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Dow’s Metrization Theorem

Theorem 1 (A. Dow, 1988)

For a countably compact topological space X,

Reflection Principles (2/17)

if all subspaces Y of X cardinality < Ny are metrizable then X

itself is metrizable.
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Dow’s Metrization Theorem Reflection Principles (2/17)

Theorem 1 (A. Dow, 1988)

For a countably compact topological space X,

if all subspaces Y of X cardinality < Ny are metrizable then X
itself is metrizable.

» (Folklore) Under Oy, there is a locally countably compact non
metrizable space X of cardinality N, s.t. all Y € [X]=™ are
metrizable.



A generalization of Dow’s theorem Reflection Principles (3/17)

Theorem 2 (S.F., Juhasz, Soukup, Szentmikléssy, Usuba [1])

Assume Fodor-type Reflection Principle (see the next slide). Then
the following reflection theorem on metrizability holds:

For a locally countably compact topological space X,

if all subspaces Y of X cardinality < W; are metrizable then X
itself is metrizable.

[1] S.F., Istvan Juhdsz, Lajos Soukup, Zoltan Szentmikléssy and
Toshimichi Usuba, Fodor-type Reflection Principle and reflection of
metrizability and meta-Lindelofness, Top.and its Appl.,157(8),(2010).

» The reflection theorem on metrizability in above was

proved under Axiom R by Zoltan Balogh (posthumous, 2002).
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Fodor-type Reflection Principle (FRP)

Reflection Principles (4/17)

For any regular cardinal x > Nj, any stationary S C E/; and
g: S — [k]"0 there is | € [k]™ such that

is the following set theoretic principle introduced in [1]:
» cf(l) =wi; g(a) C 1 forallaelNS;

» forany f: SNI — kst f(a) e gla)Naforalla e SN,
there is £* < k s.t. £ 1"{¢*} is stationary in sup(/).
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FRP is a strengthening of the Ordinal Reflection Principle (ORP):

For any regular cardinal k > ®; and any stationary S C E}, there
is an a < k with cf(a) = wy, s.t. SN« is stationary in .

with a side condition which reminds of Fodor’s Theorem:

Fodor’s Theorem. For any regular cardinal x and f : Kk = &K
stationary in k.

s.t. f(a) < aforall a < k, there is a £ < k s.t. £ 17{¢} s




Fodor-type Reflection Principle (FRP)

Reflection Principles (5/17)
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Fodor-type Reflection Principle (FRP) Reflection Principles (5/17)
is the following set theoretic principle introduced in [1]:

For any regular cardinal x > Nj, any stationary S C E/; and
g: S — [k]"0 there is | € [k]™ such that

» cf(l) =wi; g(a) C 1 forallaelNS;

» forany f: SNI — kst f(a) e gla)Naforalla e SN,
there is £* < k s.t. £ 1"{¢*} is stationary in sup(/).

Notation:

» For regular k, FRP(k) denotes the local version of FRP for this
fixed k.

» For an uncountable cardinal A\, FRP(< X) denotes the assertion
that FRP(k) holds for every regular X; < xk < A.
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Reflection Principles (6/17)
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is the following set theoretic principle introduced in [1]:

g: S — [k]"0 there is | € [k]™ such that
» cf(l) =wi; g(a) C 1 forallaelNS;

Reflection Principles (6/17)
For any regular cardinal x > Nj, any stationary S C E/; and

» forany f: SNI — kst f(a) e gla)Naforalla e SN,
there is £* < k s.t. £ 1"{¢*} is stationary in sup(/).

metrizability holds:

Theorem 2 (S.F., Juhasz, Soukup, Szentmikléssy and Usuba [1])
Assume that FRP holds. Then the following reflection theorem on

if all subspaces Y of X of cardinality < Ny are metrizable then X
itself is metrizable.

For a locally countably compact topological space X,
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For any regular cardinal x > Nj, any stationary S C E/; and
g: S — [k]"0 there is | € [k]™ such that

is the following set theoretic principle introduced in [1]:
» cf(l) =wi; g(a) C 1 forallaelNS;

» forany f: SNI — kst f(a) e gla)Naforalla e SN,
there is £* < k s.t. £ 1"{¢*} is stationary in sup(/).

Theorem 3 (S.F. et al.[1] +S.F., Sakai, Soukup and Usuba [2])

The reflection theorem on metrizability of locally countably
compact spaces in Theorem 2 is equivalent to FRP over ZFC.



Fodor-type Reflection Principle (FRP)
is the following set theoretic principle introduced in [1]:

For any regular cardinal x > Nj, any stationary S C E/; and
g: S — [k]"0 there is | € [k]™ such that

» cf(l) =wi; g(a) C 1 forallaelNS;

» forany f: SNI — kst f(a) e gla)Naforalla e SN,
there is £* < k s.t. £ 1"{¢*} is stationary in sup(/).

Theorem 3 (S.F. et al.[1] +S.F., Sakai, Soukup and Usuba [2])

The reflection theorem on metrizability of locally countably
compact spaces in Theorem 2 is equivalent to FRP over ZFC.

[2] S.F., Hiroshi Sakai, Lajos Soukup and Toshimichi Usuba,
More about Fodor-type Reflection Principle,
preprint.
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Generalization of Theorem 3 Reflection Principles (8/17)

Theorem 3 can be obtained by using the characterization of FRP
on the next slide and (the proof of) the following result:

Theorem 4 (S.F.et al.[1]+S.F.et al.[2])

FRP is equivalent to the following assertion:

For a locally separable, countably tight space X, if all subspaces

Y of X of cardinality < Wi are meta-Lindelof then X itself is
meta-Lindelof.

» A space X is countably tight if, for any U C X and x € U there
is U € [UY st x € U.

> A space X is meta-Lindelof if every open cover of X has a point
countable refinement which is also an open cover.
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Set-theoretic Characterization of FRP

Reflection Principles (9/17)
Theorem 5 (S.F., Sakai, Soukup and Usuba [2])

For any uncountable cardinal \, FRP(< \) is equivalent to the
following assertion:

» for any regular k < )\, stationary S C E!; and a ladder system

g:S— [N]NO, there is an o < k s.t., for any regressive
f:SNa—a, {gla)\ f(a)
disjoint.

a € SNa} is not pairwise



Set-theoretic Characterization of FRP

Reflection Principles (9/17)
Theorem 5 (S.F., Sakai, Soukup and Usuba [2])

For any uncountable cardinal \, FRP(< \) is equivalent to the
following assertion:

» for any regular k < )\, stationary S C E!; and a ladder system

g:S— [N]NO, there is an o < k s.t., for any regressive
f:SNa—a, {gla)\ f(a)
disjoint.

a € SNa} is not pairwise

Corollary 6 (reformulation of the key direction of Theorem 5)

Suppose that k is the minimal cardinal s.t. =FRP(x). Then there
are stationary S C E”, and a ladder system g : S — [k]"° s.t.

{g(a) \ f(a)

» for any a < k there is a regressive f : SN a — « s.t.

a € SNa} is pairwise disjoint.



Further results (1/3) Reflection Principles (10/17)

Theorem 7 (S.F.[3] +S.F., Sakai, Soukup and Usuba [2])

The following assertion is equivalent to FRP:

For a T, space with point countable base, if all subspaces Y
of X of cardinality < Ni are left-separated then X itself is left-
separated.

[3] S.F., Left-separated topological spaces under Fodor-type
Reflection Principle, RIMS Kokyuroku No.1619 (2008), 32-42.

> A space X is left-separated if there is a well-ordering < of X s.t.
each initial segment of X w.r.t. < is a closed subset of X.

» W. Fleissner (1986) proved that the assertion of Theorem 7
follows from Axiom R and it is refuted under = ORP.
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Further results (2/3) Reflection Principles (11/17)

Theorem 8 (S.F. et al. [2])

The following assertion is equivalent to FRP:

For a countably tight space of local density N1, if all subspaces
Y of X of cardinality < N; are collectionwise Hausdorff then X
itself is collectionwise Hausdorff.

> A space X is of local density r if for very p € X there is
Y € [X]=% s.t. p € int(Y).

> A space X is collectionwise Hausdorff if any closed discrete
subset D of X can be simultaneously separated by disjoint open
sets, i.e., if, for any closed and discrete D C X, there is a family I/
of pairwise disjoint open sets such that, for all d € D, there is

U el with DnU = {d}.

» Fleissner (1986) proved also the assertion in Theorem 8 under
Axiom R.
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Further Results (3/3)

Reflection Principles (12/17)
» FRP is also equivalent to the reflection theorems in terms of:
and

[> countable coloring number of infinite graphs (S.F.et al.[2]);

> openly generatedness of Boolean algebras (S.F.and Rinot [4]).

[4] S.F.and Assaf Rinot, Openly generated Boolean algebras and
the Fodor-type Reflection Principle, submitted.
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Some applications Reflection Principles (13/17)
> The topological (graph-theoretic, Boolean algebraic) reflection

principles mentioned above are all equivalent to each other over
ZFC.

» All these reflection principles imply Ordinal Reflection Principle.

Theorem 9 (S.F.et al. [1])

FRP is preserved by c.c.c. generic extension.

» Hence, all reflection principles above impose almost no
restriction on the size of continuum. cf.: Under slightly stronger
reflection principles, the continuum is < N, (S. Todorcevic).

» But these reflection principles (or equivalently FRP) do have
certain effect on cardinal arithmetic.
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FRP is preserved by c.c.c. generic extension.

» Hence, all reflection principles above impose almost no
restriction on the size of continuum. cf.: Under slightly stronger
reflection principles, the continuum is < N, (S. Todorcevic).

» But these reflection principles (or equivalently FRP) do have
certain effect on cardinal arithmetic.



Cardinal Arithmetic under FRP

Theorem 10 (S.F.and Rinot [4])

Reflection Principles (14/17)
FRP implies Shelah’s Strong Hypothesis.

» Shelah’s Strong Hypothesis (SSH) is the assertion equivalent to
the following:

cf (K], C) = k.

For every uncountable cardinal s of countable cofinality, we have

» By the characterization above of SSH, Singular Cardinal
Hypothesis (SCH) follows from SSH.
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(Very Rough) Sketch of the Proof:
Suppose that SSH does not hold. Then there is a better scale
((\i i <w),(fy : a< AT)) for a cardinal A with ¢f(\) = w;.

Let ¢ : “>\ — X be a 1-1 mapping, £ = £\ ) and let
g:E— [\ best gla) ={p(fy I n) : new}.

Then g together with E is a counterexample to FRP(AT). O

» Theorem 10 suggests that SSH should be also regarded as a
reflection principle. We can in fact characterize SSH in terms of
the following topological reflection principle:
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Theorem 10 (S.F.and Rinot [4])
FRP implies Shelah’s Strong Hypothesis.
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Theorem 10 (S.F.and Rinot [4])
FRP implies Shelah’s Strong Hypothesis.

(Very Rough) Sketch of the Proof:
Suppose that SSH does not hold. Then there is a better scale
((Aj 1@ <w),(fy 1 a< AT)) for a cardinal A with ¢f(\) = w;.

Let ¢ : “>)\ — X be a 1-1 mapping, £ = EX" \ ) and let
g:E— [\ best gla) ={p(fy I n) : new}.

Then g together with E is a counterexample to FRP(AT). O
» Theorem 10 suggests that SSH should be also regarded as a

reflection principle. We can in fact characterize SSH in terms of
the following topological reflection principle:



SSH as a topological reflection theorem Reflection Principles (16/17)

Theorem 11 (S.F.and Rinot [4])

SSH is equivalent to the following assertion:

For any countably tight space X, if X is < Wi-thin then X is thin.

» A topological space X is thinif |[D| < |D|" holds for all
DCX.

» A topological space X is < r-thin if |[D| < | D|" holds for all
D C X of cardinality < k.

Open problems:

> Are there any natural topological assertions which are equivalent
to Axiom R (RP, WRP etc. resp.) 7

» For each topological theorem independent from ZFC, provide a
set-theoretic principle characterizing the theorem (Topological

Reverse Mathematics)! e s =
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