# Set theoretic reflection principles and topological reflection

Sakaé Fuchino (渕野 昌)

Kobe University (神戸大学大学院 システム情報学研究科)

fuchino@diamond.kobe-u.ac.jp

http://kurt.scitec.kobe-u.ac.jp/~fuchino/

(September 30, 2010 (01:00 JST) version)

International Conference Japan-Mexico on Topology and its Applications での講演

於 Colima, Mexico

September 29

This presentation is typeset by pLATEX with beamer class.

## Theorem 1 (A. Dow, 1988)

For a countably compact topological space X, if all subspaces Y of X cardinality  $\leq \aleph_1$  are metrizable then X itself is metrizable.

▶ (Folklore) Under  $\square_{\aleph_1}$  there is a locally countably compact nor metrizable space X of cardinality  $\aleph_2$  s.t. all  $Y \in [X]^{\leq \aleph_1}$  are metrizable.

## Theorem 1 (A. Dow, 1988)

For a countably compact topological space X, if all subspaces Y of X cardinality  $\leq \aleph_1$  are metrizable then X itself is metrizable.

▶ (Folklore) Under  $\square_{\aleph_1}$  there is a locally countably compact non metrizable space X of cardinality  $\aleph_2$  s.t. all  $Y \in [X]^{\leq \aleph_1}$  are metrizable.

Theorem 2 (S.F., Juhász, Soukup, Szentmiklóssy, Usuba [1])

Assume Fodor-type Reflection Principle (see the next slide). Then the following reflection theorem on metrizability holds:

- [1] S.F., István Juhász, Lajos Soukup, Zoltán Szentmiklóssy and Toshimichi Usuba, *Fodor-type Reflection Principle and reflection of metrizability and meta-Lindelöfness*, Top.and its Appl.,157(8),(2010).
- ▶ The reflection theorem on metrizability in \_\_\_\_\_ above was proved under Axiom R by Zoltan Balogh (posthumous, 2002).

Theorem 2 (S.F., Juhász, Soukup, Szentmiklóssy, Usuba [1])

Assume Fodor-type Reflection Principle (see the next slide). Then the following reflection theorem on metrizability holds:

- [1] S.F., István Juhász, Lajos Soukup, Zoltán Szentmiklóssy and Toshimichi Usuba, *Fodor-type Reflection Principle and reflection of metrizability and meta-Lindelöfness*, Top.and its Appl.,157(8),(2010).
- ▶ The reflection theorem on metrizability in \_\_\_\_\_ above was proved under Axiom R by Zoltan Balogh (posthumous, 2002).

## Theorem 2 (S.F., Juhász, Soukup, Szentmiklóssy, Usuba [1])

Assume Fodor-type Reflection Principle (see the next slide). Then the following reflection theorem on metrizability holds:

- [1] S.F., István Juhász, Lajos Soukup, Zoltán Szentmiklóssy and Toshimichi Usuba, *Fodor-type Reflection Principle and reflection of metrizability and meta-Lindelöfness*, Top.and its Appl.,157(8),(2010).
- ▶ The reflection theorem on metrizability in \_\_\_\_\_ above was proved under Axiom R by Zoltan Balogh (posthumous, 2002).

## Theorem 2 (S.F., Juhász, Soukup, Szentmiklóssy, Usuba [1])

Assume Fodor-type Reflection Principle (see the next slide). Then the following reflection theorem on metrizability holds:

- [1] S.F., István Juhász, Lajos Soukup, Zoltán Szentmiklóssy and Toshimichi Usuba, *Fodor-type Reflection Principle and reflection of metrizability and meta-Lindelöfness*, Top.and its Appl.,157(8),(2010).
- ▶ The reflection theorem on metrizability in \_\_\_\_\_ above was proved under Axiom R by Zoltan Balogh (posthumous, 2002).

## Theorem 2 (S.F., Juhász, Soukup, Szentmiklóssy, Usuba [1])

Assume Fodor-type Reflection Principle (see the next slide). Then the following reflection theorem on metrizability holds:

- [1] S.F., István Juhász, Lajos Soukup, Zoltán Szentmiklóssy and Toshimichi Usuba, *Fodor-type Reflection Principle and reflection of metrizability and meta-Lindelöfness*, Top.and its Appl.,157(8),(2010).
- ▶ The reflection theorem on metrizability in \_\_\_\_\_ above was proved under Axiom R by Zoltan Balogh (posthumous, 2002).

For any regular cardinal  $\kappa > \aleph_1$ , any stationary  $S \subseteq E_\omega^\kappa$  and  $g: S \to [\kappa]^{\aleph_0}$  there is  $I \in [\kappa]^{\aleph_1}$  such that

- ▶  $cf(I) = \omega_1$ ;  $g(\alpha) \subseteq I$  for all  $\alpha \in I \cap S$ ;
- ▶ for any  $f: S \cap I \to \kappa$  s.t.  $f(\alpha) \in g(\alpha) \cap \alpha$  for all  $\alpha \in S \cap I$ , there is  $\xi^* < \kappa$  s.t.  $f^{-1} {}^{"}\{\xi^*\}$  is stationary in sup(I).

FRP is a strengthening of the Ordinal Reflection Principle (ORP)

For any regular cardinal  $\kappa > \aleph_1$  and any stationary  $S \subseteq E_\omega^\kappa$ , there is an  $\alpha < \kappa$  with  $\mathrm{cf}(\alpha) = \omega_1$ , s.t.  $S \cap \alpha$  is stationary in  $\alpha$ .

with a side condition which reminds of Fodor's Theorem

For any regular cardinal  $\kappa > \aleph_1$ , any stationary  $S \subseteq E_\omega^\kappa$  and  $g: S \to [\kappa]^{\aleph_0}$  there is  $I \in [\kappa]^{\aleph_1}$  such that

- ▶  $cf(I) = \omega_1$ ;  $g(\alpha) \subseteq I$  for all  $\alpha \in I \cap S$ ;
- ▶ for any  $f: S \cap I \to \kappa$  s.t.  $f(\alpha) \in g(\alpha) \cap \alpha$  for all  $\alpha \in S \cap I$ , there is  $\xi^* < \kappa$  s.t.  $f^{-1} {}^{"} \{\xi^*\}$  is stationary in sup(I).

### FRP is a strengthening of the Ordinal Reflection Principle (ORP):

For any regular cardinal  $\kappa > \aleph_1$  and any stationary  $S \subseteq E_\omega^\kappa$ , there is an  $\alpha < \kappa$  with  $\mathrm{cf}(\alpha) = \omega_1$ , s.t.  $S \cap \alpha$  is stationary in  $\alpha$ .

with a side condition which reminds of Fodor's Theorem

For any regular cardinal  $\kappa > \aleph_1$ , any stationary  $S \subseteq E_\omega^\kappa$  and  $g: S \to [\kappa]^{\aleph_0}$  there is  $I \in [\kappa]^{\aleph_1}$  such that

- ▶  $cf(I) = \omega_1$ ;  $g(\alpha) \subseteq I$  for all  $\alpha \in I \cap S$ ;
- ▶ for any  $f: S \cap I \to \kappa$  s.t.  $f(\alpha) \in g(\alpha) \cap \alpha$  for all  $\alpha \in S \cap I$ , there is  $\xi^* < \kappa$  s.t.  $f^{-1} {}^{"}\{\xi^*\}$  is stationary in sup(I).

FRP is a strengthening of the Ordinal Reflection Principle (ORP):

For any regular cardinal  $\kappa > \aleph_1$  and any stationary  $S \subseteq E_\omega^\kappa$ , there is an  $\alpha < \kappa$  with  $\mathrm{cf}(\alpha) = \omega_1$ , s.t.  $S \cap \alpha$  is stationary in  $\alpha$ .

with a side condition which reminds of Fodor's Theorem:

For any regular cardinal  $\kappa > \aleph_1$ , any stationary  $S \subseteq E_\omega^\kappa$  and  $g: S \to [\kappa]^{\aleph_0}$  there is  $I \in [\kappa]^{\aleph_1}$  such that

- ▶  $cf(I) = \omega_1$ ;  $g(\alpha) \subseteq I$  for all  $\alpha \in I \cap S$ ;
- ▶ for any  $f: S \cap I \to \kappa$  s.t.  $f(\alpha) \in g(\alpha) \cap \alpha$  for all  $\alpha \in S \cap I$ , there is  $\xi^* < \kappa$  s.t.  $f^{-1} {}^{"}\{\xi^*\}$  is stationary in sup(I).

FRP is a strengthening of the Ordinal Reflection Principle (ORP):

For any regular cardinal  $\kappa > \aleph_1$  and any stationary  $S \subseteq E_\omega^\kappa$ , there is an  $\alpha < \kappa$  with  $\mathrm{cf}(\alpha) = \omega_1$ , s.t.  $S \cap \alpha$  is stationary in  $\alpha$ .

with a side condition which reminds of Fodor's Theorem:

For any regular cardinal  $\kappa > \aleph_1$ , any stationary  $S \subseteq E_\omega^\kappa$  and  $g: S \to [\kappa]^{\aleph_0}$  there is  $I \in [\kappa]^{\aleph_1}$  such that

- ▶  $cf(I) = \omega_1$ ;  $g(\alpha) \subseteq I$  for all  $\alpha \in I \cap S$ ;
- ▶ for any  $f: S \cap I \to \kappa$  s.t.  $f(\alpha) \in g(\alpha) \cap \alpha$  for all  $\alpha \in S \cap I$ , there is  $\xi^* < \kappa$  s.t.  $f^{-1} {}^{"} \{\xi^*\}$  is stationary in sup(I).

FRP is a strengthening of the Ordinal Reflection Principle (ORP):

For any regular cardinal  $\kappa > \aleph_1$  and any stationary  $S \subseteq E_\omega^\kappa$ , there is an  $\alpha < \kappa$  with  $\mathrm{cf}(\alpha) = \omega_1$ , s.t.  $S \cap \alpha$  is stationary in  $\alpha$ .

with a side condition which reminds of Fodor's Theorem:

For any regular cardinal  $\kappa > \aleph_1$ , any stationary  $S \subseteq E_\omega^\kappa$  and  $g: S \to [\kappa]^{\aleph_0}$  there is  $I \in [\kappa]^{\aleph_1}$  such that

- ▶  $cf(I) = \omega_1$ ;  $g(\alpha) \subseteq I$  for all  $\alpha \in I \cap S$ ;
- ▶ for any  $f: S \cap I \to \kappa$  s.t.  $f(\alpha) \in g(\alpha) \cap \alpha$  for all  $\alpha \in S \cap I$ , there is  $\xi^* < \kappa$  s.t.  $f^{-1}{}''\{\xi^*\}$  is stationary in sup(I).

- ▶ For regular  $\kappa$ , FRP( $\kappa$ ) denotes the local version of FRP for this fixed  $\kappa$ .
- ▶ For an uncountable cardinal  $\lambda$ , FRP( $<\lambda$ ) denotes the assertion that FRP( $\kappa$ ) holds for every regular  $\aleph_1 \leq \kappa < \lambda$ .

For any regular cardinal  $\kappa > \aleph_1$ , any stationary  $S \subseteq E_\omega^\kappa$  and  $g: S \to [\kappa]^{\aleph_0}$  there is  $I \in [\kappa]^{\aleph_1}$  such that

- ▶  $cf(I) = \omega_1$ ;  $g(\alpha) \subseteq I$  for all  $\alpha \in I \cap S$ ;
- ▶ for any  $f: S \cap I \to \kappa$  s.t.  $f(\alpha) \in g(\alpha) \cap \alpha$  for all  $\alpha \in S \cap I$ , there is  $\xi^* < \kappa$  s.t.  $f^{-1}{}''\{\xi^*\}$  is stationary in sup(I).

- ▶ For regular  $\kappa$ , FRP( $\kappa$ ) denotes the local version of FRP for this fixed  $\kappa$ .
- ▶ For an uncountable cardinal  $\lambda$ , FRP( $<\lambda$ ) denotes the assertion that FRP( $\kappa$ ) holds for every regular  $\aleph_1 \leq \kappa < \lambda$ .

For any regular cardinal  $\kappa > \aleph_1$ , any stationary  $S \subseteq E_\omega^\kappa$  and  $g: S \to [\kappa]^{\aleph_0}$  there is  $I \in [\kappa]^{\aleph_1}$  such that

- $\operatorname{cf}(I) = \omega_1$ ;  $g(\alpha) \subseteq I$  for all  $\alpha \in I \cap S$ ;
- ▶ for any  $f: S \cap I \to \kappa$  s.t.  $f(\alpha) \in g(\alpha) \cap \alpha$  for all  $\alpha \in S \cap I$ , there is  $\xi^* < \kappa$  s.t.  $f^{-1}{}''\{\xi^*\}$  is stationary in sup(I).

- ▶ For regular  $\kappa$ , FRP( $\kappa$ ) denotes the local version of FRP for this fixed  $\kappa$ .
- ▶ For an uncountable cardinal  $\lambda$ , FRP( $<\lambda$ ) denotes the assertion that FRP( $\kappa$ ) holds for every regular  $\aleph_1 \leq \kappa < \lambda$ .

For any regular cardinal  $\kappa > \aleph_1$ , any stationary  $S \subseteq E_\omega^\kappa$  and  $g: S \to [\kappa]^{\aleph_0}$  there is  $I \in [\kappa]^{\aleph_1}$  such that

- ▶  $cf(I) = \omega_1$ ;  $g(\alpha) \subseteq I$  for all  $\alpha \in I \cap S$ ;
- ▶ for any  $f: S \cap I \to \kappa$  s.t.  $f(\alpha) \in g(\alpha) \cap \alpha$  for all  $\alpha \in S \cap I$ , there is  $\xi^* < \kappa$  s.t.  $f^{-1}{}''\{\xi^*\}$  is stationary in sup(I).

- ▶ For regular  $\kappa$ , FRP( $\kappa$ ) denotes the local version of FRP for this fixed  $\kappa$ .
- ▶ For an uncountable cardinal  $\lambda$ , FRP( $<\lambda$ ) denotes the assertion that FRP( $\kappa$ ) holds for every regular  $\aleph_1 \leq \kappa < \lambda$ .

For any regular cardinal  $\kappa > \aleph_1$ , any stationary  $S \subseteq E_\omega^\kappa$  and  $g: S \to [\kappa]^{\aleph_0}$  there is  $I \in [\kappa]^{\aleph_1}$  such that

- ▶  $cf(I) = \omega_1$ ;  $g(\alpha) \subseteq I$  for all  $\alpha \in I \cap S$ ;
- ▶ for any  $f: S \cap I \to \kappa$  s.t.  $f(\alpha) \in g(\alpha) \cap \alpha$  for all  $\alpha \in S \cap I$ , there is  $\xi^* < \kappa$  s.t.  $f^{-1} {}^{"} \{\xi^*\}$  is stationary in sup(I).

 ${\sf Theorem\ 2\ (S.F., Juhász, Soukup, Szentmiklóssy\ and\ Usuba\ [1])}$ 

Assume that FRP holds. Then the following reflection theorem on metrizability holds:

For any regular cardinal  $\kappa > \aleph_1$ , any stationary  $S \subseteq E_\omega^\kappa$  and  $g: S \to [\kappa]^{\aleph_0}$  there is  $I \in [\kappa]^{\aleph_1}$  such that

- ▶  $cf(I) = \omega_1$ ;  $g(\alpha) \subseteq I$  for all  $\alpha \in I \cap S$ ;
- ▶ for any  $f: S \cap I \to \kappa$  s.t.  $f(\alpha) \in g(\alpha) \cap \alpha$  for all  $\alpha \in S \cap I$ , there is  $\xi^* < \kappa$  s.t.  $f^{-1}{}''\{\xi^*\}$  is stationary in sup(I).

## Theorem 2 (S.F., Juhász, Soukup, Szentmiklóssy and Usuba [1])

Assume that FRP holds. Then the following reflection theorem on metrizability holds:

For any regular cardinal  $\kappa > \aleph_1$ , any stationary  $S \subseteq E_\omega^\kappa$  and  $g: S \to [\kappa]^{\aleph_0}$  there is  $I \in [\kappa]^{\aleph_1}$  such that

- ▶  $cf(I) = \omega_1$ ;  $g(\alpha) \subseteq I$  for all  $\alpha \in I \cap S$ ;
- ▶ for any  $f: S \cap I \to \kappa$  s.t.  $f(\alpha) \in g(\alpha) \cap \alpha$  for all  $\alpha \in S \cap I$ , there is  $\xi^* < \kappa$  s.t.  $f^{-1}{}''\{\xi^*\}$  is stationary in sup(I).

Theorem 3 (S.F. et al.[1] + S.F., Sakai, Soukup and Usuba [2])
The reflection theorem on metrizability of locally countably
compact spaces in Theorem 2 is equivalent to FRP over ZFC.

[2] S.F., Hiroshi Sakai, Lajos Soukup and Toshimichi Usuba, *More about Fodor-type Reflection Principle*, preprint.

For any regular cardinal  $\kappa > \aleph_1$ , any stationary  $S \subseteq E_\omega^\kappa$  and  $g: S \to [\kappa]^{\aleph_0}$  there is  $I \in [\kappa]^{\aleph_1}$  such that

- ▶  $cf(I) = \omega_1$ ;  $g(\alpha) \subseteq I$  for all  $\alpha \in I \cap S$ ;
- ▶ for any  $f: S \cap I \to \kappa$  s.t.  $f(\alpha) \in g(\alpha) \cap \alpha$  for all  $\alpha \in S \cap I$ , there is  $\xi^* < \kappa$  s.t.  $f^{-1} {}^{"} \{\xi^*\}$  is stationary in sup(I).

Theorem 3 (S.F. et al.[1] + S.F., Sakai, Soukup and Usuba [2])

The reflection theorem on metrizability of locally countably compact spaces in Theorem 2 is equivalent to FRP over ZFC.

[2] S.F., Hiroshi Sakai, Lajos Soukup and Toshimichi Usuba, *More about Fodor-type Reflection Principle*, preprint.

For any regular cardinal  $\kappa > \aleph_1$ , any stationary  $S \subseteq E_\omega^\kappa$  and  $g: S \to [\kappa]^{\aleph_0}$  there is  $I \in [\kappa]^{\aleph_1}$  such that

- ▶  $cf(I) = \omega_1$ ;  $g(\alpha) \subseteq I$  for all  $\alpha \in I \cap S$ ;
- ▶ for any  $f: S \cap I \to \kappa$  s.t.  $f(\alpha) \in g(\alpha) \cap \alpha$  for all  $\alpha \in S \cap I$ , there is  $\xi^* < \kappa$  s.t.  $f^{-1} {}^{"} \{\xi^*\}$  is stationary in sup(I).

# Theorem 3 (S.F. et al.[1] + S.F., Sakai, Soukup and Usuba [2])

The reflection theorem on metrizability of locally countably compact spaces in Theorem 2 is equivalent to FRP over ZFC.

[2] S.F., Hiroshi Sakai, Lajos Soukup and Toshimichi Usuba, *More about Fodor-type Reflection Principle*, preprint.

Theorem 4 (S.F. et al. [1] + S.F. et al. [2])

FRP is equivalent to the following assertion:

- ▶ A space X is *countably tight* if, for any  $U \subseteq X$  and  $x \in \overline{U}$  there is  $U' \in [U]^{\aleph_0}$  s.t.  $x \in \overline{U'}$ .
- ▶ A space *X* is *meta-Lindelöf* if every open cover of *X* has a point countable refinement which is also an open cover.

Theorem 4 (S.F. et al. [1] + S.F. et al. [2])

FRP is equivalent to the following assertion:

- ▶ A space X is *countably tight* if, for any  $U \subseteq X$  and  $x \in \overline{U}$  there is  $U' \in [U]^{\aleph_0}$  s.t.  $x \in \overline{U'}$ .
- ▶ A space X is *meta-Lindelöf* if every open cover of X has a point countable refinement which is also an open cover.

Theorem 4 (S.F. et al. [1] + S.F. et al. [2])

FRP is equivalent to the following assertion:

- ▶ A space X is *countably tight* if, for any  $U \subseteq X$  and  $x \in \overline{U}$  there is  $U' \in [U]^{\aleph_0}$  s.t.  $x \in \overline{U'}$ .
- ▶ A space X is *meta-Lindelöf* if every open cover of X has a point countable refinement which is also an open cover.

Theorem 4 (S.F. et al. [1] + S.F. et al. [2])

FRP is equivalent to the following assertion:

- ▶ A space X is *countably tight* if, for any  $U \subseteq X$  and  $x \in \overline{U}$  there is  $U' \in [U]^{\aleph_0}$  s.t.  $x \in \overline{U'}$ .
- ▶ A space *X* is *meta-Lindelöf* if every open cover of *X* has a point countable refinement which is also an open cover.

Theorem 4 (S.F. et al. 
$$[1] + S.F.$$
 et al.  $[2]$ )

FRP is equivalent to the following assertion:

- ▶ A space X is *countably tight* if, for any  $U \subseteq X$  and  $x \in \overline{U}$  there is  $U' \in [U]^{\aleph_0}$  s.t.  $x \in \overline{U'}$ .
- ▶ A space *X* is *meta-Lindelöf* if every open cover of *X* has a point countable refinement which is also an open cover.

## Theorem 5 (S.F., Sakai, Soukup and Usuba [2])

For any uncountable cardinal  $\lambda$ , FRP( $<\lambda$ ) is equivalent to the following assertion:

▶ for any regular  $\kappa < \lambda$ , stationary  $S \subseteq E_{\omega}^{\kappa}$  and a ladder system  $g: S \to [\aleph]^{\aleph_0}$ , there is an  $\alpha < \kappa$  s.t., for any regressive  $f: S \cap \alpha \to \alpha$ ,  $\{g(\alpha) \setminus f(\alpha) : \alpha \in S \cap \alpha\}$  is not pairwise disjoint.

Corollary 6 (reformulation of the key direction of Theorem 5)

Suppose that  $\kappa$  is the minimal cardinal s.t.  $\neg \mathsf{FRP}(\kappa)$ . Then there are stationary  $S \subseteq E_{\alpha}^{\kappa}$ , and a ladder system  $g: S \to [\kappa]^{\aleph_0}$  s.t.

▶ for any  $\alpha < \kappa$  there is a regressive  $f : S \cap \alpha \to \alpha$  s.t.  $\{g(\alpha) \setminus f(\alpha) : \alpha \in S \cap \alpha\}$  is pairwise disjoint.

## Theorem 5 (S.F., Sakai, Soukup and Usuba [2])

For any uncountable cardinal  $\lambda$ , FRP( $<\lambda$ ) is equivalent to the following assertion:

▶ for any regular  $\kappa < \lambda$ , stationary  $S \subseteq E_{\omega}^{\kappa}$  and a ladder system  $g: S \to [\aleph]^{\aleph_0}$ , there is an  $\alpha < \kappa$  s.t., for any regressive  $f: S \cap \alpha \to \alpha$ ,  $\{g(\alpha) \setminus f(\alpha) : \alpha \in S \cap \alpha\}$  is not pairwise disjoint.

## Corollary 6 (reformulation of the key direction of Theorem 5)

Suppose that  $\kappa$  is the minimal cardinal s.t.  $\neg FRP(\kappa)$ . Then there are stationary  $S \subseteq E_{\omega}^{\kappa}$ , and a ladder system  $g: S \to [\kappa]^{\aleph_0}$  s.t.

▶ for any  $\alpha < \kappa$  there is a regressive  $f : S \cap \alpha \to \alpha$  s.t.  $\{g(\alpha) \setminus f(\alpha) : \alpha \in S \cap \alpha\}$  is pairwise disjoint.

The following assertion is equivalent to FRP:

- [3] S.F., Left-separated topological spaces under Fodor-type Reflection Principle, RIMS Kokyuroku No.1619 (2008), 32–42.
- ightharpoonup A space X is *left-separated* if there is a well-ordering < of X s.t. each initial segment of X w.r.t. < is a closed subset of X.
- ▶ W. Fleissner (1986) proved that the assertion of Theorem 7 follows from Axiom R and it is refuted under ¬ ORP.

The following assertion is equivalent to FRP:

- [3] S.F., Left-separated topological spaces under Fodor-type Reflection Principle, RIMS Kokyuroku No.1619 (2008), 32–42.
- ightharpoonup A space X is *left-separated* if there is a well-ordering < of X s.t. each initial segment of X w.r.t. < is a closed subset of X.
- ▶ W. Fleissner (1986) proved that the assertion of Theorem 7 follows from Axiom R and it is refuted under ¬ ORP.

The following assertion is equivalent to FRP:

- [3] S.F., Left-separated topological spaces under Fodor-type Reflection Principle, RIMS Kokyuroku No.1619 (2008), 32–42.
- ightharpoonup A space X is *left-separated* if there is a well-ordering < of X s.t. each initial segment of X w.r.t. < is a closed subset of X.
- ▶ W. Fleissner (1986) proved that the assertion of Theorem 7 follows from Axiom R and it is refuted under ¬ ORP.

The following assertion is equivalent to FRP:

- [3] S.F., Left-separated topological spaces under Fodor-type Reflection Principle, RIMS Kokyuroku No.1619 (2008), 32–42.
- ▶ A space X is *left-separated* if there is a well-ordering < of X s.t. each initial segment of X w.r.t. < is a closed subset of X.
- ▶ W. Fleissner (1986) proved that the assertion of Theorem 7 follows from Axiom R and it is refuted under ¬ ORP.

The following assertion is equivalent to FRP:

- [3] S.F., Left-separated topological spaces under Fodor-type Reflection Principle, RIMS Kokyuroku No.1619 (2008), 32–42.
- ▶ A space X is *left-separated* if there is a well-ordering < of X s.t. each initial segment of X w.r.t. < is a closed subset of X.
- ▶ W. Fleissner (1986) proved that the assertion of Theorem 7 follows from Axiom R and it is refuted under ¬ ORP.

Theorem 8 (S.F. et al. [2])

The following assertion is equivalent to FRP:

For a countably tight space of local density  $\aleph_1$ , if all subspaces Y of X of cardinality  $\leq \aleph_1$  are collectionwise Hausdorff then X itself is collectionwise Hausdorff.

- ▶ A space X is *of local density*  $\kappa$  if for very  $p \in X$  there is  $Y \in [X]^{\leq \kappa}$  s.t.  $p \in int(\overline{Y})$ .
- ▶ A space X is *collectionwise* Hausdorff if any closed discrete subset D of X can be simultaneously separated by disjoint open sets, i.e., if, for any closed and discrete  $D \subseteq X$ , there is a family  $\mathcal U$  of pairwise disjoint open sets such that, for all  $d \in D$ , there is  $U \in \mathcal U$  with  $D \cap U = \{d\}$ .
- ▶ Fleissner (1986) proved also the assertion in Theorem 8 under Axiom R.

Theorem 8 (S.F. et al. [2])

The following assertion is equivalent to FRP:

For a countably tight space of local density  $\aleph_1$ , if all subspaces Y of X of cardinality  $\leq \aleph_1$  are collectionwise Hausdorff then X itself is collectionwise Hausdorff.

- ▶ A space X is *of local density*  $\kappa$  if for very  $p \in X$  there is  $Y \in [X]^{\leq \kappa}$  s.t.  $p \in int(\overline{Y})$ .
- ▶ A space X is *collectionwise* Hausdorff if any closed discrete subset D of X can be simultaneously separated by disjoint open sets, i.e., if, for any closed and discrete  $D \subseteq X$ , there is a family  $\mathcal{U}$  of pairwise disjoint open sets such that, for all  $d \in D$ , there is  $U \in \mathcal{U}$  with  $D \cap U = \{d\}$ .
- ▶ Fleissner (1986) proved also the assertion in Theorem 8 under Axiom R.

The following assertion is equivalent to FRP:

- ▶ A space X is of local density  $\kappa$  if for very  $p \in X$  there is  $Y \in [X]^{\leq \kappa}$  s.t.  $p \in int(\overline{Y})$ .
- ▶ A space X is *collectionwise* Hausdorff if any closed discrete subset D of X can be simultaneously separated by disjoint open sets, i.e., if, for any closed and discrete  $D \subseteq X$ , there is a family  $\mathcal U$  of pairwise disjoint open sets such that, for all  $d \in D$ , there is  $U \in \mathcal U$  with  $D \cap U = \{d\}$ .
- ▶ Fleissner (1986) proved also the assertion in Theorem 8 under Axiom R.

The following assertion is equivalent to FRP:

- ▶ A space X is of local density  $\kappa$  if for very  $p \in X$  there is  $Y \in [X]^{\leq \kappa}$  s.t.  $p \in int(\overline{Y})$ .
- ▶ A space X is *collectionwise* Hausdorff if any closed discrete subset D of X can be simultaneously separated by disjoint open sets, i.e., if, for any closed and discrete  $D \subseteq X$ , there is a family  $\mathcal U$  of pairwise disjoint open sets such that, for all  $d \in D$ , there is  $U \in \mathcal U$  with  $D \cap U = \{d\}$ .
- ► Fleissner (1986) proved also the assertion in Theorem 8 under Axiom R.

The following assertion is equivalent to FRP:

- ▶ A space X is of local density  $\kappa$  if for very  $p \in X$  there is  $Y \in [X]^{\leq \kappa}$  s.t.  $p \in int(\overline{Y})$ .
- ▶ A space X is *collectionwise* Hausdorff if any closed discrete subset D of X can be simultaneously separated by disjoint open sets, i.e., if, for any closed and discrete  $D \subseteq X$ , there is a family  $\mathcal U$  of pairwise disjoint open sets such that, for all  $d \in D$ , there is  $U \in \mathcal U$  with  $D \cap U = \{d\}$ .
- ► Fleissner (1986) proved also the assertion in Theorem 8 under Axiom R.

The following assertion is equivalent to FRP:

- ▶ A space X is of local density  $\kappa$  if for very  $p \in X$  there is  $Y \in [X]^{\leq \kappa}$  s.t.  $p \in int(\overline{Y})$ .
- ▶ A space X is *collectionwise* Hausdorff if any closed discrete subset D of X can be simultaneously separated by disjoint open sets, i.e., if, for any closed and discrete  $D \subseteq X$ , there is a family  $\mathcal U$  of pairwise disjoint open sets such that, for all  $d \in D$ , there is  $U \in \mathcal U$  with  $D \cap U = \{d\}$ .
- ▶ Fleissner (1986) proved also the assertion in Theorem 8 under Axiom R.

- ▶ FRP is also equivalent to the reflection theorems in terms of:
  - □ countable coloring number of infinite graphs (S.F. et al.[2]);
     and
  - □ openly generatedness of Boolean algebras (S.F. and Rinot [4]).
- [4] S.F. and Assaf Rinot, Openly generated Boolean algebras and the Fodor-type Reflection Principle, submitted.

- ▶ FRP is also equivalent to the reflection theorems in terms of:
  - □ countable coloring number of infinite graphs (S.F. et al.[2]);
     and
  - → openly generatedness of Boolean algebras (S.F. and Rinot [4]).
- [4] S.F. and Assaf Rinot, Openly generated Boolean algebras and the Fodor-type Reflection Principle, submitted.

- ▶ FRP is also equivalent to the reflection theorems in terms of:
  - □ countable coloring number of infinite graphs (S.F. et al.[2]);
     and
  - → openly generatedness of Boolean algebras (S.F. and Rinot [4]).
- [4] S.F. and Assaf Rinot, Openly generated Boolean algebras and the Fodor-type Reflection Principle, submitted.

- ▶ FRP is also equivalent to the reflection theorems in terms of:
  - □ countable coloring number of infinite graphs (S.F. et al.[2]);
     and
  - → openly generatedness of Boolean algebras (S.F. and Rinot [4]).
- [4] S.F. and Assaf Rinot, *Openly generated Boolean algebras and the Fodor-type Reflection Principle*, submitted.

## Some applications

- ▶ The topological (graph-theoretic, Boolean algebraic) reflection principles mentioned above are all equivalent to each other over ZFC.
- ▶ All these reflection principles imply Ordinal Reflection Principle

# Theorem 9 (S.F. et al. [1])

- ▶ Hence, all reflection principles above impose almost no restriction on the size of continuum. **cf.:** Under slightly stronger reflection principles, the continuum is  $\leq \aleph_2$  (S. Todorcevic).
- ▶ But these reflection principles (or equivalently FRP) do have certain effect on cardinal arithmetic.



- ▶ The topological (graph-theoretic, Boolean algebraic) reflection principles mentioned above are all equivalent to each other over ZFC.
- ▶ All these reflection principles imply Ordinal Reflection Principle

- ▶ Hence, all reflection principles above impose almost no restriction on the size of continuum. **cf.**: Under slightly stronger reflection principles, the continuum is  $\leq \aleph_2$  (S. Todorcevic).
- ▶ But these reflection principles (or equivalently FRP) do have certain effect on cardinal arithmetic.

- ▶ The topological (graph-theoretic, Boolean algebraic) reflection principles mentioned above are all equivalent to each other over ZFC.
- ▶ All these reflection principles imply Ordinal Reflection Principle.

- ▶ Hence, all reflection principles above impose almost no restriction on the size of continuum. **cf.:** Under slightly stronger reflection principles, the continuum is  $\leq \aleph_2$  (S. Todorcevic).
- ▶ But these reflection principles (or equivalently FRP) do have certain effect on cardinal arithmetic.

- ▶ The topological (graph-theoretic, Boolean algebraic) reflection principles mentioned above are all equivalent to each other over ZFC.
- ▶ All these reflection principles imply Ordinal Reflection Principle.

- ▶ Hence, all reflection principles above impose almost no restriction on the size of continuum. **cf.:** Under slightly stronger reflection principles, the continuum is  $\leq \aleph_2$  (S. Todorcevic).
- ▶ But these reflection principles (or equivalently FRP) do have certain effect on cardinal arithmetic.

- ▶ The topological (graph-theoretic, Boolean algebraic) reflection principles mentioned above are all equivalent to each other over ZFC.
- ▶ All these reflection principles imply Ordinal Reflection Principle.

- ▶ Hence, all reflection principles above impose almost no restriction on the size of continuum. cf.: Under slightly stronger reflection principles, the continuum is  $\leq \aleph_2$  (S. Todorcevic).
- ▶ But these reflection principles (or equivalently FRP) do have certain effect on cardinal arithmetic.

- ▶ The topological (graph-theoretic, Boolean algebraic) reflection principles mentioned above are all equivalent to each other over ZFC.
- ▶ All these reflection principles imply Ordinal Reflection Principle.

- ▶ Hence, all reflection principles above impose almost no restriction on the size of continuum. **cf.**: Under slightly stronger reflection principles, the continuum is  $\leq \aleph_2$  (S. Todorcevic).
- ▶ But these reflection principles (or equivalently FRP) do have certain effect on cardinal arithmetic.

- ▶ The topological (graph-theoretic, Boolean algebraic) reflection principles mentioned above are all equivalent to each other over ZFC.
- ▶ All these reflection principles imply Ordinal Reflection Principle.

- ▶ Hence, all reflection principles above impose almost no restriction on the size of continuum. **cf.**: Under slightly stronger reflection principles, the continuum is  $\leq \aleph_2$  (S. Todorcevic).
- ▶ But these reflection principles (or equivalently FRP) do have certain effect on cardinal arithmetic.

FRP implies Shelah's Strong Hypothesis.

Shelah's Strong Hypothesis (SSH) is the assertion equivalent to the following:

For every uncountable cardinal  $\kappa$  of countable cofinality, we have  $cf([\kappa]^{\aleph_0},\subseteq)=\kappa^+$ .

▶ By the characterization above of SSH, Singular Cardinal Hypothesis (SCH) follows from SSH.

FRP implies Shelah's Strong Hypothesis.

Shelah's Strong Hypothesis (SSH) is the assertion equivalent to the following:

For every uncountable cardinal  $\kappa$  of countable cofinality, we have  $cf([\kappa]^{\aleph_0},\subseteq)=\kappa^+.$ 

▶ By the characterization above of SSH, Singular Cardinal Hypothesis (SCH) follows from SSH.

FRP implies Shelah's Strong Hypothesis.

► Shelah's Strong Hypothesis (SSH) is the assertion equivalent to the following:

For every uncountable cardinal  $\kappa$  of countable cofinality, we have  $cf([\kappa]^{\aleph_0},\subseteq)=\kappa^+.$ 

▶ By the characterization above of SSH, Singular Cardinal Hypothesis (SCH) follows from SSH.

FRP implies Shelah's Strong Hypothesis.

► Shelah's Strong Hypothesis (SSH) is the assertion equivalent to the following:

For every uncountable cardinal  $\kappa$  of countable cofinality, we have  $cf([\kappa]^{\aleph_0},\subseteq)=\kappa^+$ .

▶ By the characterization above of SSH, Singular Cardinal Hypothesis (SCH) follows from SSH.

FRP implies Shelah's Strong Hypothesis.

► Shelah's Strong Hypothesis (SSH) is the assertion equivalent to the following:

For every uncountable cardinal  $\kappa$  of countable cofinality, we have  $cf([\kappa]^{\aleph_0},\subseteq)=\kappa^+$ .

▶ By the characterization above of SSH, Singular Cardinal Hypothesis (SCH) follows from SSH.

FRP implies Shelah's Strong Hypothesis.

#### (Very Rough) Sketch of the Proof

Suppose that SSH does not hold. Then there is a better scale  $\langle\langle\lambda_i:i<\omega\rangle,\langle f_\alpha:\alpha<\lambda^+\rangle\rangle$  for a cardinal  $\lambda$  with  $\mathrm{cf}(\lambda)=\omega_1$ 

Let  $\varphi: {}^{\omega>}\lambda \to \lambda$  be a 1-1 mapping,  $E = E_{\omega}^{\lambda^+} \setminus \lambda$  and let  $g: E \to [\lambda^+]^{\aleph_0}$  be s.t.  $g(\alpha) = \{\varphi(f_{\alpha} \upharpoonright n) : n \in \omega\}$ .

Then g together with E is a counterexample to  $FRP(\lambda^+)$ .

FRP implies Shelah's Strong Hypothesis.

#### (Very Rough) Sketch of the Proof:

Suppose that SSH does not hold. Then there is a better scale  $\langle\langle\lambda_i:i<\omega\rangle,\langle f_\alpha:\alpha<\lambda^+\rangle\rangle$  for a cardinal  $\lambda$  with  $\mathrm{cf}(\lambda)=\omega_1$ 

Let  $\varphi: {}^{\omega>}\lambda \to \lambda$  be a 1-1 mapping,  $E = E_{\omega}^{\lambda^+} \setminus \lambda$  and let  $g: E \to [\lambda^+]^{\aleph_0}$  be s.t.  $g(\alpha) = \{\varphi(f_{\alpha} \upharpoonright n) : n \in \omega\}$ .

Then g together with E is a counterexample to  $FRP(\lambda^+)$ .

FRP implies Shelah's Strong Hypothesis.

#### (Very Rough) Sketch of the Proof:

Suppose that SSH does not hold. Then there is a better scale  $\langle \langle \lambda_i : i < \omega \rangle, \langle f_\alpha : \alpha < \lambda^+ \rangle \rangle$  for a cardinal  $\lambda$  with  $\mathrm{cf}(\lambda) = \omega_1$ .

Let  $arphi: {}^{\omega>}\lambda o \lambda$  be a 1-1 mapping,  $E=E_{\omega}^{\lambda^+}\setminus \lambda$  and let  $g:E o [\lambda^+]^{\aleph_0}$  be s.t.  $g(lpha)=\{arphi(f_lpha\restriction n):n\in\omega\}.$ 

Then g together with E is a counterexample to  $FRP(\lambda^+)$ .

FRP implies Shelah's Strong Hypothesis.

#### (Very Rough) Sketch of the Proof:

Suppose that SSH does not hold. Then there is a better scale  $\langle \langle \lambda_i : i < \omega \rangle, \langle f_\alpha : \alpha < \lambda^+ \rangle \rangle$  for a cardinal  $\lambda$  with  $\mathrm{cf}(\lambda) = \omega_1$ .

Let  $\varphi: {}^{\omega>}\lambda \to \lambda$  be a 1-1 mapping,  $E = E_{\omega}^{\lambda^+} \setminus \lambda$  and let  $g: E \to [\lambda^+]^{\aleph_0}$  be s.t.  $g(\alpha) = \{\varphi(f_{\alpha} \upharpoonright n) : n \in \omega\}$ .

Then g together with E is a counterexample to  $FRP(\lambda^+)$ .

FRP implies Shelah's Strong Hypothesis.

#### (Very Rough) Sketch of the Proof:

Suppose that SSH does not hold. Then there is a better scale  $\langle \langle \lambda_i : i < \omega \rangle, \langle f_\alpha : \alpha < \lambda^+ \rangle \rangle$  for a cardinal  $\lambda$  with  $\mathrm{cf}(\lambda) = \omega_1$ .

Let  $\varphi: {}^{\omega>}\lambda \to \lambda$  be a 1-1 mapping,  $E = E_{\omega}^{\lambda^+} \setminus \lambda$  and let  $g: E \to [\lambda^+]^{\aleph_0}$  be s.t.  $g(\alpha) = \{\varphi(f_{\alpha} \upharpoonright n) : n \in \omega\}$ .

Then g together with E is a counterexample to  $FRP(\lambda^+)$ .

FRP implies Shelah's Strong Hypothesis.

#### (Very Rough) Sketch of the Proof:

Suppose that SSH does not hold. Then there is a better scale  $\langle \langle \lambda_i : i < \omega \rangle, \langle f_\alpha : \alpha < \lambda^+ \rangle \rangle$  for a cardinal  $\lambda$  with  $\operatorname{cf}(\lambda) = \omega_1$ .

Let  $\varphi: {}^{\omega>}\lambda \to \lambda$  be a 1-1 mapping,  $E = E_{\omega}^{\lambda^+} \setminus \lambda$  and let  $g: E \to [\lambda^+]^{\aleph_0}$  be s.t.  $g(\alpha) = \{\varphi(f_{\alpha} \upharpoonright n) : n \in \omega\}$ .

Then g together with E is a counterexample to  $FRP(\lambda^+)$ .

FRP implies Shelah's Strong Hypothesis.

#### (Very Rough) Sketch of the Proof:

Suppose that SSH does not hold. Then there is a better scale  $\langle \langle \lambda_i : i < \omega \rangle, \langle f_\alpha : \alpha < \lambda^+ \rangle \rangle$  for a cardinal  $\lambda$  with  $\mathrm{cf}(\lambda) = \omega_1$ .

Let  $\varphi: {}^{\omega>}\lambda \to \lambda$  be a 1-1 mapping,  $E = E_{\omega}^{\lambda^+} \setminus \lambda$  and let  $g: E \to [\lambda^+]^{\aleph_0}$  be s.t.  $g(\alpha) = \{\varphi(f_{\alpha} \upharpoonright n) : n \in \omega\}$ .

Then g together with E is a counterexample to  $FRP(\lambda^+)$ .

FRP implies Shelah's Strong Hypothesis.

#### (Very Rough) Sketch of the Proof:

Suppose that SSH does not hold. Then there is a better scale  $\langle \langle \lambda_i : i < \omega \rangle, \langle f_\alpha : \alpha < \lambda^+ \rangle \rangle$  for a cardinal  $\lambda$  with  $\mathrm{cf}(\lambda) = \omega_1$ .

Let  $\varphi: {}^{\omega>}\lambda \to \lambda$  be a 1-1 mapping,  $E = E_{\omega}^{\lambda^+} \setminus \lambda$  and let  $g: E \to [\lambda^+]^{\aleph_0}$  be s.t.  $g(\alpha) = \{\varphi(f_{\alpha} \upharpoonright n) : n \in \omega\}$ .

Then g together with E is a counterexample to  $FRP(\lambda^+)$ .

FRP implies Shelah's Strong Hypothesis.

#### (Very Rough) Sketch of the Proof:

Suppose that SSH does not hold. Then there is a better scale  $\langle \langle \lambda_i : i < \omega \rangle, \langle f_\alpha : \alpha < \lambda^+ \rangle \rangle$  for a cardinal  $\lambda$  with  $\mathrm{cf}(\lambda) = \omega_1$ .

Let  $\varphi: {}^{\omega>}\lambda \to \lambda$  be a 1-1 mapping,  $E = E_{\omega}^{\lambda^+} \setminus \lambda$  and let  $g: E \to [\lambda^+]^{\aleph_0}$  be s.t.  $g(\alpha) = \{\varphi(f_{\alpha} \upharpoonright n) : n \in \omega\}$ .

Then g together with E is a counterexample to  $FRP(\lambda^+)$ .

SSH is equivalent to the following assertion

For any countably tight space X, if X is  $< \aleph_1$ -thin then X is thin.

- ▶ A topological space X is *thin* if  $|\overline{D}| \le |D|^+$  holds for all  $D \subseteq X$ .
- ▶ A topological space X is  $<\kappa$ -thin if  $|\overline{D}| \le |D|^+$  holds for all  $D \subseteq X$  of cardinality  $<\kappa$ .

- ▶ Are there any natural topological assertions which are equivalent to Axiom R (RP, WRP etc. resp.) ?
- For each topological theorem independent from ZFC, provide a set-theoretic principle characterizing the theorem (Topological

SSH is equivalent to the following assertion:

For any countably tight space X, if X is  $< \aleph_1$ -thin then X is thin.

- ▶ A topological space X is *thin* if  $|\overline{D}| \le |D|^+$  holds for all  $D \subseteq X$ .
- ▶ A topological space X is  $<\kappa$ -thin if  $|\overline{D}| \le |D|^+$  holds for all  $D \subseteq X$  of cardinality  $<\kappa$ .

- ▶ Are there any natural topological assertions which are equivalent to Axiom R (RP, WRP etc. resp.) ?
- For each topological theorem independent from ZFC, provide a set-theoretic principle characterizing the theorem (Topological

SSH is equivalent to the following assertion:

For any countably tight space X, if X is  $\langle \aleph_1$ -thin then X is thin.

- ▶ A topological space X is thin if  $|\overline{D}| < |D|^+$  holds for all  $D \subset X$ .

SSH is equivalent to the following assertion:

For any countably tight space X, if X is  $< \aleph_1$ -thin then X is thin.

- ▶ A topological space X is *thin* if  $|\overline{D}| \le |D|^+$  holds for all  $D \subseteq X$ .
- ▶ A topological space X is  $<\kappa$ -thin if  $|\overline{D}| \le |D|^+$  holds for all  $D \subseteq X$  of cardinality  $<\kappa$ .

- ▶ Are there any natural topological assertions which are equivalent to Axiom R (RP, WRP etc. resp.) ?
- For each topological theorem independent from ZFC, provide a set-theoretic principle characterizing the theorem (Topological

SSH is equivalent to the following assertion:

For any countably tight space X, if X is  $< \aleph_1$ -thin then X is thin.

- ▶ A topological space X is *thin* if  $|\overline{D}| \le |D|^+$  holds for all  $D \subseteq X$ .
- ▶ A topological space X is  $<\kappa$ -thin if  $|\overline{D}| \le |D|^+$  holds for all  $D \subseteq X$  of cardinality  $<\kappa$ .

- ▶ Are there any natural topological assertions which are equivalent to Axiom R (RP, WRP etc. resp.) ?
- For each topological theorem independent from ZFC, provide a set-theoretic principle characterizing the theorem (Topological

SSH is equivalent to the following assertion:

For any countably tight space X, if X is  $< \aleph_1$ -thin then X is thin.

- ▶ A topological space X is *thin* if  $|\overline{D}| \le |D|^+$  holds for all  $D \subseteq X$ .
- ▶ A topological space X is  $<\kappa$ -thin if  $|\overline{D}| \le |D|^+$  holds for all  $D \subseteq X$  of cardinality  $<\kappa$ .

- ▶ Are there any natural topological assertions which are equivalent to Axiom R (RP, WRP etc. resp.) ?
- ► For each topological theorem independent from ZFC, provide a set-theoretic principle characterizing the theorem (Topological Reverse Mathematics)!

SSH is equivalent to the following assertion:

For any countably tight space X, if X is  $< \aleph_1$ -thin then X is thin.

- ▶ A topological space X is thin if  $|\overline{D}| < |D|^+$  holds for all  $D \subseteq X$ .
- ▶ A topological space X is  $<\kappa$ -thin if  $|\overline{D}| < |D|^+$  holds for all  $D \subseteq X$  of cardinality  $< \kappa$ .

- ▶ Are there any natural topological assertions which are equivalent to Axiom R (RP, WRP etc. resp.)?
- ▶ For each topological theorem independent from ZFC, provide a set-theoretic principle characterizing the theorem (Topological Reverse Mathematics)!

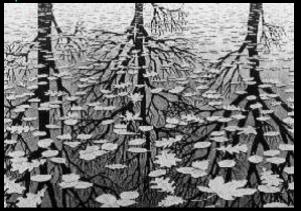
¡Gracias por su atención!



A part of: M.C.Escher, "Three Worlds" (1955)

These slides and their printer friendly version are linked to: http://kurt.scitec.kobe-u.ac.jp/~fuchino/

¡Gracias por su atención!



A part of: M.C. Escher, "Three Worlds" (1955)

These slides and their printer friendly version are linked to: http://kurt.scitec.kobe-u.ac.jp/~fuchino/