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In this note, we show that the theorems in Z. Balogh [2] proved there

under Axiom R are already provable under Fodor-type Reflection Princi-

ple (FRP) introduced in [9] or under a slight extension of FRP still much

weaker than Axiom R.

1 Introduction

The purpose of this note is to show that the theorems in [2] proved there under

Axiom R are already provable under Fodor-type Reflection Principle (FRP)

introduced in [9] or a slight extension of it still much weaker than Axiom R.

In Section 2, we begin with checking the proof of a slight extension of Dow’s

theorem mentioned in [2]. This is used in Section 3 to show that Balogh’s

theorem on reflection of metrizability (Theorem 2.2 in [2]) is a consequence of

the reflection theorem on metrizability proved under FRP by Fuchino, Juhász,

Soukup, Szentmiklóssy and Usuba (Theorem 4.3 in [9]).

In Section 4, we prove that Balogh’s reflection theorem on paracompactness

(Theorem 1.6 in [2]) holds under FRP.

In Section 5, we consider another reflection theorem on paracompactness by

Balogh (Theorem 1.4 in [2]) for which we need a slight strengthening of FRP

which is provable from Axiom R. The status of the axiom we use here is still

largely unknown (see Problems 2, 3) except that it is still much weaker than

Axiom R.

In the following, we consider the topology of a space X as given either by an

open base τ of X or by the family O of all open sets of X. We write X = (X, τ)

or X = (X,O). If O is generated from the open base τ we write O = Oτ .

The approach X = (X, τ) with an open base τ is more convenient in con-

nection with the method of elementary submodels. This is because, for an open

base τ of a topological space X, τ ∩M is also an open base of X ∩M for an ele-

mentary submodel M of H(θ) for a sufficiently large cardinal θ with (X, τ) ∈ M

while O∩M for such M does not make up the set of all open sets of a topology

on X ∩M in general.

Here, we call a cardinal θ sufficiently large if it is regular and 2|X |, 22
|X |

,

· · · < θ for all (small) sets X relevant in the context following the declaration

of θ being “sufficiently large”.

A set M of cardinality ℵ1 is internally approachable if M is the union of a

continuously increasing chain ⟨Mα : α < ω1⟩ of countable subsets of M such

that Mα ∈ Mα+1 for all α < ω1. If we consider M as an ∈-structure, we assume
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also that each Mα is an elementary submodel of M = ⟨M,∈⟩. For an internally

approachable M , the sequence ⟨Mα : α < ω1⟩ as above is called internally

approachable filtration of M .

A set M is ω-bounding if [M ]ℵ0 ∩ M is cofinal in [M ]ℵ0 with respect to

⊆. In modern terminology, the term ‘‘internally cofinal’’ is prefered

to ‘‘ω-bounding’’. In the following we shall also use this expression.

For a regular uncountable θ any internally approachable M ≺ H(θ) is

internally cofinal. It follows that there are cofinally may internally

cofinal M ≺ H(θ) of cardinality ℵ1.

A space is said to be (countably) compact here if it is Hausdorff and satisfies

the usual (countably) compactness condition. So a compact space is normal.

Note also that

(1.1) a first countable and countably compact space is regular. C-0

[ Suppose that X is first countable and countably compact. For a closed

F ⊆ X and p ∈ X \ F, we have to show that there are O0, O1 ∈ O such

that F ⊆ O0, p ∈ O1 and O0 ∩O1 = ∅.
Let B be a countable open neighborhood base of p. For each x ∈ F,

let Ox ∈ O and Ux ∈ B be such that x ∈ Ox and Ox ∩ Ux = ∅. For each

U ∈ B, let OU =
∪
{Ox : x ∈ X, Ux = U}. Then OU is an open set and

OU∩U = ∅. Since F is countably compact and {OU : U ∈ B} is a countable

open cover of F, there is a finite B′ ⊆ B such that {OU : U ∈ B′} already

covers F. Then O0 =
∪
{OU : U ∈ B′} and O1 = ∩B′ are as desired. ]

Following the definition in Engelking [6], a Lindelöf space is a regular topo-

logical space X with the Lindelöf property:

every open cover of X has a countable subcover.

Similarly to the case of compact spaces, Lindelöf spaces are normal ([6, Theorem

3.8.2]).

For a property P of a topological space and a cardinal κ, we say that a given

topological space X is ≤κ-P (<κ-P , respectively) if every subspace Y of X of

cardinality ≤ κ (< κ, respectively) has the property P . In this notation, we

shall always put ‘≤’ or ‘<’ to the cardinal κ since very often “κ P” or “κ-P”

is already used for some other notions (this is e.g. the case with “ℵ1 meta-

Lindelöf”). X is said to be almost P if X is < |X |- P , that is, if every subspace

of X of cardinality < |X | has the property P .

The following notation and the lemma have been introduced in [9].
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For a family F of sets, let ∼F be the intersection relation on F , i.e. let F ∼F

G if and only if F ∩G ̸= ∅ for F , G ∈ F , and let ≈F be the transitive closure

of ∼F . An argument in elementary cardinal arithmetic shows the following:

Lemma 1.1. Let µ be an uncountable regular cardinal and F a family of sets

such that, for all F ∈ F , we have | {G ∈ F : F ∼F G} | < µ. Then every

equivalence class of ≈F has cardinality < µ.

2 Dow’s theorem

A. Dow [4] proved (in ZFC) that every countably compact ≤ℵ1-metrizable space

is metrizable. Z. Balogh [1] noted that practically the same proof of Dow’s

theorem as stated in [4] shows that every countably compact ≤ℵ1-P space is

metrizable where P here is the property: there exists a point countable open

base. In this section we will check the details of the proof of this assertion

(Theorem 2.8).

The following elegant proof of Proposition 2.1 is taken from Dow [4].

Recall that the weight w(X) of a topological space X = ⟨X,O⟩ is the

minimal cardinality of an open base of X

(w(X) = min{| B | : B ⊆ O is an open base of X}). Thus X has countable

weight if and only if X is second countable. The density of X is the

minimal cardinal of a dense subset of X (d(X) = min{|D | : D ⊆ X is dense in X}).
We have d(X) ≤ w(X) [if B is an open base of X then for any choice function

f ∈
∏

B, f ′′B is a dense subset of X.]. For a metrizable space X we have

d(X) = w(X) [Suppose that d is a metric on X which induces the topology

of X. If D ⊆ X is dense then {B(d, 1
n) : d ∈ D, n ∈ ω \ 1} is an open

base of the topology of X.].

Lemma A2.1. Suppose that X = ⟨X,O⟩ is a toplogical space with w(X) ≥ ℵ0. For

an arbitrary open base B of X there is a subset B1 of B of cardinality w(X) which is

an open base of X.

Proof. Suppose that B is an open base of X and B0 is an open base of X

of cardinality w(X).

(a2.1) For B0 B1 ∈ B0 with B0 ⊆ B1, if there is B ∈ B such that B0 ⊆ xA-0

B ⊆ B1 then let BB0,B1 ∈ B be one of such B. Otherwise let BB0,B1 =

∅.

Let

(a2.2) B1 = {BB0,B1 : B0, B1 ∈ B0, B0 ⊆ B1} \ {∅}.
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Clearly B1 ∈ [B]≤w(X).

Claim A2.1.1. B1 is an open base of X.

⊢ Suppose that x ∈ X and O ∈ O be such that x ∈ O. Since B0 is an

open base of X, there is B1 ∈ B0 such that x ∈ B1 ⊆ O. Since B is

also an open base of X, there is B ∈ B such that x ∈ B ⊆ B1. Again

since B0 is an open base of X, there is B0 ∈ B0 such that x ∈ B0 ⊆ B.

By (a2.1), we have x ∈ B0 ⊆ BB0,B1 ⊆ B1 ⊆ O. ⊣ (Claim A2.1.1)

(Lemma A 2.1)

Note that by Arhangelskii’s Theorem, all Hausdorff spaces with a countable

base are of cardinality ≤ 2ℵ0.

Proposition 2.1 (Juhász [12]). For any space X if every subspace of X of

cardinality ≤ ℵ1 has countable weight then X has countable weight.

Proof. Suppose that X = (X,O) is as above. Let M be an internally cofinal

elementary submodel of H(θ) for a sufficiently large θ such that |M | =
ℵ1 and ⟨X,O⟩ ∈ M.

Claim 2.1.1. O ∩M (or, more precisely, the family {O ∩ (X ∩M) : O ∈ O ∩M})
makes up an open base of the subspace topology of X ∩M .

⊢ Suppose that x ∈ X ∩ M and x ∈ O ∈ O. It is enough to show that

there is O′ ∈ τ ∩M such that x ∈ O′ ∩M ⊆ O ∩M.

Since | (X∩M)\O | ≤ ℵ1, (X∩M)\O as a subspace of X has countable

weight. Hence there is a countable D ⊆ (X ∩ M) \ O which is dense in

(X∩M)\O. By the internal cofinality of M there is D′ ∈ [X∩M ]ℵ0∩M
such that D ⊆ D′.

Now, since D′∪{x} is a countable subspace of X, there is a countable

B ⊆ O such that {O ∩ (D′ ∪ {x}) : O ∈ B} is an open base of the subspace

topology of D′∪{x}. By elementarity, we may assume that B ∈ M. Since

B is countable we have B ⊆ O ∩M. In particular, there is O′ ∈ B ⊆ M

such that x ∈ O′ and

(a2.3) O′ ∩D = (O′ ∩ (D′ ∪ {x})) ∩D ⊆ O ∩ (D′ ∪ {x}) = ∅. C-1

We have O′ ∩ M ⊆ O ∩ M: Otherwise O′ ∩ ((X ∩ M) \ O) ̸= ∅. Then there

would be some d ∈ D ∩ O′ since D is dense in (X ∩ M) \ O. This is a

contradiction to (a2.3). ⊣ (Claim 2.1.1)

By the assumption on X, by Claim 2.1.1 and by Lemma 2.1, there is a

B ∈ [O∩M ]ℵ0 such that B makes up an open base of the subspace topology
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of X ∩ M. Let B′ ∈ [O]ℵ0 ∩ M be such that B ⊆ B′. B′ is also an open

base of X ∩ M. It follows that M |= “B′ is an open base of X ”. By

elementarity, it follows that B′ is really an open base of X. Since B′

is countable this finishes the proof. (Proposition 2.1)

Lemma 2.2. A countably compact space X is metrizable if and only if X has

countable weight.

Proof. Suppose that X is countably compact and metrizable. We show that

X has countable weight. Let d be a metric on X which induces the topology

of X. Let θ be a sufficiently large regular cardinal and M ≺ H(θ) be

countable such that X, d ∈ M. It is enough to show that X is separative

and for that it is enough to show that X ∩M is dense in X.

Suppose that this is not the case. then there is x∗ ∈ O = X\X ∩M.

Let

(a2.4) U = {O} ∪ {U : U ∈ M, U is open in X such that x∗ ̸∈ U}. B-0-0

Claim 2.2.1. U is an open covering of X.

⊢ Suppose that y ∈ X ∩M. Let ε ∈ Q ⊆ M be such that 0 < ε ≤ d(y, x∗)

and let z ∈ B(y, 12ε) ∩ M. Then y ∈ U = B(z, 12ε) ∈ M but x∗ ̸∈ U. Thus

y ∈ U ∈ U and we have y ∈
∪
U. ⊣ (Claim 2.2.1)

By countable compactness of X, there are U0, ...,Uk−1 ∈ U \ {O} such

that O ∪ U0 ∪ · · · ∪ Uk−1 = X. Since U0 ∪ · · · ∪ Uk−1 ⊇ X ∩M ⊇ X ∩ M, we

have

(a2.5) M |=“ {U0, ...,Uk−1} is an open covering of X ”.

Hence, by elementarity, {U0, ...,Uk−1} should be really an open covering

of X. But this is a contradiction to x∗ ̸∈ U0 ∪ · · · ∪ Uk−1.

Conversely, if X is countable compact and of countable weight then it

is compact and regular (see (1.1)). Hence X is metrizable by Urysohn’s

Metrization Theorem. (Lemma 2.2)

Corollary A2.2. For a topological space X the following are equivalent:

(a) X is countably compact and w(X) ≤ ℵ0.

(b) X is countably compact and metrizable.

(c) X is compact and metrizable.

Proof. The equivalence of (a) and (b) is Lemma 2.2. (c) ⇒ (b) is trivial.

Since countable compactness and countable weight implies (full) compactness,

(b) (⇔ (a)) implies (c). (Corollary A 2.2)
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Lemma 2.3. For a topological space X and a subspace Y ⊆ X, we have w(Y ) ≤
w(X). For any y ∈ Y , χ(y, Y ) ≤ χ(y,X).

Proof. Suppose that {Oα : α < κ} is an open base of X (neighborhood base

of y in X resp.). Then {Oα ∩ Y : α < κ} is an open base of Y (neigh-

borhood base of y in Y resp.). (Lemma 2.3)

Lemma 2.4. Suppose that X = (X, τ), Y ⊆ X, x ∈ Y and that X is regular

at x. For B ⊆ Oτ , if {U ∩ Y : U ∈ B} is a neighborhood base of x in Y then

{U ∩ Y : U ∈ B} is a neighborhood base of x in Y . In particular, we have

χ(x, Y ) = χ(x, Y ).

Proof. Suppose that O ∈ Oτ with x ∈ O. We have to show that there is U ∈ B
such that U ∩ Y ⊆ O ∩ Y .

Now, since X is regular at x, there is O′ ∈ Oτ such that x ∈ O′ and O′ ⊆ O.

Let U ∈ B be such that U ∩ Y ⊆ O′ ∩ Y . Then we have

U ∩ Y ⊆ U ∩ Y = U ∩ Y ⊆ O′ ∩ Y = O′ ∩ Y ⊆ O ∩ Y .

This shows that B is also a neighborhood base of x in Y . Thus χ(x, Y ) ≥
χ(x, Y ). We also have “≤” by Lemma 2.3. (Lemma 2.4)

If X is metrizable then it has a point countable open base. [This can

be seen from the well-known fact that if X is metrizable then X is para-

compact. From this it is easy to see that a metrizable space has a σ-locally

finite open base. But such a base is locally countable.]

Lemma 2.5 (Proposition 2.3 in [4]). If a space X = (X, τ) has a point countable

base then, for a sufficiently large θ and M ≺ H(θ) with ⟨X, τ⟩ ∈ M , τ ∩M is

a base for (each point of) X ∩M .

Proof. Suppose that X = (X, τ), θ and M are as above. By elementarity, there

is a point countable base B of X with B ∈ M .

Suppose that

(2.1) x ∈ X ∩M x-0

and B0 ∈ B is a neighborhood of x. Let O0 ∈ τ and C0 ∈ B be such that

x ∈ C0 ⊆ O0 ⊆ B0. By (2.1), there is y ∈ C0 ∩ (X ∩ M) = C0 ∩ M . Since

there are only countably many B ∈ B with y ∈ B, all such B’s are in M . In

particular, we have C0, B0 ∈ M .

Again by elementarity, we have M |= ∃O ∈ τ(C0 ⊆ O ⊆ B0). Hence there

is an O1 ∈ τ ∩ M such that x ∈ C0 ⊆ O1 ⊆ B0. This shows that τ ∩ M is a

local base for x. (Lemma 2.5)
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Lemma 2.6 (Proposition 2.4 in [4]). Suppose that X = (X, τ) is a countably

compact space. If M ≺ H(θ) is countable with ⟨X, τ⟩ ∈ M and τ ∩M is not a

base for (X, τ) then there is z ∈ X ∩M such that τ ∩M is not a base at z.

Proof. If X ∩M = X then the assertion is just trivial. So assume that there is

x ∈ X \X ∩M . Suppose, toward a contradiction, that τ ∩M is an open base

at each z ∈ X ∩M . Then we can choose Oz ∈ τ ∩M such that z ∈ Oz and

(2.2) x ̸∈ Oz x-1

for each z ∈ X ∩M . Since X ∩M is countably compact and {Oz : z ∈
X ∩M} ⊆ τ ∩M is a countable open covering of X ∩M , there are z1,..., zn ∈
X ∩M for some n ∈ ω such that X ∩M ⊆ Oz1 ∪ · · · ∪ Ozn . It follows that

M |= “Oz1 , ...,Ozn covers X”. By elementarity it follows that Oz1 , ...,Ozn really

covers X. But this is a contradiction to (2.2). (Lemma 2.6)

Using the lemmas above, we can prove the following theorem of Mǐsčenko:

Theorem 2.7 (Mǐsčenko). A countably compact (Hausdorf) space with a point

countable open base has a countable open base .

Proof. Suppose that θ is a sufficiently large regular cardinal and M is

countable with X ∈ M ≺ H(θ). Then τ∩M is an open base for X ∩M by

Lemma 2.5. By Lemma 2.6 it follows that τ ∩ M is an open base of X.

But τ ∩M is countable. (Theorem 2.7)

Miščenko’s Theorem improves Corollary A 2.2:

Corollary A2.3. For a toplogical space X the following are equivalent:

(a) X is countably compact (Hausdorff) with a point countable open base.

(b) X is compact metrizable.

Proof. (a) ⇒ (b): Suppose that X is countably compact (Hausdorff) with

a point countable open base. Then w(X) ≤ ℵ0. By Lemma 2.2, it follows

that X is metrizable. By Corollary A 2.2, X is compact metrizable.

(b) ⇒ (a) is trivial (see the remark before Lemma 2.5.)

(Corollary A 2.3)

We can even prove the following. Note that a countably compact space with

a point countable open base is regular as noted in (1.1). Thus the following

Theorem 2.8 indeed generalizes Mǐsčenko’s Theorem.

This theorem is also a (slight?) generalization of the original Dow’s Theorem

since every metrizable space has a σ-locally finite open base (this follows,
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e.g., from A.H. Stone’s theorem which states every metrizable space is paracompact).

A σ-locally finite open base is apparently point countable. The fact that

every metrizable space has a σ-locally finite open base is also a part of

the Bin-Nagata-Smirnov Metrization Theorem:

Theorem A.2.4. (Bing-Nagata-Smirnow Metrization Theorem) A Hausdorff space

X is metrizable if and only if X is regular and it has a σ-locally finite open base.

.

Theorem 2.8. (A (slight?) strengthening of Theorem 3.1 in Dow [4].

See also [2]) If X is a countably compact space such that every subspace of

X of cardinality ≤ ℵ1 has a point countable open base, then X is metrizable.

Proof. Suppose, for contradiction, that there is a countably compact space

X = (X, τ) such that

(2.3) all subspaces of X of cardinality ≤ ℵ1 have a point countable open base B-6

but

(2.4) X is not metrizable. B-7

Let θ be sufficiently large and let M be an internally approachable elemen-

tary submodel of H(θ) of cardinality ℵ1 such that ⟨X, τ⟩ ∈ M .

Since w(X) > ℵ0 (by (2.4) and Lemma 2.2), there is a Z ∈ [X]ℵ1 such that

w(Z) > ℵ0 by Juhász’ Theorem (Proposition 2.1). By elementarity, there is

such a Z ∈ M .

We have w(Z) > ℵ0 by Lemma 2.3. Since Z is countably compact, Z is

non metrizable by Lemma 2.2. Thus we may assume without loss of generality

X = Z. For each x ∈ X ∩ M , Z ∪ {x} has cardinality ℵ1 and hence it has a

point countable open base by (2.3). In particular, χ(x, Z ∪ {x}) = ℵ0. Since

Z∪{x} ∈ M , it follows by Lemma 2.5 that τ ∩M is an open base of (X∩M, τ).

Thus

(2.5) (X ∩M, τ ∩M) has a point countable open base. x-1-0

Let ⟨Mα : α < ω1⟩ be an internally approachable filtration of M such that

Z, ⟨X, τ⟩ ∈ M0.

Since w(X) > ℵ0 and Mα is countable, τ ∩ Mα is not an open base of

(X, τ) for any α < ω1. Thus, by Lemma 2.6, there is z ∈ X ∩Mα such that

τ ∩Mα is not an open base at z. Since Mα ∈ Mα+1, there is such z in Mα+1 by

elementarity.

Let N be a countable elementary submodel of H(θ) such that
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(2.6) X, Z, M , ⟨Mα : α < ω1⟩ ∈ N . x-2

Let α∗ = ω1 ∩N . By the remark above there is z∗ ∈ Mα∗+1 such that

(2.7) z∗ ∈ X ∩Mα∗ and τ∩Mα∗ does not contain any neighborhood base x-3

at z∗.

On the other hand, by (2.6), we have

(τ ∩M) ∩N =
∪
{τ ∩Mβ : β < α∗} = τ ∩Mα∗ .

Hence by (2.5) and Lemma 2.5, τ ∩ Mα∗ is a neighborhood base for any z ∈
X ∩Mα∗ . This is a contradiction. (Theorem 2.8)

Corollary A2.5. (Dow’s Metrization Theorem) A counably compact (Hausdorff)

space X is metrizable if and only if every subspace Y of X of cardinality < ℵ2 is

metrizable.

Proof. If X is metrizable then all subspaces Y of X are metrizable. In

paticular all subspaces of X of cardinality < ℵ2 are metrizable.

Suppose now that X is countably compact (Hausdorff) and all subspace

Y of X of cardinality < ℵ2 are metrizable. Then by the remark above Theorem

A 2.4, all of such Y have a point countable base. By Theorem 2.8, it follows

that X is metrizable. (Theorem A 2.5)

The condition ‘‘of cardinality < ℵ2’’ is optimal. First let me cite

the following theorem for reference:

Theorem A.2.6. (Mazurkiewicz-Sierpiński 1920, see [milliet]) Any count-

able and compact (Hausdorff) space X is isomorphic to a countable ordinal with the

order topology.

By Theorem 2.8, it follows that all countable and compact Hausdorff spaces

are metrizable since all countable ordinals are embeddable in R. Actually

more general statement holds:

Lemma A2.7. Any countable linear ordering X = (X,≤X) can be embedded order-

preservingly and continuously in [0, 1]. In particular, every countable topological space

with linear order topology is metrizable.

Proof. Let ⟨rn : n ∈ ω⟩ be a sequence of positive real numbers such that∑
n∈ω rn = 1.

For a countable lenear ordering X = (X,≤X), let f : X → ω be a 1-1

mapping. Let g : X → R be defined by
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(2.8) g(x) =
∑

n∈Ix rn B-8

for x ∈ X where Ix = {n ∈ ω : n = f(y) for some y <X x}. Then g is a

order-preserving continuous embedding of X in R. (Lemma A 2.7)

Example A2.9. (in ZFC) There is a compact, first countable non-metrizable space

X such that all countable subspace of X are metrizable.

Proof. Let X = [0, 1]×{0, 1} be with the order topology for the lexicographical

ordering on [0, 1]× {0, 1}.

Claim A2.7.1. X is compact.

⊢ X as a linearly ordered topological space is Hausdorff. Suppose that

U ⊆ OX is an open covering of X. Without loss of generality we may assume

that each I ∈ U is an open interval with the form

(a2.6) I = (⟨aI , iI⟩, ⟨bI , jI⟩)X B-9

where (x, y)X for x, y ∈ X denotes the interval {z ∈ X : x <X z <X y} in

X.

Let V0 = {(aI , bI) : I ∈ U}. Suppose x ∈ [0, 1] \
∪
V0. then this can

happen if ⟨x, 0⟩ ∈ (⟨aI , iI⟩, ⟨x, 1⟩)X and ⟨x, 1⟩ ∈ (⟨x, 0⟩, ⟨bI′ , jI′⟩)X for some I,

I ′ ∈ U where ⟨bI , jI⟩ = ⟨x, 1⟩ and ⟨aI′ , iI′⟩ = ⟨x, 0⟩. Thus

(a2.7) V1 = V0 ∪ {(aI , bI′) : I, I ′ ∈ U , bI = aI′} B-10

is an open covering of [0, 1].

By compactness of [0, 1] there is a finite U0 ⊆ U such that{(aI , bI) : I ∈
U0} ∪ {(aI , bI′) : I, I ′ ∈ U0, bI = aI′} is a covering of [0, 1]. U0 is a finite

covering of X. ⊣ (Claim A2.7.1)

Claim A2.7.2. X is first countable.

⊢ ⟨0, 0⟩ and ⟨1, 1⟩ are isolated in X and hence {{⟨0, 0⟩}} and {{⟨1, 1⟩}} are

neighborhood bases of ⟨0, 0⟩ and ⟨1, 1⟩ respectively.

{(⟨r− 1
n , 1⟩, ⟨r, 1⟩)X : n ∈ ω\1} is a countable neighborhood base of ⟨r, 0⟩

for all r ∈ (0, 1]. {(⟨r, 0⟩, ⟨r+ 1
n , 0⟩)X : n ∈ ω \ 1} is a countable neighbor-

hood base of ⟨r, 1⟩ for all r ∈ [0, 1). ⊣ (Claim A2.7.2)

Claim A2.7.3. w(X) = 2ℵ0. In particular, X is not metrizable.

⊢ Suppose that B is an open base of X. For each r ∈ [0, 1] there is

Br ∈ B such that ⟨r, 0⟩ ∈ Br ⊆ (⟨0, 0⟩, ⟨r, 1⟩)X. Since Br’s r ∈ [0, 1] should

be distinct to each other we have | B | ≥ 2ℵ0. It is also easy to see that

there is an open base B of cardinality ≤ 2ℵ0.
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Since compact metrizable space must be of countable weight by Corollary

A 2.2, it follows from Claim A 2.7.1 that X is not metrizable. ⊣ (Claim A2.7.3)

By Lemma A 2.7, all countable subspace of X are metrizable. Thus this

X is as desired. (Example A 2.7)

3 Balogh’s metrization theorem under FRP

The following two theorems were proved in S. Fuchino, I. Juhasz, L. Soukup,

Z. Szentmiklóssy and T. Usuba [9].

Recall that a topological space X is meta-Lindelöf if every open cover

B of X has a point countable open refinement.

Theorem 3.1 (Fuchino, Juhász, Soukup, Szentmiklóssy and Usuba, [9, The-

orem 4.2]). Suppose that X is a locally countably compact and meta-Lindelöf

space. If X is ≤ ℵ1-metrizable then it is actually metrizable.

Theorem 3.2 (Fuchino, Juhász, Soukup, Szentmiklóssy and Usuba [9, Theorem

4.3]). (1) Assume that FRP(κ) holds for every regular cardinal κ with ω1 < κ ≤
λ and X is a locally separable, countably tight space with L(X) ≤ λ. If X is

≤ ℵ1-meta-Lindelöf then X is actually meta-Lindelöf.

(2) Under FRP every locally separable, countably tight and ≤ ℵ1-meta-

Lindelöf space is meta-Lindelöf.

Here, for a regular cardinal κ ≥ ω1, FRP(κ) (The Fodor-type Reflection

Principle for κ) is the following statement:

FRP(κ) : For any stationary S ⊆ Eκ
ω = {α < κ : cf(α) = ω} and mapping

g : S → [κ]≤ℵ0 there is I ∈ [κ]ℵ1 such that

(3.1) cf(I) = ω1; c-0

(3.2) g(α) ⊆ I for all α ∈ I ∩ S; c-1

(3.3) for any regressive f : S ∩ I → κ such that f(α) ∈ g(α) for all c-2

α ∈ S ∩ I, there is ξ∗ < κ such that f−1 ′′{ξ∗} is stationary in

sup(I).

FRP is the axiom which asserts that FRP(κ) holds for all regular cardinal

κ ≥ ℵ2. Note that we can only demand FRP(κ) for a regular κ since FRP(κ)

for a singular κ is easily shown to be inconsistent (see Lemma 2.2 in [9]).

In [9], it is shown that FRP(κ) for a regular cardinal κ follows from RP(κ)

which is a weakening of of Axiom R for κ. Thus FRP is a consequence of
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Axiom R. On the other hand, it is also proved in [9] that FRP(κ) is preserved

by c.c.c.-extension of the universe. Thus FRP is strictly weaker than Axiom R.

Here, the Reflection Principle RP(κ) and Axiom R for κ (Notation: AR(κ))

are defined as follows:

RP(κ) : For any stationary S ⊆ [κ]ℵ0 , there is an I ∈ [κ]ℵ1 such that

(3.4) ω1 ⊆ I; RP-0

(3.5) cf(I) = ω1; RP-1

(3.6) S ∩ [I]ℵ0 is stationary in [I]ℵ0 . RP-2

AR(κ) : For any stationary S ⊆ [κ]ℵ0 and ω1-club T ⊆ [κ]ℵ1 , there is I ∈ T
such that S ∩ [I]ℵ0 is stationary in [I]ℵ0

where T ⊆ [X]ℵ1 for an uncountable set X is said to be ω1-club (or tight and

unbounded in Fleissner’s terminology in [7]) if

(3.7) T is cofinal in [X]ℵ1 with respect to ⊆ and tight-0

(3.8) for any increasing chain ⟨Iα : α < ω1⟩ in T of length ω1, we have tight-1∪
α<ω1

Iα ∈ T .

Axiom R is the assertion that AR(κ) holds for all cardinals κ ≥ ℵ2 and RP

is the assertion that RP(κ) holds for all cardinals κ with κ ≥ ℵ2.

It is easy to see that AR(κ) implies RP(κ). R.E. Beaudoin [3] proved that

Axiom R follows from MA+(σ-closed).

By the theorems above and by Theorem 2.8, we can prove the following

improvement of Theorem 2.2 in Z. Balogh [2] where the assertion (2) of the

following theorem was proved under Axiom R.

Theorem 3.3. (1) Let λ be a cardinal such that for each regular cardinal κ

with ω1 < κ ≤ λ we have FRP(κ). If X is a regular locally countably compact

space with L(X) ≤ λ and

(3.9) every subspace of X of cardinality ≤ ℵ1 has a point countable open base, x-4

then X is metrizable.

(2) Assume FRP. If X is a regular locally countably compact space satisfy-

ing (3.9), then X is metrizable.

Proof. We prove only (1) since (2) clearly follows from (1).

Let X be as in (1). Then every point of X has a countably compact neigh-

borhood, and this neighborhood is compact metrizable by Theorem 2.8. By
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Lemma 2.2, it follows that X is both locally separable and countably tight1.

Also X is ≤ ℵ1-meta-Lindelöf by (3.9). Hence X is meta-Lindelöf by Theorem

3.2 (1). By Theorem 3.1, it follows that X is metrizable. (Theorem 3.3)

Theorem 3.3 implies the following theorem which can be also derived directly

form Theorem 3.2:

Theorem 3.4 (Fuchino, Juhász, Soukup, Szentmiklóssy and Usuba [9]). (1) Let

λ be a cardinal such that for each regular cardinal κ with ω1 < κ ≤ λ we

have FRP(κ). If X is a locally countably compact and ℵ1-metrizable space with

L(X) ≤ λ then X is metrizable.

(2) Assume FRP. Then every locally countably compact and ℵ1-metrizable

space is metrizable.

In S. Fuchino, H. Sakai, L. Soukup and T. Usuba [11], it is proved that the

assertion of Theorem 3.2, (1) as well as Theorem 3.4, (1) are equivalent to:

FRP(≤λ) : FRP(κ) holds for each regular cardinal κ with ω1 < κ ≤ λ

over ZFC. Thus also we obtain the following:

Theorem 3.5. The assertion of Theorem 3.3, (1) is equivalent to FRP(≤λ)

over ZFC.

4 Reflection of paracompactness in countably tight lo-

cally Lindelöf spaces

In this section we prove that Theorem 1.6 in Balogh [2] is already provable

under FRP (Theorem 4.6).

Recall that a space X is locally Lindelöf if every point x of X has an open

neighborhood O such that O is a Lindelöf subspace of X.

Lemma 4.1. For a topological space X = (X,O), if F ⊂ P(X) is locally finite,

then we have
∪
{Y : Y ∈ F} =

∪
F .

Proof. The inclusion “⊆” is clear. To show the other inclusion “⊇”, suppose

x ∈ ∪F . Let O ∈ O be such that x ∈ O and F0 = {Y ∈ F : O ∩ Y ̸= ∅} is

finite. Then we have x ∈
∪

F0 =
∪
{Y : Y ∈ F0}. Thus x ∈

∪
{Y : Y ∈ F}.
(Lemma 4.1)

1Recall that a topological space X is countably tight if, for every x ∈ X and Y ⊆ X,

x ∈ Y always implies that there is a Y ′ ∈ [Y ]≤ℵ0 such that x ∈ Y ′.
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Lemma 4.2. For a topological space X = (X,O), if F ⊆ P(X) is locally finite,

then F = {Y : Y ∈ F} is also locally finite.

Proof. For x ∈ X, let O ∈ O be such that x ∈ O and F0 = {Y ∈ F : O∩Y ̸=
∅} is finite. For any y ∈ O if y ∈ Y for some Y ∈ F then O ∩ Y ̸= ∅, i.e.
Y ∈ F0. So we have {Y ∈ F : O ∩ Y ̸= ∅} = F0. (Lemma 4.2)

Recall that a topological space X is paracompact if X is Hausdorff

and every open cover of X has a locally finite open refinement. Morita’s

theorem states that every Lindelöf space is paracompact.

The following characterization of paracompactness of locally Lindelöf spaces

was already mentioned in [2]. In the proof of Theorem 4.6 we actually only use

the trivial direction “(a) ⇒ (b)” of this characterization. Nevertheless the

characterization explains the need to look at open partitions of a given locally

Lindelöf space to prove the paracompactness of the space.

A topological space X is para-Lindelöf if any open covering of X has a

locally countable open refinement. We have the following implication2 for any

topological space:

metrizable → paracompact → metacompact

↓ ↓
para-Lindelöf → meta-Lindelöf

Lemma 4.3. Suppose that X is a locally Lindelöf space3. Then the following

are equivalent:

(a) X can be partitioned into open Lindelöf subspaces.

(b) X is paracompact.

(c) X is para-Lindelöf.

Proof. “(a) ⇒ (b)”: Suppose that X is partitioned into open Lindelöf sub-

spaces. By Morita’s theorem each subspace in the partition is paracompact.

Hence it follows that the whole space is paracompact as well.

“(b) ⇒ (c)” is trivial.

2A topological space X is meta-Lindelöf if any open covering of X has a point countable

open refinement. The implication “metrizable → paracompact” is Stone’s Theorem (see e.g.

[6], p.280).

3We assume that a Lindelöf space is a regular space with Lindelöf property. A topological

space X is locally Lindelöf if for every x ∈ X there is an open set x ∈ O ⊆ X such that O is

a Lindelöf space in the supspace topology. In particular, a locally Lindel”of space is locally

regular.
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“(c) ⇒ (a)”: Suppose now that X is a locally Lindelöf para-Lindelöf space.

We show that there is a partition of X into clopen Lindelöf subspaces. Let

A ⊆ O be an open covering of X such that Y is Lindelöf for all Y ∈ A. Let B be

a locally countable open refinement of A. Then elements of B′ = {Y : Y ∈ B}
are Lindelöf and B′ is still locally countable by Lemma 4.2.

Claim 4.3.1. For any Y ∈ B′, {Z ∈ B′ : Y ∩ Z ̸= ∅} is countable.

⊢ Suppose Y ∈ B′. Let S = {Z ∈ B′ : Y ∩ Z ̸= ∅}. For each y ∈ Y , let

Oy ∈ O be such that y ∈ Oy and {Z ∈ B′ : Oy ∩ Z ̸= ∅} is countable. Note

that we can find such Oy since B′ is locally finite. Since Y is Lindelöf, there is

a countable Y0 ⊆ Y such that {Oy : y ∈ Y0} is a cover of Y . Then we have

S ⊆ {Z ∈ B′ : Oy ∩ Z ̸= ∅ for some y ∈ Y0} and the right side of the inclusion

is easily seen to be countable. ⊣ (Claim 4.3.1)

Let ∼B′ be the intersection relation4 on B′ and ≈B′ be its transitive closure.

Let E be the set of all equivalence classes of ≈B′ . By the claim above, it follows

that each e ∈ E is countable. Thus
∪
e is Lindelöf and

∪
e is closed by Lemma

4.1. Since {
∪

e : e ∈ E} is a partition of X, each
∪
e for e ∈ E is also open.

Thus {
∪

e : e ∈ E} is a partition of X into clopen Lindelöf subspaces of X.

(Lemma 4.3)

A similar proof shows the following:

Lemma 4.4. For a locally (separable & Lindelöf) space X, the following are

equivalent:

(a) X has an open partition into Lindelöf spaces;

(b) X is paracompact;

(c) X is meta-Lindelöf.

Proof. “(a) ⇒ (b)”: If A is an open partition of X into Lindelöf spaces then

each Y ∈ A is paracompact by Morita’s theorem. Hence X is also paracompact.

“(b) ⇒ (c)” is trivial.

“(c) ⇒ (a)”: Suppose that X is meta-Lindelöf. Let A be an open covering

of X consisting of separable Lindelöf subspaces and A′ be its point countable

open refinement. Note that elements of A′ are still separable as open subspaces

of separable spaces.

Claim 4.4.1. For each Y ∈ A′, the set {Z ∈ A′ : Y ∩ Z ̸= ∅} is coutable.

4That is, for Y , Y ′ ∈ B′, Y ∼B′ Y ′ ⇔ Y ∩ Y ′ ̸= ∅.
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⊢ Let D ∈ [Y ]ℵ0 be a dense subset of Y . Let B = {Z ∈ A′ : Z ∩D ̸= ∅}. B is

countable, sinceA′ is point countable. We show that B = {Z ∈ A′ : Y ∩Z ̸= ∅}.
“⊆” is clear. To show “⊇”, suppose that Z ∈ A′ is such that Y ∩Z ̸= ∅. Then
as a nonempty open subset of Y , Y ∩ Z contains some element of D which

means that Z ∈ B. ⊣ (Claim 4.4.1)

Let ≈A′ be the transitive closure of the intersection relation on A′. Then

each equivalence class e ⊆ A′ with respect to ≈A′ is countable by Claim 4.4.1.

Since
∪

e is also closed.
∪

e =
∪
{Z : Z ∈ e}. Since each Z, Z ∈ e is Lindelöf

as a closed subspace of a Lindelöf space, it follows that
∪

e is also Lindelöf.

Thus {
∪

e : e ∈ A′/ ≈A′} is a partition of X as in (a). (Lemma 4.4)

Lemma 4.5 (Proposition 1.1 in Balogh [2]). If a topological space X = (X,O)

is locally Lindelöf, then B = {V ⊆ X : V is an open Lindelöf subspace of X}
forms an open base of X.

Proof. Note that a closed subspace of a Lindelöf space is also Lindelöf. Hence,

for x ∈ X and x ∈ O ∈ O, there is a U ∈ O such that x ∈ U ⊆ O and U

is Lindelöf. Since U is a Lindelöf space and thus normal, we can construct a

sequence ⟨Oi : i ∈ ω⟩ of open sets such that

(4.1) x ∈ O0 ⊆ O0 ⊆ O1 ⊆ O1 ⊆ · · · ⊆ U .

Let O∗ =
∪

i∈ω Oi. Then O∗ is an open neighborhood of x and O∗ ⊆ O. O∗

is Lindelöf since we can also represent O∗ as the countable union of Lindelöf

spaces, namely as O∗ =
∪

i∈ω Oi. (Lemma 4.5)

Z. Balogh [2] proved the following theorem under Axiom R.

Theorem 4.6 (FRP). Suppose that X is locally Lindelöf and countably tight.

If every open subspace Y of X with L(Y ) ≤ ℵ1 is paracompact then X itself is

paracompact.

Proof. A variation of the proof of Theorem 4.3 in S. Fuchino, I. Juhasz, L.

Soukup, Z. Szentmiklóssy and T. Usuba [9] will do.

It is enough to prove that the following (4.2) κ holds for all cardinal κ by

induction on κ:

(4.2)κ For any countably tight and locally Lindelöf space X with L(X) ≤ κ, if L-3

every open subspace of X of Lindelöf degree ≤ ℵ1 is paracompact then

X itself is also paracompact.
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For κ ≤ ℵ1, (4.2) κ trivially holds. So assume that κ > ℵ1 and that (4.2) λ holds

for all λ < κ. Let X be as in (4.2) κ. We have to show that X is paracompact.

Case 1. κ is regular.

Let {Lα : α < κ} be a cover of X consisting of Lindelöf subspaces of

X. By Lemma 4.5, we may assume that each Lα is open. For β < κ, let

Xβ =
∪
{Lα : α < β}. By L(X) = κ, we have X ̸= Xβ for every β < κ. We

may also assume that the continuously increasing sequence ⟨Xβ : β < κ⟩ of

open set in X is strictly increasing.

Let S = {α < κ : Xα ̸= Xα}.

Claim 4.6.1. S is non-stationary in κ.

⊢ We prove first the following weakening of the claim:

Subclaim 4.6.1.1. S ∩ Eκ
ω is non-stationary in κ.

⊢ For a contradiction, suppose that S ∩ Eκ
ω were stationary. For each α ∈

S ∩ Eκ
ω, let pα ∈ Xα \Xα and let h(α) ∈ κ be such that pα ∈ Lh(α). Since X is

countably tight, there is cα ∈ [α]ℵ0 such that pα ∈
∪

β∈cα Lβ.

Now, by FRP, there is I ∈ [κ]ℵ1 such that

(4.3) cf(I) = ω1 ; L-4

(4.4) h(α) ∈ I for all α ∈ S ∩ Eκ
ω ∩ I ; L-5

(4.5) cα ⊆ I for all α ∈ S ∩ Eκ
ω ∩ I ; L-6

(4.6) if f : S ∩Eκ
ω ∩ I → κ is such that f(α) ∈ cα for all α ∈ S ∩Eκ

ω ∩ I, then L-7

there is ξ∗ ∈ I with sup(f−1({ξ∗})) = sup(I).

Let Y =
∪

β∈I Lβ . Note that, by (4.4), pα ∈ Y for all α ∈ S ∩ Eκ
ω ∩ I.

By | I | = ℵ1 and since each Lβ is open Lindelöf subspace ofX, it follows that

Y is open and L(Y ) ≤ ℵ1. Hence, by the assumption on X, Y is a paracompact

subspace of X. Thus the open cover L = {Lβ : β ∈ I} of Y has a locally finite

open refinement E . Since each Lβ (β ∈ I) is Lindelöf, it follows that, for each

β ∈ I,

(4.7) {E ∈ E : E ∩ Lβ ̸= ∅} is countable. L-8

[Since E is locally finite, for each p ∈ Lβ, there is an open set Op such

that p ∈ Op and {E ∈ E : E ∩ Op ̸= ∅} is finite. Since Lβ is open, we

may choose Op to be a subset of Lβ. Since Lβ is Lindelöf and {Op : p ∈
Lβ} is an open cover of Lβ , there is a countable A ⊆ Lβ such that {Op :

p ∈ A} already covers Lβ. We have {E ∈ E : E ∩ Lβ ̸= ∅} = {E ∈ E : E ∩
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Op ̸= ∅ for some p ∈ A}. But the right-side of the equality is easily

seen to be countable. ]

Now, for each α ∈ S ∩ Eκ
ω ∩ I, let Eα ∈ E be such that pα ∈ Eα. Since

pα ∈
∪
{Lβ : β ∈ cα}, there is f(α) ∈ cα such that Eα ∩ Lf(α) ̸= ∅. Thus, by

(4.6), there is a ξ∗ ∈ I such that sup(f−1 ′′{ξ∗}) = sup(I). By (4.7), we have

E ⊆ Xη for all E ∈ E such that E∩Lξ∗ ̸= ∅ for some large enough η ∈ S∩Eκ
ω∩I

with f(η) = ξ∗. But, since ∅ ̸= Eη ∩ Lf(η) = Eη ∩ Lξ∗ we have pη ∈ Eη ⊆ Xη.

This is a contradiction to the choice of pη. ⊣ (Subclaim 4.6.1.1)

Let C be a club subset of κ consisting of limit ordinals such that S∩Eκ
ω∩C =

∅ and let

(4.8) D = {α ∈ C : α \ S is cofinal in α}. L-9

Clearly D is also a club subset of κ. So the following subclaim proves the claim.

Subclaim 4.6.1.2. S ∩D = ∅.

⊢ For α ∈ D ∩ Eκ
ω, we have α ̸∈ S by D ⊆ C.

For α ∈ D ∩ Eκ
>ω, suppose p ∈ Xα. By the countable tightness of X there

is β < α such that p ∈ Xβ. By (4.8), we may assume that β ∈ Eκ
ω \S. Thus we

have p ∈ Xβ = Xβ ⊆ Xα. This shows that Xα = Xα and hence α ̸∈ S.

⊣ (Subclaim 4.6.1.2)

⊣ (Claim 4.6.1)

Now let D be a club subset of κ such that D ∩ S = ∅ and let ⟨ξα : α < κ⟩
be an increasing enumeration of D ∪ {0}. Let Yα = Xξα+1 \ Xξα for α < κ.

Then {Yα : α < κ} is a partition of X into clopen subspaces. Since each Yα

is the union of < κ many Lindelöf spaces, namely Lδ \ Xξα , ξα ≤ δ < ξα+1,

we have L(Yα) < κ. It follows from the induction hypothesis that each Yα is

paracompact. Hence X itself is also paracompact.

Case 2. κ is singular.

Similarly to Case 1., let {Lα : α < κ} be a cover of X consisting of open

Lindelöf subspaces of X. Let ⟨κi : i < cf(κ)⟩ be a continuously and strictly

increasing sequence of cardinals cofinal in κ. For i < cf(κ), let Xi =
∪
{Lα :

α < κi}. By the induction hypothesis, there is a locally finite open refinement

Ci of the open cover {Lα : α < κi} of Xi for each i < cf(κ). Let C =
∪

i<cf(κ) Ci.
Let ∼C be the intersection relation on C and ≈C be its transitive closure.

Since each Ci is locally finite and each C ∈ Ci is Lindelöf, we have | {C ′ ∈ C :

C ≈C C ′} | ≤ cf(κ) < κ for all C ∈ C.
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Let E be the set of all equivalence classes of ≈C. Then, by Lemma 1.1, each

e ∈ E has cardinality ≤ cf(κ).

P = {
∪

e : e ∈ E} is a partition of X into clopen subspaces. Since each Y ∈
P is the union of ≤ cf(κ) many Lindelöf subspaces, we have L(Y ) ≤ cf(κ) < κ.

It follows that each Y ∈ P is paracompact by the induction hypothesis and

hence X is also paracompact. (Theorem 4.6)

In contrast to the reflection theorem in the last section, the following is still

open:

Problem 1. Is the assertion of Theorem 4.6 equivalent to FRP ?

5 Axiom R-like extension of FRP and a stronger reflec-

tion property of paracompactness

Similarly to the extension of RP to Axiom R, FRP(κ) for a regular cardinal

κ ≥ ℵ2 can be enhanced with the additional requirement that the reflection

point I be an element of a given ω1-club family ⊆ [κ]ℵ1 :

FRPR(κ) : For any ω1-club T ⊆ [κ]ℵ1 , stationary S ⊆ Eκ
ω and mapping g : S →

[κ]≤ℵ0 there is I ∈ T such that

(5.1) for any regressive f : S ∩ I → κ such that f(α) ∈ g(α) for all FRPR-0

α ∈ S ∩ I, there is ξ∗ < κ such that f−1 ′′{ξ∗} is stationary in

sup(I).

Similarly to FRP, let FRPR be the axiom asserting that FRPR(κ) holds for all

regular κ ≥ ℵ2.

Note that we can put the constraints (3.1) and (3.2) on I by thinning out

the ω1-club family C. Thus FRPR(κ) implies FRP(κ) for all regular κ ≥ ℵ2. The

proof of the implication “RP(κ) ⇒ FRP(κ)” in [9] can be slightly modified to

show the implication “AR(κ) ⇒ FRPR(κ)”.

Lemma A5.1. For a regular cardinal κ ≥ ℵ2, FRP
R(κ) is equivalent to the following

FRPR
• (κ):

FRPR
• (κ) : For any ω1-club T ⊆ [κ]ℵ1, stationary S ⊆ Eκ

ω and mapping g : S →
[κ]≤ℵ0 there is a continuously increasing sequence ⟨Iξ : ξ < ω1⟩ of countable

subsets of κ such that

(5.2) ⟨sup(Iξ) : ξ < ω1⟩ is strictly increasing; T-0

(5.3) each Iξ is closed with respect to g; T-1
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(5.4) sup(Iξ) ∈ Iξ+1; T-1-0

(5.5)
∪

ξ<ω1
Iξ ∈ T and T-1-1

(5.6) {ξ < ω1 : sup(Iξ) ∈ S and g(sup(Iξ)) ∩ sup(Iξ) ⊆ Iξ} is stationary T-2

in ω1.

Proof. First, assume FRPR(κ). Let T ⊆ [κ]ℵ1 be ω1-club, S ⊆ Eκ
ω be stationary

and g : S → [κ]ℵ0. Without loss of generality, we may assume that g(α) ∩
α ̸= ∅ for all α ∈ S. Without loss of generality, we may assume that all

elements of T have cofinality ω1.

Let I ∈ T be as in the definition of FRPR(κ) for these S and g. Then,

by (3.2), there is a filtration ⟨Iξ : ξ < ω1⟩ of I, that is, a continuously

increasing sequence ⟨Iξ : ξ < ω1⟩ of subsets of I of cardinality < | I |
with I =

∪
ξ<ω1

Iξ, satisfying (5.2), (5.3) and (5.4).

We show that ⟨Iξ : ξ < ω1⟩ satisfies (5.6) as well. Suppose not. Then

{ξ < ω1 : sup(Iξ) ̸∈ S or g(sup(Iξ)) ∩ sup(Iξ) ̸⊆ Iξ} includes a club set ⊆ ω1.

It follows that S ∩ I \ S0 is non stationary in sup(I), where

S0 = {α ∈ S ∩ I : α = sup(Iξ) for some ξ < ω1 and g(α) ∩ α ̸⊆ Iξ}.

Let f : S ∩ I → I be defined by

(a5.1) f(α) =

{
min((g(α) ∩ α) \ Iξ) if α ∈ S0 and α = sup(Iξ);

min(g(α)) otherwise.
T-3

Then f is regressive and f(α) ∈ g(α) for all α ∈ S∩I. By the choice of

I, there is an α∗ ∈ I such that f−1 ′′{α∗} is stationary in sup(I). In particular,

S0 ∩ f−1 ′′{α∗} is stationary in sup(I). Let ξ∗ ∈ ω1 be such that α∗ ∈ Iξ∗

and let β ∈ S0 ∩ f−1 ′′{α∗} be such that β > sup(Iξ∗). Let η < ω1 be such

that β = sup(Iη). Then α∗ ∈ Iξ∗ ⊆ Iη. Since β ∈ S0, we have f(β) ̸∈ Iη by

the definition (a5.1) of f. It follows that f(β) ̸= α∗. This is a contradiction

to the choice of β.

Now, assume FRPR
• (κ). Suppose that T ⊆ [κ]ℵ1 is ω1-club, S ⊆ Eκ

ω is

stationary and g : S → [κ]ℵ0. Let ⟨Iξ : ξ < ω1⟩ be as in the definition

of FRPR
• (κ) and let I =

∪
ξ<ω1

Iξ.

We claim that this I satisfies the conditions in the definition of FRP(κ).

It is clear that I satisfies (3.1) and (3.2). To see that it also satisfies

(3.3), suppose that f : S ∩ I → κ is regressive and f(α) ∈ g(α) for all

α ∈ S ∩ I. Let S1 = {ξ ∈ ω1 : f(sup(Iξ)) ∈ Iξ}. Then we have

S1 ⊇ {ξ ∈ ω1 : g(sup(Iξ)) ∩ sup(Iξ) ⊆ Iξ}

and thus S1 is stationary by the choice of I. For each ξ ∈ S1, let

h(ξ) = min{η < ω1 : f(sup(Iξ)) ∈ Iη}.
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Then the mapping h : S1 → ω1 is regressive. Thus, by Fodor’s theorem,

there is a stationary S2 ⊆ S1 such that h ′′S2 = {η∗} for some η∗ ∈ ω1.

Since Iη∗ is countable, there is a stationary S3 ⊆ S2 such that, for any

ξ ∈ S3, f(sup(Iξ)) = α∗ for some fixed α∗ ∈ Iη∗. It follows that f−1 ′′{α∗} ⊇
{sup(Iξ) : ξ ∈ S3} is stationary in sup(I). (Lemma A 5.1)

Theorem A.5.2. For any regular cardinal κ > ℵ1, AR(κ) implies FRPR(κ).

Proof. By Lemma A 5.1, it is enough to show that AR(κ) implies FRPR
• (κ).

Suppose that T ⊆ [κ]ℵ1, S ⊆ Eκ
ω is stationary and g : S → [κ]≤ℵ0. Let

(5.7) S0 = {a ∈ [κ]ℵ0 : sup(a) ∈ S \ a and g(sup(a)) ∩ sup(a) ⊆ a}. c-2-0

Claim A5.2.1. S0 is a stationary subset of [κ]ℵ0.

⊢ Suppose that C ⊆ [κ]ℵ0 is a club. We show that C ∩ S0 ̸= ∅.
By Kueker’s theorem, there is a mapping s : κ<ω → κ such that C ⊇

C(s) = {a ∈ [κ]ℵ0 : s ′′a<ω ⊆ a}. Let D = {α < κ : s ′′α<ω ⊆ α}. Since κ

is regular, D is a club subset of κ. So there is an α∗ ∈ S ∩ D. Let

⟨αn : n ∈ ω⟩ be an increasing sequence of ordinals such that α∗ = supn∈ω αn.

Let a∗ be the closure of a0 = {αn : n ∈ ω} ∪ (g(α∗) ∩ α∗) with respect to

s. Since a0 is cofinal in α∗ and α∗ ∈ D, we have sup(a∗) = α∗. Hence

a∗ ∈ S0. By the definition of a∗, we also have a∗ ∈ C(s) ⊆ C.

⊣ (Claim A5.2.1)

Let T0 = {X ∈ T : cf(X) = ω1 and X is closed with respect to g}. Then T0
is still ω1-club. By AR(κ), there is I ∈ T0 such that

(a5.2) cf(I) = ω1; c-3

(a5.3) g(α) ⊆ I for all α ∈ I ∩ S; c-6

(a5.4) S0 ∩ [I]ℵ0 is stationary in [I]ℵ0. c-4

Let ⟨Iξ : ξ < ω1⟩ be a filtration of I such that each Iξ is closed with

respect to g (this is possible by (a5.3)) and ⟨sup(Iξ) : ξ < ω1⟩ is strictly

increasing (possible by (a5.2)).

Let

S1 = {ξ < ω1 : ξ is a limit and Iξ ∈ S0} and

S2 = {ξ < ω1 : g(sup(Iξ)) ∩ sup(Iξ) ⊆ Iξ)}.

By the definition (5.7) of S0, we have S2 ⊇ S1 and S1 is a stationary subset

of ω1 by (a5.4). Thus S2 is stationary as well. (Theorem A 5.2)

Corollary A5.3. Axiom R implies FRPR.
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A straight forward modification of Theorem 3.4 in [9] shows also that FRPR(κ)

is preserved in generic extensions by c.c.c. forcing.

Shelah proved that SCH follows from a weakening of RP ([17]). Since RP

also implies 2ℵ0 ≤ ℵ2 (Todorcevic, see [13]), it follows that, under RP, we have

cf([κ]ℵ0 ,⊆) = κ+ for all cardinal κ with cf(κ) = ω. Thus the assumption FRPR

+ (5.8) of Theorem 5.1 below is a consequence of Axiom R. This assumption

is also still much weaker than Axiom R, since it is easy to see that this is still

preserved in extensions by c.c.c. forcing.

Balogh proved the following theorem under Axiom R (Theorem 1.4 in [2]).

Theorem 5.1. Assume FRPR and

(5.8) {κ < λ : cf([κ]ℵ0) = κ} is cofinal in λ for any singular cardinal λ. *-0

Suppose that X is a countably tight locally Lindelöf space such that

(5.9) for all open subspaces Y of X with L(Y ) ≤ ℵ1, we have L(Y ) ≤ ℵ1 and LR-2-0

(5.10) every clopen subspace Y of X with L(Y ) ≤ ℵ1 is paracompact. LR-2-1

Then X itself is paracompact.

Proof of Theorem 5.1: The proof is a modification of the proof of Theorem

4.6.

It is enough to prove that the following (5.11) κ holds for all cardinal κ by

induction on κ:

(5.11)κ For any countably tight and locally Lindelöf space X with L(X) = κ, LR-3

if X satisfies (5.9) and (5.10), then X is paracompact.

For κ ≤ ℵ1, (5.11) κ trivially holds. So assume that κ > ℵ1 and that (5.11) λ

holds for all λ < κ. Let X be a countably tight and locally Lindelöf space with

L(X) = κ such that X satisfies (5.9) and (5.10). We have to show that X is

paracompact.

By Lemma 4.5, and since X is locally Lindelöf and L(X) = κ, there is a

cover {Lα : α < κ} of X consisting of open Lindelöf subspaces.

Let

T = {I ∈ [κ]ℵ1 :
∪

α∈I Lα is a clopen subspace of X}.

By (5.9) and since X is countably tight, it is easy to see that T is ω1-club.

Case 1. κ is regular.
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For β < κ, let Xβ =
∪
{Lα : α < β}. By induction hypothesis we may also

assume that X ̸= Xβ for every β < κ and that the sequence ⟨Xβ : β < κ⟩ is

strictly increasing.

Let S = {α < κ : Xα ̸= Xα}.

Claim 5.1.1. S is non-stationary in κ.

⊢ We prove first the following weakening of the claim:

Subclaim 5.1.1.1. S ∩ Eκ
ω is non-stationary in κ.

⊢ For a contradiction, suppose that S ∩ Eκ
ω were stationary. For each α ∈

S ∩ Eκ
ω, let pα ∈ Xα \Xα and let h(α) ∈ κ be such that pα ∈ Lh(α). Since X is

countably tight, there is cα ∈ [α]ℵ0 such that pα ∈
∪

β∈cα Lβ.

Now, by FRPR, there is I ∈ T such that

(5.12) cf(I) = ω1 ; LR-4

(5.13) h(α) ∈ I for all α ∈ S ∩ Eκ
ω ∩ I ; LR-5

(5.14) cα ⊆ I for all α ∈ S ∩ Eκ
ω ∩ I ; LR-6

(5.15) if f : S ∩Eκ
ω ∩ I → κ is such that f(α) ∈ cα for all α ∈ S ∩Eκ

ω ∩ I, then LR-7

there is ξ∗ ∈ I with sup(f−1 ′′{ξ∗}) = sup(I).

Let Y =
∪

β∈I Lβ . Note that, by (5.13), pα ∈ Y for all α ∈ S ∩ Eκ
ω ∩ I.

By I ∈ T and since each Lβ is open Lindelöf subspace of X, it follows that

Y is clopen and L(Y ) ≤ ℵ1. Hence, by (5.10), Y is a paracompact subspace of

X. The rest of this case can be treated exactly as the Case 1 in the proof of

Theorem 4.6. Thus the open cover {Lβ : β ∈ I} of Y has a locally finite

open refinement E. Since each Lβ (β ∈ I) is Lindelöf, it follows that

(a5.5) {E ∈ E : E ∩ Lβ ̸= ∅} is countable. LR-8

Now, for each α ∈ S ∩Eκ
ω ∩ I, let Eα ∈ E be such that pα ∈ Eα. Since

pα ∈
∪
{Lβ : β ∈ cα}, there is f(α) ∈ cα such that Eα ∩ Lf(α) ̸= ∅. Thus,

by (5.15), there is a ξ∗ ∈ I such that sup(f−1 ′′{ξ∗}) = sup(I). By (a5.5),

there is η ∈ S ∩Eκ
ω ∩ I such that f(η) = ξ∗ and E ⊆ Xη for all E ∈ E such

that E ∩ Lξ∗ ̸= ∅. But, since ∅ ̸= Eη ∩ Lf(η) = Eη ∩ Lξ∗, we have pη ∈ Eη ⊆
Xη. This is a contradiction to the choice of pη. ⊣ (Subclaim 5.1.1.1)

Let C be a club subset of κ consisting of limit ordinals such that S∩
Eκ

ω ∩ C = ∅ and let

(5.16) D = {α ∈ C : α \ S is cofinal in α}. LR-9
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Clearly D is also a club subset of κ. So the following subclaim proves

the claim.

Subclaim 5.1.1.2. S ∩D = ∅.

⊢ For α ∈ D ∩ Eκ
ω, we have α ̸∈ S by D ⊆ C.

For α ∈ D ∩ Eκ
>ω, suppose p ∈ Xα. By the countable tightness of X,

there is β < α such that p ∈ Xβ. By (5.16), we may assume that β ∈ Eκ
ω \

S. Thus we have p ∈ Xβ = Xβ ⊆ Xα. This shows that Xα = Xα and hence

α ̸∈ S.

⊣ (Subclaim 5.1.1.2)

⊣ (Claim 5.1.1)

Now let D be a club subset of κ such that D∩S = ∅ and let ⟨ξα : α <

κ⟩ be an increasing enumeration of D∪{0}. Let Yα = Xξα+1 \Xξα for α <

κ. Then {Yα : α < κ} is a partition of X into clopen subspaces. Since

each Yα is the union of < κ many Lindelöf spaces, namely Lδ \Xξα, ξα ≤
δ < ξα+1, we have L(Yα) < κ. It follows from the induction hypothesis

that each Yα is paracompact. Hence X itself is also paracompact.

Case 2. κ is singular.

Let θ be a sufficiently large cardinal. Let L = {Lα : α < κ}. The singularity
of κ is not yet necessary in the following claim:

Claim 5.1.2. If M ≺ H(θ) is such that

(5.17) ω1 ⊆ M ; LR-10

(5.18) X, L ∈ M ; LR-10-0

(5.19) M is internally cofinal, LR-11

then Z =
∪
(L ∩M) is a clopen subspace of X.

⊢ Z is an open subspace of X as the union of open subspaces L ∩M . Thus

it is enough to show that X is closed. Suppose x ∈ Z. By the countable

tightness of X, there is c ∈ [L ∩ M ]ℵ0 such that x ∈
∪

c. By (5.19), there is

c′ ∈ [L ∩M ]ℵ0 ∩M such that c ⊆ c′. By (5.9) and by the elementarity of M ,

we have

M |= ∃d ∈ [L]ℵ1(
∪

c′ ⊆
∪

d).

Let d ∈ [L]ℵ1 ∩M be such that
∪
c′ ⊆

∪
d. By (5.17), we have d ⊆ M . Thus

there is an L∗ ∈ d = d ∩M such that x ∈ L∗ ⊆
∪
d ⊆

∪
(L ∩M).

⊣ (Claim 5.1.2)
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Let ⟨Mi : i < cf(κ)⟩ be an increasing sequence of elementary submodels of

H(θ) such that, for i < cf(κ),

(5.20) |Mi | < κ; LR-12

(5.21) ω1 ⊆ Mi; LR-13

(5.22) X, L ∈ Mi; LR-14

(5.23) Mi is internally cofinal and LR-15

(5.24) κ ⊆
∪

i<cf(κ) Mi. LR-16

We can construct such a sequence in particular with the property (5.23) by the

assumption on the cardinal arithmetic.

Let Xi =
∪
(L ∩ Mi) for i < cf(κ). By Claim 5.1.2, each Xi is a clopen

subspace of X. Since L(Xi) ≤ |Mi | < κ, each Xi is paracompact by induction

hypothesis . Note that we need here the closedness of Xi so that (5.9) holds for

Xi.

L ∩ Mi has a locally finite open refinement Ci for each i < cf(κ). Let

C =
∪

i<cf(κ) Ci.
Let ∼C be the intersection relation on C and ≈C be its transitive closure.

Since each Ci is locally finite and each C ∈ Ci is Lindelöf, | {C ′ ∈ Ci : C ′ ≈Ci

C} | ≤ ℵ0 for all i < cf(κ). Hence | {C ′ ∈ C : C ≈C C ′} | ≤ cf(κ) < κ for all

C ∈ C.
Let E be the set of all equivalence classes of ≈C. Then, by Lemma 1.1, each

e ∈ E has cardinality ≤ cf(κ).

P = {
∪

e : e ∈ E} is a partition of X into clopen subspaces. Since each Y ∈
P is the union of ≤ cf(κ) many Lindelöf subspaces, we have L(Y ) ≤ cf(κ) < κ.

It follows that each Y ∈ P is paracompact by the induction hypothesis and

hence X is also paracompact. (Theorem 5.1)

Though we presently do not know if FRPR(κ) is equivalent to FRP(κ) for all

regular κ, it is the case for many instances of κ:

Theorem 5.2. Suppose that κ is regular and

(5.25) cf([λ]ℵ0 ,⊆) < κ for all λ < κ. R-0

Then we have FRPR(κ) ⇔ FRP(κ).

Proof. It is enough to show the direction “⇐”.

Assume that κ is a regular cardinal > ℵ1 with (5.25) and FRP(κ) holds. Let

S ⊆ Eκ
ω be stationary, g : S → [κ]ℵ0 and T ⊆ [κ]ℵ1 be ω1-club. We want to

show that there is I ∈ T such that I satisfies (5.1).
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Let θ be sufficiently large and let M∗ = ⟨H(θ), S, g, T , . . . ,⊴,∈⟩ and let

M ≺ M∗ be the union of the continuously increasing chain ⟨Mα : α < κ⟩ of

elementary submodels of M∗ such that

(5.26) |Mα | < κ for all α < κ; R-1

(5.27) Mα+1 is internally cofinal for all α < κ; R-2

(5.28) Mα ∈ Mα+1 for all α < κ and R-3

(5.29) κ ⊆ M. R-4

Note that (5.27) is possible by (5.25). Let C = {α ∈ κ : κ ∩Mα = α}. Since

C is club in κ, S0 = S ∩ C is stationary. Applying FRP(κ) to S0 and g ↾ S0 we

obtain I0 ∈ [λ]ℵ1 such that, letting α0 = sup(I0),

(5.30) cf(α0) = ω1; R-5

(5.31) g(α) ⊆ I0 for all α ∈ I ∩ S0; R-6

(5.32) for any regressive f : S0∩I → κ such that f(α) ∈ g(α) for all α ∈ S0∩I, R-6-0

there is ξ∗ < κ such that f−1 ′′{ξ∗} is stationary in sup(I0).

Since S0 ∩ α0 is cofinal in α0 by (5.33), we have α0 ∈ C. By (5.30) and (5.27)

it follows that

(5.33) Mα0 is internally cofinal. R-7

Suppose that x ∈ [Mα0 ]
ℵ0 there is α < α0 such that x ∈ [Mα]

ℵ0. Since

Mα ⊆ Mα+1 and Mα+1 is internally cofinal there is y ∈ [Mα+1]
α0 ∩ M ⊆

[Mα0 ]
ℵ0 ∩Mα0 such that x ⊆ y.

Let ⟨Nα : α < ω1⟩ be a continuously increasing sequence of elementary

submodels of Mα0 such that

(5.34) |Nα | = ℵ0 for every α < ω1 ; R-8-0

(5.35) there is a countable set xα ∈ Nα+1 such that Nα ⊆ xα for every α < ω1 R-8

and

(5.36) I0 ⊆
∪

α<ω1
Nα . R-9

The condition (5.35) is realizable by (5.33). Let N =
∪

α<ω1
Nα and I = κ∩N .

Then I0 ⊆ I by (5.36). So | I | = ℵ1 by (5.34). Since N ⊆ Mα0 , we have

sup(I) = α0.

Thus the following claim implies that this I is as in the definition of FRPR(κ)

for S, g and T .

Claim 5.2.1. I ∈ T .
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⊢ For α < ω1 there is Aα ∈ T ∩Nα+1 such that

(5.37)
∪
(T ∩Nα) ⊆ Aα R-10

by (5.35) and elementarity. ⟨Aα : α < ω1⟩ is then an increasing sequence in

T . Let A =
∪

α<ω1
Aα. By the ω1-clubness of T , we have A ∈ T . By (5.37)

and (5.35), we have I ∩Nα ⊆ Aα ⊆ I for all α < ω1. By (5.36), it follows that

A = I. ⊣ (Claim 5.2.1)

(Theorem 5.2)

By the theorem above we have FRPR(ℵn) ⇔ FRP(ℵn) for all n ∈ ω \1. Thus
the test question in this connection would be the following:

Problem 2. Is FRPR(ℵω+1) equivalent to FRP(ℵω+1) ?

The following problem is also still open:

Problem 3. Does (5.8) follow from FRP or FRPR ?

Meanwhile it is proved that (5.8) does follow from FRP. See [10].
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