2) There is a regular cardinal χ > κ such that M(P, χ) is stationary in [Hχ]ℵ1 .
(3) For every regular cardinal χ > κ, M(P, χ) is stationary in [Hχ]ℵ1 .
(4) There is a regular cardinal χ > 2κ such that M(P, χ) is non-empty.
(5) For every regular cardinal χ > 2κ, M(P, χ) is non-empty.

Clearly, (1) follows from (3) and implies (4). The remaining part of Theorem
8.1 is a special case of the following lemma, which does not have to do anything
with σ-embeddings. For a set A, a family F ⊆ P(A), and a regular cardinal χ with
A, F ∈ Hχ let

M(A,F , χ) = {M ∈Mχ : A,F ∈ M ∧A ∩M ∈ F}.

For a partial order P , M(P, χ) is simply M(P, {Q ⊆ P : Q ≤σ P}, χ).

Lemma 8.2. Let A be a set and F ⊆ P(A). Then for κ = max(|trcl(A)|,ℵ1) the
following are equivalent:

(1) There is a regular cardinal χ ≥ κ+ such that M(A,F , χ) is stationary in
[Hχ]ℵ1 .

(2) For every regular cardinal χ ≥ κ+, M(A,F , χ) is stationary in [Hχ]ℵ1 .
(3) There is a regular cardinal χ > 2κ such that M(A,F , χ) is non-empty.
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(4) For every regular cardinal χ > 2κ, M(A,F , χ) is non-empty.

The reason for considering κ+ and 2κ in the formulation of this lemma is that
κ+ is the least cardinal χ > ℵ1 with A ∈ Hχ and the size of Hκ+ is 2κ. The proof
of Lemma 8.2 uses two arguments: one for stepping up in cardinality and one for
stepping down. We start with decreasing cardinals. Fix A, F , and κ as in Lemma
8.2.

Lemma 8.3. Let χ, µ > κ be regular cardinals with 2<χ < µ. If M(A,F , µ) is
non-empty, then M(A,F , χ) is stationary in [Hχ]ℵ1 .

Proof. Suppose that M(A,F , χ) is not stationary in [Hχ]ℵ1 . We may assume that
χ > κ is minimal with this property. Let M ∈M(A,F , µ).

Since |Hχ|ℵ1= 2<χ < µ, we have [Hχ]ℵ1 ,M(A,F , χ) ∈ Hµ and χ is definable in
Hµ with the parameters A and F . Therefore, χ ∈ M and M knows thatM(A,F , χ)
is not stationary in [Hχ]ℵ1 .

It follows that M contains a club C of [Hχ]ℵ1 which is disjoint from M(A,F , χ).
By elementarity, M ∩ Hχ ⊆ ⋃

(C ∩ M). Since ℵ1 ⊆ M ,
⋃

(C ∩ M) ⊆ M ∩ Hχ.
Since M ∩ [M ]ℵ0 is cofinal in [M ]ℵ0 , C ∩M is countably directed. It follows that⋃

(M∩C) is the union of an increasing chain of length ω1 of elements of C. Therefore,
M ∩Hχ =

⋃
(C ∩M) ∈ C. It is easily checked that M ∩Hχ ∈Mχ.

Since A ⊆ Hχ, A ∩M ∩ Hχ = A ∩M ∈ F . Thus, M ∩ Hχ ∈ C ∩M(A,F , χ),
contradicting the choice of C. ¤

Lemma 8.4. For all regular cardinals χ, µ > κ with χ < µ, if M(A,F , χ) is
stationary in [Hχ]ℵ1 , then M(A,F , µ) is non-empty.

Proof. We use a refined Skolem hull operator to find M̃ ∈Mµ with A,F ∈ M̃ and
M̃ ∩ A ∈ F . Fix a well-ordering @ on Hµ. For α < ω1 let skα denote the Skolem
hull operator on Hµ with respect to the built-in Skolem functions of the structure
(Hµ,∈,@, A,F , skβ)β<α where A and F are considered as constants. For X ⊆ Hχ

let
sk∗(X) =

⋃
{skα(Y ) : Y ∈ X∧ |Y |≤ ℵ0 ∧ α < ω1}.

Claim. Let X ∈ [Hµ]ℵ1 be such that X ∩ [X]≤ℵ0 is cofinal in [X]≤ℵ0 . Then

(i) X ⊆ sk∗(X) and A,F ∈ sk∗(X),
(ii) |sk∗(X)|= ℵ1,
(iii) [sk∗(X)]≤ℵ0 ∩ sk∗(X) is cofinal in [sk∗(X)]≤ℵ0 , and
(iv) sk∗(X) 4 Hµ.

Moreover,

(v) for all X, Y ⊆ Hµ with X ⊆ Y , sk∗(X) ⊆ sk∗(Y ) and
(vi) if (Xα)α<δ is an increasing sequence of subsets of Hµ and X =

⋃
α<δ Xα,

then sk∗(X) =
⋃

α<δ sk∗(Xα).

For (i) let x ∈ X. By our assumptions on X, there is Y ∈ X ∩ [X]≤ℵ0 such that
{x} ⊆ Y . Now x ∈ Y ⊆ sk0(Y ) and thus x ∈ sk∗(X). This shows X ⊆ sk∗(X).
A,F ∈ sk∗(X) since A,F ∈ sk0(Y ) for every countable element Y of X.
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Statement (ii) follows from the fact that for every countable set Y ⊆ Hµ and
every α < ω1, skα(Y ) is again countable.

For (iii) let Y be a countable subset of sk∗(X). For every n ∈ ω fix αn < ω1 and
a countable set Yn ∈ X such that Y ⊆ ⋃

n∈ω skαn
(Yn). By our assumptions on X,

there is Z ∈ X ∩ [X]≤ℵ0 such that {Yn : n ∈ ω} ⊆ Z. Let β = supn∈ω(αn + 1).
Now for every n ∈ ω, skαn

(Yn) ∈ skβ(Z) by the choice of skβ . Since skβ(Z) is an
elementary submodel of Hµ and since the skαn

(Yn) are countable, for every n ∈ ω

we also have skαn
(Yn) ⊆ skβ(Z). It follows that Y ⊆ skβ(Z). Clearly, skβ(Z) is

a countable subset of sk∗(X). We are done with the proof of (iii) if we can show
skβ(Z) ∈ sk∗(X). But this is easy. Just let Z ′ ∈ X ∩ [X]≤ℵ0 be such that Z ∈ Z ′.
Now skβ(Z) ∈ skβ+1(Z ′) ⊆ sk∗(X).

For (iv) it suffices to show that for all finite subsets F of sk∗(X) there is an
elementary submodel M of Hµ such that F ⊆ M ⊆ sk∗(X). Let F be a finite subset
of sk∗(X). As before, there are β < ω1 and Z ∈ X ∩ [X]≤ℵ0 such that F ⊆ skβ(Z).
By the definition of sk∗, skβ(Z) ⊆ sk∗(X). And skβ(Z) is an elementary submodel
of Hµ.

Statements (v) and (vi) follow immediately from the definition of sk∗. This
finishes the proof of the claim.

Now consider the set

C = {M ∈ [Hχ]ℵ1 : sk∗(M) ∩Hχ = M}.

From the properties of sk∗ it follows that C is club in [Hχ]ℵ1 . Since M(X,F , χ) is
stationary, there is M ∈ C ∩M(X,F , χ). Let M̃ = sk∗(M). By the properties of
sk∗, M̃ ∈ Mχ and A,F ∈ M̃ . Moreover, M̃ ∩X = M ∩ X ∈ F . In other words,
M̃ ∈M(X,F , µ). ¤

Proof of Lemma 8.2. We start from (3). Suppose there is a regular cardinal χ >

2κ such that M(X,F , χ) is non-empty. Then, by Lemma 8.3, M(X,F , κ+) is
stationary in [Hκ+ ]ℵ1 . This implies (1).

Now suppose that (1) holds. Then there is a regular cardinal χ > κ such that
M(X,F , χ) is stationary in [Hχ]ℵ1 . By Lemma 8.4, there are arbitrarily large regu-
lar cardinals µ such thatM(X,F , µ) is non-empty. By Lemma 8.3, this implies that
M(X,F , µ) is stationary for every regular µ > κ, i.e., (2) holds. The implications
(2)⇒(4) and (4)⇒(3) are trivial. ¤

At the moment, we do not know whether a = ℵ1 follows from SEP(P(ω)). How-
ever, we can show that a variant of SEP(P(ω)) which is called SEP+−(P(ω)) here
(see below) implies a = ℵ1.

In the following let χ always denote a regular cardinal.

Definition 8.5.

M@
χ = {M :M 4 Hχ, |M | = ℵ1, and there is a well-ordering @ on M of order

type ω1 such that for every a ∈ M , @ ∩(M@a)2 ∈ M }
where M@a = {x ∈ M : x @ a}.
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Definition 8.6. Let P be a partial order.
(1) SEP+(P ) if {M ∈ M@

χ : P ∩ M ≤σ P} is cofinal in [Hχ]ℵ1 for every
sufficiently large χ.

(2) SEP+−(P ) if {M ∈M@
χ : P ∩M ≤σ P} is non-empty for a sufficiently large

χ.

For A, F , χ as in the definition of M(A,F , χ), let

M@(A,F , χ) = {M ∈M@
χ : A,F ∈ M ∧A ∩M ∈ F}.

Then it is easy to see that Lemma 8.3 with M@(A,F , χ) in place of M(A,F , χ)
also holds. As in the proof of Lemma 8.2, we obtain the following equivalence:

SEP+(P )

⇔ {M ∈M@
χ : P ∩M ≤σ P} is stationary for every sufficiently large χ

⇔ {M ∈M@
χ : P ∩M ≤σ P} is non-empty for every sufficiently large χ

Lemma 8.7. M@
χ ⊆Mχ.

Proof. Suppose that M ∈ M@
χ and @ is a well-ordering of M as in the definition

of M@
χ . For X ∈ [M ]ℵ0 let x ∈ M be such that X ⊆ M@x. Then |M@x | ≤ ℵ0 and

M@x ∈ M . This shows that [M ]ℵ0 ∩M is cofinal in [M ]ℵ0 . Hence M ∈Mχ. ¤

Lemma 8.8. Suppose that M ∈ M@
χ . Then M is internally approachable in the

sense of [4], i.e.,

(∗) M is the union of a continuously increasing chain of countable elementary
submodels (Mα)α<ω1 of M such that (Mβ)β≤α ∈ Mα+1 for all α < ω1.

Proof. Suppose that M ∈M@
χ and @ is a well-ordering of M as in the definition of

M@
χ .
Let xα ∈ M , α < ω1 be defined inductively such that

(0) M@xα
is an elementary submodel of (M,∈,@);

(1) If α is a limit ordinal then xα is the limit of xβ , β < α;
(2) If α is a successor, say α = β + 1, then xα is minimal with respect to @ such

that xβ @ xα, @ ∩ (M@xβ
)2 ∈ M@xα

and (0).

Note that, in (2), the construction is possible since @ ∩ (M@xβ
)2 ∈ M by the

definition of M ∈ M@
χ . By (0) and since (xβ)β≤α is definable in M with the

parameter @ ∩ (M@xα
)2 we have (xβ)β≤α ∈ M@xα+1 . It follows that (M@xβ

)β≤α ∈
M@xα+1 . Also M =

⋃
α<ω1

M@xα
since @ has order type ω1. Thus (M@xα

)α<ω1 is
a sequence as required in (∗). ¤

The property (∗) in Lemma 8.8 almost characterizes elements of M@
χ :

Lemma 8.9. Let <∗ be a well-ordering of Hχ of order type |Hχ |. If (Mα)α<ω1 is a
continuously increasing sequence of countable elementary submodels of (Hχ,∈, <∗)
such that (Mβ)β≤α ∈ Mα+1 for all α < ω1, then M =

⋃
α<ω1

Mα is an element of
M@

χ .
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Proof. For each x ∈ M , let αx = min{α < ω1 : x ∈ Mα+1}. Let @ be the linear
ordering on M defined by

x @ y ⇔ αx < αy ∨ (αx = αy ∧ x <∗ y).

Clearly @ is a well-ordering on M . @ has order type ω1 since every initial segment
of M with respect to @ is countable and M itself is uncountable.

Let x ∈ M . We show that @ ∩ (M@x)2 ∈ M . Let α∗ = αx + 2. In Mα∗ ,
@ ∩ (M@x)2 is definable from <∗ ∩ (Mαx+1)2 and (Mβ)β≤αx+1. By elementarity
and since <∗ ∩ (Mαx+1)2 and (Mβ)β≤αx+1 are elements of Mα∗ , it follows that
@ ∩ (M@x)2 ∈ Mα∗ ⊆ M . ¤

By Lemma 8.8 and Lemma 8.9, there are club many M 4 Hχ of size ℵ1 such
that M ∈M@

χ if and only if M is internally approachable — namely those M with
M 4 (Hχ,∈, <∗) for some fixed <∗ as above.

Lemma 8.10. M@
χ is stationary in [Hχ]ℵ1 .

Proof. Suppose that C ⊆ [Hχ]ℵ1 is closed unbounded. We show that M@
χ ∩ C 6= ∅.

Let <∗ be a well-ordering of Hχ of order type |Hχ |. Let (Mα)α<ω1 be a contin-
uously increasing chain of countable elementary submodels of (Hχ, C,∈, <∗) such
that (Mβ)β≤α ∈ Mα+1 for all α < ω1. Let M =

⋃
α<ω1

Mα. Then M ∈ M@
χ by

Lemma 8.9. Since ω1 ⊆ M , we have N ⊆ M for all N ∈ C ∩M . By elementarity
C ∩M is a directed system and M =

⋃
(C ∩M). Since |M | = ℵ1, it follows that

M ∈ C. ¤

Lemma 8.11. For a partial order P

(1) IDP(P ) implies SEP+(P );
(2) SEP+(P ) implies SEP+−(P );
(3) SEP+−(P ) implies SEP(P );

WFN(P ) ⇒ IDP(P ) ⇒ SEP+(P ) ⇒ SEP+−(P ) ⇒ SEP(P )

Proof. (1) follows from Lemma 8.7. (2) is clear from definitions. (3) follows from
Theorem 8.1. ¤

Theorem 8.12. Assume SEP+−(P(ω)). Then a = ℵ1.

Proof. Let χ be sufficiently large and M∗ ∈M@
χ be such that P(ω)∩M∗ ≤σ P(ω).

Since |M∗ | = ℵ1, it is enough to show that there is a MAD-family ⊆ M∗.
Let @ be a well-ordering of M∗ as in the definition of M@

χ . By Lemma 8.8, there
is an increasing sequence (Mα)α<ω1 of countable elementary submodels of M∗ such
that

⋃
α<ω1

Mα = M and (Mβ)β≤α ∈ Mα+1 for all α < ω1.
Let (aα)α<ω1 be such that

(1) {an : n ∈ ω} is a partition of ω with (an)n∈ω ∈ M0;
(2) For α ≥ ω, aα ∈ [ω]ℵ0 ∩ Mα+1 is minimal (with respect to @) with the

following property:
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(i) aα is almost disjoint to each aβ , β < α.

(ii) ∀x ∈ [ω]ℵ0∩Mα

(
∀u ∈ [α]<ℵ0 ( |x\⋃β∈u aβ | = ℵ0 ) → | aα∩x | = ℵ0

)
.

Notice that inHχ the sequence (aβ)β<α is definable from the parameters (an)n<ω,
(Mβ)β<α, and @ ∩Mα. Since these parameters are elements of Mα+1, we have
(aβ)β<α ∈ Mα+1.

By (1) and (2)(i), {aβ : β < ω1} is pairwise almost disjoint. To show that it
is maximal, suppose that it were not. Then there is some b ∈ [ω]ℵ0 such that b is
almost disjoint to all the aα’s. Let {bn : n ∈ ω} ⊆ P(ω) ∩M∗ be a countable set
generating (P(ω) ∩M∗) ↑ b. Let α∗ < ω1 be such that {bn : n ∈ ω} ⊆ Mα∗ . Since
aα∗ and b are almost disjoint there is n∗ ∈ ω such that | bn∗ ∩aα∗ | < ℵ0. By (2)(ii),
there is a u ∈ [α]<ℵ0 such that | bn∗ \

⋃
β∈u aβ | < ℵ0. As b ⊆ bn∗ , it follows that

| b \⋃
β∈u aβ | < ℵ0. But this is a contradiction to the choice of b. ¤

Irreversibility of the implications in Lemma 8.11 cannot be proved in ZFC:

Lemma 8.13. Assume CH. Then Mχ = M@
χ . In particular, for every partial

order P , SEP(P ) if and only if SEP+(P ).

Proof. M@
χ ⊆ Mχ by Lemma 8.7. To show Mχ ⊆ M@

χ , suppose M ∈ Mχ. Then
by Lemma 3.4 [M ]ℵ0 ⊆ M . Let @ be an arbitrary well-ordering of M of order type
ω1. Then, for every x ∈ M , M@x and @ ∩ (M@x)2 are countable subsets of M and
hence, by CH, elements of M . This shows that M ∈M@

χ . ¤

Even under ¬CH, SEP and SEP+ can be equivalent for partial orders with an
“ℵ2-version” of IDP.

Let us say that a partial order P has the ℵ2-IDP if for any sufficiently large χ and
M 4 Hχ, if |M | = ℵ2, P ∈ M and [M ]ℵ1∩M is cofinal in [M ]ℵ1 then P ∩M ≤ℵ2 P

where P ≤ℵ2 Q is defined just as in Definition 4.1 with “countable” there replaced
by “of cardinality < ℵ2”.

Note that every partial order of cardinality ≤ ℵ2 has the ℵ2-IDP.

Theorem 8.14. Assume ¤ω1 . For any partial order P with the ℵ2-IDP, SEP(P )
if and only if SEP+(P ).

For the proof of Theorem 8.14 we use the fact that the class of partial orders
with SEP is closed under ≤σ-suborders.

Lemma 8.15. For partial orders P and Q, if SEP(P ) and Q ≤σ P then SEP(Q).

Proof. Fix a sufficiently large regular χ. It is enough to show that, for every M 4
Hχ with P, Q ∈ M , if P ∩ M ≤σ P then Q ∩ M ≤σ Q. To see this, let x0 ∈ Q

and we show that Q ∩M ¹ x0 has a countable cofinal subset. (That Q ∩M ↑ x0

has a countable coinitial subset can be proved similarly.) By P ∩ M ≤σ P there
is a countable set X ⊆ (P ∩ M) ¹ x0 such that X is cofinal in (P ∩ M) ¹ x0.
By M |= Q ≤σ P and elementarity, for every x ∈ X we can find Xx ∈ M such
that M |= “ Xx is cofinal in Q ¹ x ”. Then Xx ⊆ M and Xx is a countable cofinal
subset of (Q ∩ M) ¹ x. Letting Y =

⋃
x∈X Xx, we have Y ⊆ (Q ∩ M) ¹ x0 and
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Y is countable. Y is a cofinal subset of (Q ∩M) ¹ x0: If y ∈ (Q ∩M) ¹ x0, then
in particular y ∈ (P ∩ M) ¹ x0. Hence there is x ∈ X such that y ≤ x. Since
M |= y ∈ Q ¹ x, there is x′ ∈ Xx ⊆ Y such that y ≤ x′. ¤

Note that the proof above actually shows that each of the variants of SEP con-
sidered above (and also IDP and WFN) is closed under ≤σ-suborders.

Proof of Theorem 8.14. If |P | < ℵ2, then the assertion of the theorem is trivial.
Hence we may assume |P | ≥ ℵ2. If SEP+(P ) then SEP(P ) by Lemma 8.11 (2). So
we assume SEP(P ) and prove SEP+(P ).

Let χ be sufficiently large and let X be an arbitrary element of [Hχ]ℵ1 . We show
that there is M ∈M@

χ such that X ⊆ M and P ∩M ≤σ P .
Fix a well-ordering <∗ of Hχ of order type |Hχ |. Let C = {Cα : α ∈ Lim(ω2)}

be a ¤ω1-sequence.
Let (Mα)α<ω2 and (aα,γ)α<ω2, γ<ω1 be sequences defined inductively so that they

satisfy the following conditions:

(0) (Mα)α<ω2 is a continuously increasing sequence of elementary submodels of
(Hχ,∈, <∗) of cardinality ℵ1.

(1) ω1, X ⊆ M0, P , C ∈ M0.
(2) For all α < ω2, (aα,γ)γ<ω1 is an enumeration of Mα.
(3) For all β < ω2 we have (Mα)α≤β , <∗∩(

⋃
α≤β Mα)2, (aα,γ)α≤β, γ<ω1 ∈ Mβ+1.

(4) For all α < ω2, P ∩Mα+1 ≤σ P .

Let M =
⋃

α<ω2
Mα. Then P ∩M ≤ℵ2 P by the ℵ2-IDP of P . From (4) it follows

that P ∩M ≤σ P . Hence by Lemma 8.15, SEP(P ∩M). It follows from Lemma
6.3 that there is α∗ ∈ Eω2

ω1
such that P ∩Mα∗ ≤σ P ∩M ≤σ P . Since X ⊆ Mα∗ by

(1), the proof is complete if we can show the following:
Claim. Mα∗ ∈M@

χ .
Let C = Cα∗ . C is a cofinal subset of α∗ of order type ω1. Let (ξα)α<ω1 be

strictly increasing enumeration of C. For each limit ordinal α < ω1 there is β < α∗

such that ξα ∈ Mβ . Since Cξα
= {ξγ : γ < α} by coherence and since Cξα

∈ Mβ ,
we have {ξγ : γ < α} ∈ Mβ ⊆ Mα∗ . Hence

(∗) for all α < ω1, {ξγ : γ < α} ∈ Mα∗ .

Let ϕ : ω1 → ω1 × ω1; α 7→ (ϕ0(α), ϕ1(α)) be a surjection such that ϕ ∈ M0.
We now define a continuously increasing sequence (Nα)α<ω1 of countable ele-

mentary submodels of Mα∗ such that

(5) aξϕ0(α),ϕ1(α), (Nβ)β≤α ∈ Nα+1 for all α < ω1;
(6) Nα+1 is the countable elementary submodel of Mα∗ with Nα+1 ∈ Mα∗

which is minimal with respect to <∗ satisfying (5).

That this construction is possible can be seen as follows: By (∗) and since the
predicate “Nα 4 Mα∗” can be replaced by “Nα 4 Mη” for a sufficiently large
ordinal η < α∗, each initial segment of (Nα)α<ω1 is definable in Hχ with parameters
in Mα∗ and hence is an element of Mα∗ .
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By (5)
⋃

α<ω1
Nα = Mα∗ and (Nβ)β≤α ∈ Nα+1 for all α < ω1. From Lemma 8.9

it follows that Mα∗ ∈ M@
χ . This finishes the proof of the claim and hence of the

theorem. ¤

Corollary 8.16. Suppose that ¤ω1 holds and P(ω) has the ℵ2-IDP (in particular
this is the case if 2ℵ0 = ℵ2). Then SEP(P(ω)) implies a = ℵ1.

Proof. Under the assumptions, if SEP(P(ω)) then we have SEP+(P(ω)) by Theo-
rem 8.14. Hence a = ℵ1 by Theorem 8.12. ¤

9. Conclusion

As we have mentioned in the introduction, large cardinals are necessary to con-
struct a Boolean algebra A with the IDP but without the WFN. In this sense, IDP
and WFN are pretty much the same and it is not surprising that all the inter-
esting set theoretic consequences of WFN(P(ω)) that have been discovered so far
already follow from IDP(P(ω)). Looking at the proofs of the known consequences
of WFN(P(ω)) or IDP(P(ω)), it turns out that most of the time SEP(P(ω)) is
enough to derive these consequences. An exception could be the equality a = ℵ1,
which is not known to follow from SEP(P(ω)), but which follows from IDP(P(ω)).
The natural open question is whether SEP(P(ω)) + a > ℵ1 is consistent.

One nice feature of SEP(P(ω)) is that it holds in Cohen models. This does not
have to be true for WFN(P(ω)) (assuming large cardinals). We do not know about
IDP(P(ω)). As it turns out, SEP(P(ω)) is relatively robust under slight changes
of the definition. It does not matter whether we demand the existence of a single
elementary submodel of Hχ with certain properties, or of stationarily many, or of
cofinally many. Therefore it is interesting to know that the strongest variant of SEP
along these lines, IDP, is strictly stronger than SEP. In some sense, we get the best
possible result here. There is (in ZFC) a Boolean algebra with SEP but without
IDP and it is consistent that P(ω) itself is an example.
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