
Forcing Axioms and the Continuum Problem

Sakaé Fuchino (渕野 昌)*1

In this note, we give a survey on recent developments pertaining to forcing axioms

with emphasis on their characterizations and consequences connected to the Con-

tinuum Problem. Nonspecialists in set theory and/or students in mathematics are

supposed to be the readers, and thus we tried to make this as self-contained as

possible.

Due to the limitation on the extent of the article, however, many proofs are

simply omitted. This is in particular the case for the results cited in the later

sections. Those interested in the technical details may consult with papers and

textbooks cited in the references at the end of the article.

In Section 1, we introduce Martin’s axiom formulated in terms of general topol-

ogy and show how this axiom is used to establish the independence of certain

mathematical assertions from the usual axiom system of set theory.

After reviewing some basic facts about forcing in Section 2, we give in Section 3

a characterization of Martin’s axiom in terms of notions connected to the method

of forcing. In most of the modern textbooks on set theory, the characterization

given in this section is the official definition of Martin’s axiom. In Section 4,

we give two further characterizations of Martin’s axiom in terms of forcing: a

characterization due to the author and another characterization by J. Bagaria.

Both of these characterizations assert a certain absoluteness of generic extension

over the universe of set theory, and they suggest that Martin’s Axiom is a very

*1This text is a translation of an expository article: Forcing axioms and the continuum
problem—from recent topics on axiomatic set theory. (Japanese) 数学 (Sūgaku) 56 (2004), no.
3, 248–259 (MR2086114) and is to appear/appeared in “Sugaku Expositions”.

Dept. of Natural Science and Mathematics College of Engineering Chubu University Kasugai
Aichi 487-8501, Japan. fuchino@isc.chubu.ac.jp
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natural axiom which might even be considered as a candidate for one of the “true”

axioms extending the usual axiom system of set theory.

Finally, in Section 5, several known strengthenings of Martin’s axiom are con-

sidered. Some recent results concering these axioms are also discussed.

Following the request of the editor of the original version of the article, the

Japanese original of the present text bore a subtitle which can be translated as

“recent developments in set theory”. In a short survey article like this, however,

we can mention only a small fraction of the recent explosive developments of set

theory. There is also an article by Yo Matsubara [21] in this Journal on topics in

set theory, but his article together with the present one still does not cover many

branches of set theory such as infinitary combinatorics, set theory of reals, theory

of inner models, pcf theory or the theory of large cardinals among others*2. Thus

we are trying here merely to describe some of the recent topics in a branch of

set theory. Since most of the recent developments in set theory seem to remain

largely unknown to the general audience in mathematics, I do hope very much that

expository articles on other fields of set theory will be written in the future as well.

Masayuki Takata, Yoshihiro Abe, Yo Matsubara, Teruyuki Yorioka, Tadatoshi

Miyamoto as well as the referees of the Japanese version of this article read the

manuscript carefully and gave some valuable suggestions. The author would like

to thank them all.

1 Martin’s Axiom

There are several quite different formulations of Martin’s Axiom. In this section,

we begin with introducing the axiom as an assertion on topological spaces.

*2We cannot go into these topics of set theory here but merely suggest some references. For set
theory of the reals see e.g. [3]. [13] is a well-written introduction to the pcf theory of S. Shelah
([26]). For the theory of large cardinals, A. Kanamori [16] is a good reference. There are various
results which can be classified as infinitary combinatorics and such results are often connected
also to other fields of mathematics. Some of such results are to be found in standard textbooks
on set theory such as [18] or [14]. The classical theory of inner models (i.e., the theory of the
constructible universe) can be learned in [6]. For more recent developments in the theory, the
reader may consult, e.g., [19], [32]. The forthcoming [17] and [15] should contain most of the
recent topics in all of these subjects.
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A topological space X = (X,O) satisfies the c.c.c. (the countable chain condi-

tion) if all pairwise disjoint families F ⊆ O of open sets are countable. X = (X,O)

satisfies the c.c.c. if and only if X has the following property, which resembles the

definition of a Lindelöf space: For any F ⊆ O, if
∪
F is dense in X, then there is

a countable F ′ ⊆ F such that
∪
F ′ is dense X*3.

Using this terminology, Martin’s Axiom (MA) can be formulated as follows:

(MA) For any c.c.c. compact Hausdorff space X = (X,O), if F ⊆ O is a

family of dense subsets of X with | F | < 2ℵ0 , then the intersection
∩

F
of F is nonempty.

Here, | F | denotes the cardinality (size) of the set F , that is, the cardinality of

the set Λ if F is given as F = {Oα : α ∈ Λ} where the enumeration α 7→ Oα is

one-to-one. 2ℵ0 denotes the size of the continuum*4. Hence | F | < 2ℵ0 means that

the number (cardinality) of elements of F is smaller than the cardinality of the set

of all real numbers*5.

Remembering that the Continuum Hypothesis (CH) is the assertion 2ℵ0 = ℵ1

= the minimal uncountable cardinality*6*7, “| F | < 2ℵ0” is equivalent to “F is

countable” under CH. By the Baire Category Theorem, it follows that MA holds

under CH. By an iterative version of the method of forcing discussed in the next

section, we can also prove the following:

*3 For a family F of sets, if, for example, F = {Xα : α ∈ Λ}, we denote by
∪

F the set∪
α∈Λ Xα and by

∩
F the set

∩
α∈Λ Xα. If F = {a, b} we have

∪
F = a ∪ b and

∩
F = a ∩ b.

*4In set theory, the set of natural numbers N seen as a (transfinite) ordinal is usually denoted
by ω. It is also denoted by ω0 or ℵ0 when it is seen as the first infinite cardinal. For a cardinal
number κ, 2κ denotes the cardinality of the power set P(κ) of κ. Thus 2ℵ0 is the cardinality
| P(ω) | of the power set (i.e., the set of all subsets) P(ω) of ω. Since there is a natural bijection
between P(ω) and the set of all reals R, we have 2ℵ0 = | P(ω) | = |R |.

*5For the notation “
∩
F”, see the footnote *3.

*6This is equal to the minimal possible size of an infinite set which cannot be mapped to N
bijectively.

*7Similarly, we denote by ℵ2 the smallest cardinal above ℵ1, with ℵ3 the smallest cardinal
above ℵ2, etc.
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Theorem 1 (Martin–Solovay [20], for a detailed proof, see e.g. [18]) The axiom

system obtained by adding the negation of the Continuum Hypothesis (¬CH) and

MA to the axiom system ZFC*8 is equiconsistent with ZFC.

Here, ZFC denotes the axiom system of Zermelo-Fraenkel set theory with the Ax-

iom of Choice. An axiom system T and another system T ′ are equiconsistentif

consistency of T can be concluded from the assumption of the consistency T ′ and

vice versa.

It is clear that the consistency of the system ZFC + ¬CH + MA implies the

consistency of its subsystem ZFC. So the point here is that the consistency of ZFC

+ ¬CH + MA can be derived from the assumption of consistency of ZFC and this

can be done using the method of forcing. The assertion of Theorem 1 is often

formulated also as “¬CH + MA is consistent with ZFC”*9.

MA cannot be proved from ZFC + ¬CH. For example, in a Cohen model, which

we shall discuss later, it is known that Martin’s axiom does not hold. Thus MA

is independent from ZFC or even independent from ZFC + ¬CH. The following

consequence of ¬CH + MA is also often used:

(MAℵ1) For any c.c.c. compact Hausdorff space X = (X,O), if F ⊆ O is a

family of dense subsets of X with | F | ≤ ℵ1, then the intersection∩
F of F is not empty.

MAℵ1 is strictly weaker than ¬CH + MA. But ¬CH follows from MAℵ1 :

Lemma 2 MAℵ1 implies ¬CH.

Proof. We show the contrapositive. Assume that CH holds. We can then find an

enumeration ri, i ∈ Λ of the closed interval X = [0, 1] such that the index set Λ

is of cardinality ℵ1. X is a compact Hausdorff space with respect to the canonical

*8In the following we shall denote this axiom system with ZFC + ¬CH + MA.
*9In contrast, the statement “ZFC + ¬CH + MA is consistent” is not correct: Though this is

what we actually believe, the exact formulation cannot be done in this way since the consistency
of ZFC is unprovable by Gödel’s Incompleteness Theorem (at least by a purely finitary argument).
Nevertheless we often argue intuitively and say in such a situation that “ZFC + ¬CH + MA is
consistent”. Further we often leave out mentioning ZFC and say simply that “¬CH + MA is
inconsistent”. But what is meant in such a statement is always the relative consistency in the
above sense.
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topology on it. It is also easy to check that X satisfies the c.c.c. For each i ∈ Λ,

let Di = X \ {ri}. Then each Di is a dense subset of X while
∩

i∈Λ Di = ∅. This

shows that MAℵ1 does not hold. ¤

Using ¬CH + MA or MAℵ1 on the one hand and some other principle which is

inconsistent with this but is shown to be consistent with ZFC on the other hand,

we can prove the independence of a lot of interesting mathematical assertions by

purely combinatorial arguments*10.

The independence proof of Souslin’s Hypothesis is a typical example of such a

proof. The set of reals R with the usual ordering ≤ on it is separable and dense in

itself*11, connected and without endpoints. Actually, these properties characterize

the linearly ordered set (R,≤).

Souslin’s Hypothesis (1920) states that in the characterization of (R,≤) above,

separability may be replaced by the c.c.c. For this hypothesis the following (now

classical) results are known *12.

Theorem 3 Under MAℵ1, every c.c.c. linearly ordered set which is dense in itself,

connected and without endpoints, is order isomorphic to (R,≤). That is, under

MAℵ1, Souslin’s Hypothesis holds.

On the other hand, from the combinatorial principle ♢ℵ1 , which follows from

Gödel’s V = L asserting that every set is constructible, that is, obtained by a

constructible procedure by transfinite recursion over (possibly any) ordinals, the

negation of the assertion of Theorem 3 follows:

Theorem 4 Under ♢ℵ1, there exists a c.c.c. connected, dense in itself linear or-

dering (X,≤) without endpoints which is not isomorphic to (R,≤). In particular,

(X,≤) is non-separable.

By the theorems above and by the fact that each of MAℵ1 or ♢ℵ1 is consistent over

ZFC we conclude:

*10Though for more sophisticated independence proofs, direct use of a (very often quite involved)
forcing argument is inevitable.

*11A linear ordering (X,≤X) is dense in itself if for all a, b ∈ X with a <X b, there is always
c ∈ X such that a <X c <X b.

*12For more about Souslin’s Hypothesis, see e.g. [18]
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Corollary 5 Souslin’s Hypothesis is independent from ZFC.

Besides Souslin’s Hypothesis, there are many mathematical assertions provable

under Martin’s axiom + ¬CH or MAℵ1 (for more about such assertions, see e.g.

[8]).

2 Forcing

Historically the forcing method was introduced by P. Cohen to prove the consis-

tency of the negation of the Continuum Hypothesis or the Axiom of Choice in the

1960’s. The method was soon generalized by R. Solovay and others into a powerful

tool for proving the consistency of various assertions such as MA + ¬CH in the

previous section.

The topological definition of MA given in the previous section is mathemati-

cally decent, but it seems that the formulation of the axiom gives us no intuition

about whether it should be true or not. In terms of forcing, we can give several

characterizations of MA in which a better insight into its set-theoretical meaning

seems to be obtained. In some sense we can even argue that the characterizations

suggest the correctness of the axiom. We shall discuss this in the next sections. In

this section, we shall give an overview of the method of forcing. For the technical

details omitted here, see e.g. [18] or [14].

Intuitively, forcing is the method for construction of new models of ZFC: Start-

ing from a given model M of ZFC, we take a so-called generic filter G outside M

and then add G to M to construct the new model M ⊆ M [G] of ZFC, which is

called a generic extension of M . By constructing a generic extension M [G] in which

a mathematical statement φ holds, we can show the consistency of φ with ZFC.

This can be compared with the construction of a polynomial ring: Starting from

a given ring R, or a model of the axioms of the ring, we choose a variable symbol

x and construct the ring R[x] ⊇ R consisting of all polynomials with the variable

x, which is again a model of the axioms*13.

*13A sharper analogy to the a construction of generic extension can be obtained when we consider
an infinite number of variable symbols x1, x2,. . . , construct R[ x1, x2, . . . ] and then take the
residue ring R[ x1, x2, . . . ]/I for some ideal I over R[x1, x2, . . . ].
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For the axiom system ZFC, however, the description of forcing just formulated

as above causes some serious problems. Like the example of the ring R[x], the

construction of a model should be performed inside a set-theoretic universe. But

we cannot prove the existence of a model of ZFC from ZFC itself by the Incom-

pleteness Theorem. Hence, to be able to argue as above, we have to start from

some strengthening of ZFC (e.g. ZFC + some large cardinal axiom) in which the

existence of a model of ZFC is provable. However the primary purpose of forcing is

to show the consistency of some mathematical statement φ over ZFC (or over some

extension of ZFC) by showing that φ holds in a generic extension M [G]. Thus the

setting would be very clumsy if we were forced to perform the forcing construction

in a theory which is stronger than ZFC(or the extension of ZFC in consideration).

An alternative would be to treat the “real” universe V of set theory (i.e. the class

of all sets) as the starting model (or the ground model in forcing terminology) of

the forcing construction. But then the meaning of taking G outside V becomes

obscure.

To overcome this problematics, we argue as follows*14. Let ZFC′ be an arbi-

trary (but concretely given) system of axioms consisting of finitely many axioms

from ZFC which contains enough axioms needed for the following discussions*15.

By Lévy’s Reflection Theorem, the Löwenheim-Skolem Theorem and Mostowski’s

Theorem, we can prove in ZFC that, for a finite subsystem ZFC′ of ZFC, there is

a countable set M such that M together with the element relation ∈ restricted to

M (which we shall also denote with ∈ for simplicity) forms a model of ZFC′; in

particular, M can be chosen to be transitive*16.

For a set-theoretic assertion φ, if we can find some transitive M [G] such that

(M [G],∈) satisfies*17 ZFC′ and φ, we can conclude that the negation ¬φ of φ

cannot be proved from ZFC′: Since (M [G],∈) satisfies ZFC′, if ¬φ were provable

*14This problem can also be solved by arguing with the relation “p °P φ(ẋ1, . . . , ẋn)” discussed
at the beginning of Section 4. For details see [18] Ch.VII §9.

*15Strictly speaking, for the construction of M [G] from M below, we have to extend ZFC′ by
adding some more (finitely many) axioms of ZFC to a theory ZFC′′ where the forcing argument
which we describe below is possible in the framework of ZFC′′ and then take a model M of ZFC′′.

*16M is said to be transitive if for all x ∈ M and y ∈ x we have y ∈ M .
*17Here again, we use the symbol “∈” to denote the ∈-relation restricted to M [G].
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from ZFC′ so (M [G],∈) would satisfy ¬φ. But this is a contradiction. Since ZFC′

was arbitrary except that it contains “enough” axioms of ZFC, we have proved

that ¬φ is not provable from ZFC*18.

Let us look at some more technical details of forcing constructions*19.

For a finite subsystem ZFC′ of ZFC (which is large enough in the sense that

it contains all axioms of ZFC necessary for the further arguments), let M be as

above. Since M satisfies ZFC′ and since ZFC′ contains enough axioms that we

need later, we can treat M as if it were a model of ZFC. Hence, we shall simply

say “M is a model of ZFC” in such a situation. An element P = (P,≤P) of M is

said to be a forcing notion if P is a pseudo-ordering*20 with the maximal element

1lP.

D ⊆ P is dense in P if for every p ∈ P there is a q ∈ D such that q ≤P p. A

subset G of P which need not be an element of M is said to be a filter over P if G

is closed upward and for any p, q ∈ G there is an r ∈ G such that r ≤P p, q *21.

A filter G over P is M-generic if we have D ∩ G ̸= ∅ for any dense D ⊆ P with

D ∈ M . In some of the literature such a G is also called a P-generic filter over M ,

or (P,M)-generic filter.

Lemma 6 For any forcing notion P ∈ M and p ∈ P, there is an M-generic filter

G over P such that p ∈ G.

Proof. Since M is countable, there are at most countably many D ∈ M which

*18Some readers may find this assertion of the form “we proved that ... is not provable” strange:
with “... is not provable” we mean that “there is no formal proof of ... from the axioms of
ZFC” while the claim “we proved that ...” is considered to be a statement in ‘Metamathematics’
about the formal deduction system of predicate logic with the axiom system ZFC. Analyzing
the argument above more closely, we see that the conclusion we actually obtained here is the
following metamathematical statement: “given a proof of ¬φ from ZFC, we can rearrange the
proof to obtain a proof of the contradiction from ZFC alone”.

*19Formally the arguments below are proofs from the axiom system ZFC of corresponding formal
assertions (or intuitively they are done in the “universe” of set theory that these formal assertions
describe).

*20(P,≤P) is a pseudo-ordering if ≤P is transitive and p ≤P p holds for every p ∈ P.
*21If there exists r ∈ P with r ≤P p, q, we say that p and q are compatible in P; otherwise p

and q are incompatible in P. Thus this condition simply means that elements of G are pairwise
compatible.
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are dense subsets of P. Hence we can enumerate such sets as D0, D1, D2, . . . .

Thus we can construct a sequence p0, p1, p2, . . . of elements of P inductively such

that

(1) p ≥P p0 ≥P p1 ≥P p2 ≥P · · · , and

(2) pi ∈ Di for all i ∈ N.

((2) is possible by the density of Di.) Now let G = {q ∈ P : pi ≤P q for some i ∈
ω}. Then G is an M -generic filter over P containing p. ¤

In the proof above, we have pi ∈ M for all i ∈ ω. However, the enumeration

⟨Di : i ∈ N⟩ in general is not in M (M might “think” that there are uncountably

many dense subsets of P!). Thus the inductive construction of p0, p1, p2, . . . using

this enumeration cannot be done in general inside M . Hence, G need not be an

element of M . Actually, if, for every p ∈ P, there exist incompatible q, r ≤P p, we

can show that any M -generic filter over M is not an element of M .

For M , P, G as above, we can construct a countable transitive model N of ZFC

such that: (a) M ⊆ N and G ∈ N ; (b) the ordinals in the sense of M coincide with

ordinals in the sense of N ; (c) N is the minimal transitive model of ZFC satisfying

(a) and (b) (with respect to ⊆).

Since N as above is unique by (c), we denote it by M [G] and call a generic

extension of M by the generic set G.

The crucial point here is that most of the properties of N we want to know can

be decided already inside M in the following sense: We can define names of each

element of M [G], or P-names, independent of G. More precisely, we can introduce

the class MP ⊆ M of P-names in M as a definable class in M (that is, definable

with the parameter P). Given an M -generic filter G over P, we can define, for each

P-name ẋ, the interpretation ẋG of ẋ such that M [G] = {ẋG|ẋ ∈ MP}. For each

x ∈ M , we have a standard P-name x̌ ∈ MP such that x̌G = x for any generic filter

G. If no confusion can arise, we often denote x̌ simply by x.

For any p ∈ P, for any formula φ representing a set-theoretic assertion with n

free variables and for any ẋ1, . . . , ẋn ∈ MP, let us denote with

p °P φ(ẋ1, . . . , ẋn)

the assertion

“φ(ẋG
1 , . . . , ẋG

n ) holds in M [G] for any M -generic filter over P with p ∈ G”*22.
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Then the relation “p °P φ(ẋ1, . . . , ẋn)” on p and ẋ1, . . . , ẋn is definable in M .

The largest element 1lP of P is contained in very M -generic filter over P. Hence, if

M |= “1lP °P φ(ẋ1, . . . , ẋn)”, then we have M [G] |= φ(ẋG
1 , . . . , ẋG

n ) for any generic

extension over P. “1lP °P · · · ” is also denoted by “ °P · · · ”.

We can also construct a standard P-name Ġ such that ĠG = G holds for any

M -generic filter G over P. For any p, q ∈ P, we have M |= “ p °P q ∈ Ġ ” if and

only if, for any r ≤P p there is an s ≤P r such that s ≤P q.

The following property is also often used: for an M -generic filter G over P, if

M [G] |= φ(ẋG
1 , . . . , ẋG

n ), then there is a p ∈ G such that M |= “ p °P φ(ẋ1, . . . , ẋn) ”.

The following lemma follows directly from this.

Lemma 7 (1) For any p ∈ P, formula φ and ẋ1, . . . , ẋn ∈ MP, there is a q ≤P p

such that either M |= “ q °P φ(ẋ1, . . . , ẋn) ” or M |= “ q °P ¬φ(ẋ1, . . . , ẋn) ” holds.

(2) For any p ∈ P, formula φ and ẋ2, . . . , ẋn ∈ MP, if M |= “ p °P ∃xφ(x, ẋ2, . . . , ẋn)”,

then there is a q ≤P p and an ẋ1 ∈ MP such that M |= “ q °P φ(ẋ1, ẋ2, . . . , ẋn) ”.

(3) For any p ∈ P, X ∈ M and P-name ẋ, if M |= “ p °P ẋ ∈ X ” then there

is a q ≤P p and an x ∈ X such that M |= “ q °P ẋ = x ”.

A forcing notion P satisfies the c.c.c. (countable chain condition) if any uncount-

able X ⊆ P contains compatible elements. The following lemma shows a reason

for the importance of c.c.c. forcing notions in the theory of forcing.

Lemma 8 Let P ∈ M be a forcing notion such that M |= “P satisfies the c.c.c.”.

For any M -generic filter G over P, if κ is a cardinal in M , then κ remains a

cardinal in M [G]. *23.

Proof. We show here that ℵ1 in M (or (ℵ1)
M) is also ℵ1 in M [G]. For a regular

cardinal κ the proof is almost identical with this special case; the case for singular

cardinals follows from the case of regular cardinals.

Suppose for a contradiction that (ℵ1)
M is not a cardinal in M [G]. Then there

is a surjection f ∈ M [G] from N onto (ℵ1)
M . Let ḟ be a P-name of f ; that is, let

*22In the following, the assertion “φ(ẋG
1 , . . . , ẋG

n ) holds inM [G]” will be denoted by M [G] |=
φ(ẋG

1 , . . . , ẋG
n ). More generally, for a structure A and a1,. . . , an ∈ A, A |= ψ(a1, . . . , an) denotes

the assertion “ψ holds in A for a1,. . . , an”.
*23We say also that P preserves κ (as a cardinal).
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ḟ ∈ MP be such that f = ḟG. Then there is a p0 ∈ G such that p0 ∥–P “ ḟ is a

surjection from N onto (ℵ1)
M ”.

For the rest of the proof, we argue in M : By Lemma 7 (2) and (3), there is a

Dn ⊆ P for each n ∈ N such that: (a) each p ∈ Dn is either incompatible with p0

or such that there is kp ∈ N such that p ∥–P “ ḟ(n) = kp ” (i.e., p decides the value

of ḟ(n)) ; (b) elements of Dn are pairwise incompatible ; (c) Dn is maximal with

respect to ⊆ among those subsets of P satisfying (a) and (b).

By the c.c.c. of P and (b), each Dn is countable. Hence: (d) En = {kp : p ∈ Dn}
is countable. By the maximality of Dn, {p ∈ P : p ≤P q for some q ∈ Dn} is a

dense subset of P. It follows that (e) f(n) = ḟG(n) ∈ En.

Since both Dn and En for n ∈ N are (uniformly) definable M (and since

M satisfies ZFC), it follows that ⟨Dn : n ∈ N⟩, ⟨En : n ∈ N⟩ ∈ M . Hence

E =
∪
{En : n ∈ N} is an element of M as well. In particular, we have E $ (ℵ1)

M .

By (e), it follows that f [N] ⊆ E. But this contradicts the assumption that f is a

surjection on (ℵ1)
M . ¤

The historical forcing notion P. Cohen invented (together with the archetype of

modern forcing to prove the independence of the Continuum Hypothesis) is a typi-

cal example of the c.c.c. forcing notion. For any sets X and Y , let Fn(X, Y ) = {f :

f is a finite partial function from X to Y } with the ordering defined by f ≤ g ⇔
f extends g for f , g ∈ Fn(X, Y ). We can show that (Fn(X, Y ),≤) satisfies the c.c.c.

for any set X and any countable Y . Let X = ℵ2×N in M (that is, X = (ℵ2)
M ×N),

Y = N = NM and P = (Fn(X,Y ),≤). Translated in the modern terminology, P
corresponds to the forcing Cohen used in his seminal work and is called today the

Cohen forcing. Let G be an M -generic filter over P = (Fn(X, Y ),≤). By genericity

of G, g =
∪

G is a mapping from ℵM
2 × N to N and the gα’s for α ∈ (ℵ2)

M defined

by gα : N → N; n 7→ g(α, n) are pairwise distinct. Hence, by Lemma 8, we have

“2ℵ0 ≥ (ℵ2)
M = ℵ2” in M [G]. In other words, ¬CH holds in M [G]. Combining this

with the argument before footnote *18, we conclude that ZFC + ¬CH is consistent

provided that ZFC itself is consistent.
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3 Martin’s Axiom as a forcing axiom

Let P be a forcing notion and D be a family of dense subsets of P. G ⊆ P is said

to be a D-generic filter if G is a filter (in the sense of Section 2) and G∩D ̸= ∅ for

all D ∈ D. In this terminology, the M -generic filter in Section 2 is nothing but a

D-generic filter for D = {D : D is a dense subset of P and D ∈ M}.
Using this notion, MA can be characterized as the following assertion on forcing

notions (for more on classical characterizations of MA including the one we are

going to consider below, see e.g. [18] or [8]).

Theorem 9 MA is equivalent with the following assertion:

(A) For any c.c.c. forcing notion P and for any family D of dense subsets of

P with cardinality less than 2ℵ0, there is a D-generic filter over P.

Proof. MA ⇒ (A): Suppose that P is a c.c.c. forcing notion and D is a family of

dense subsets of P of cardinality less than 2ℵ0 . Let B be a Boolean algebra such

that there is an order-preserving mapping f : P → B \ {0} which also preserves

incompatibility and f [P] is a dense subset of B \ {0B}. Let X = (X,O) be the

canonical Boolean space dual to B. That is, X consists of ultrafilters over B and,

letting Ob = {F ∈ X : b ∈ F} for each b ∈ B \ {0}, the topology O on X is

generated from B = {Ob : b ∈ B \ {0}}. X is then a compact Hausdorff space

satisfying the c.c.c. For each D ∈ D, CD =
∪
{Ob : b ∈ f [D]} is a dense open

subset of X. Hence, by MA, there is an F ∗ ∈ X such that

(1) F ∗ ∈ CD ( ⇔ F ∗ ∩ f [D] ̸= ∅ ) for all D ∈ D.

Let G = f−1[F ∗]. By the assumption on f , G is a filter over P and, by (1), it is

D-generic.

(A) ⇒ MA: Suppose that (X,O) is a c.c.c. compact Hausdorff space and D
a family of open dense subsets of X of cardinality less than 2ℵ0 . Let P = {A ⊆
X : A is a nonempty closed subset of X} be the forcing notion equipped with the

partial ordering defined by A ≤P B ⇔ A ⊆ B for A, B ∈ P. For each D ∈ D,

ED = {A ∈ P : A ⊆ D} is dense in P. Hence, for E = {ED : D ∈ D}, there is

an E-generic filter G over P by (A). Since G is a family of closed subsets of X and,

being a filter over P, it has the finite intersection property by the definition of ≤P,

hence, by compactness of X, we have
∩

G ̸= ∅. Let x ∈
∩

G. Since x belongs to
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all D ∈ D, we have
∩

D ̸= ∅. ¤

Note that, while an M -generic filter cannot be taken as an element of M in general,

we are talking here about a D-generic filter which does exist (in the real universe

of set theory).

Similarly to Theorem 9, we can show that MAℵ1 is equivalent to the following:

(A’) For any c.c.c. forcing notion P and for any family D of dense subsets of P
with | D | ≤ ℵ1, there is a D-generic filter over P.

Assertions of the form similar to (A) or (A’) are often called forcing axioms.

Besides MA and MAℵ1 , the PFA and MM we will be talking about in Section 5 are

examples of important forcing axioms.

4 Martin’s axiom as generic absoluteness

For a forcing notion P in a countable transitive model M and a formula φ in the

language of set theory, we saw in Section 2 that the relation p °P φ(ẋ1, . . . , ẋn) for

p ∈ P and P-names ẋ1, . . . , ẋn ∈ MP is definable in M . The same definition can be

carried out in the universe V of all sets starting from an arbitrary forcing notion P.

Of course, we cannot consider V [G] in a strict sense; V consists of all sets so that

we cannot take a set G outside V . However, by rephrasing “°P φ” as “φ holds in

V [G]”, we can still argue as if “V [G]” would exist.

Using this, we can give the following characterization of MA :

Theorem 10 (S. Fuchino [9]) MA is equivalent to the following assertion:

(B) For every c.c.c. forcing notion P and mathematical structures A, B, if A

has cardinality less than 2ℵ0 and ∥–P “ A is embeddable into B ”, then A

is actually embeddable into B.

In other words, Martin’s axiom asserts that (non)embeddability of a structure

of cardinality less than 2ℵ0 into another structure does not change its validity

in generic extensions of the universe V by any c.c.c. forcing notion. Thus, the

characterization shows that Martin’s axiom is an assertion on the absoluteness of

V with respect to the embeddability of structures. Seen in this way MA corresponds

13



with our intuition about V that it is so rich that it contains everything which exists

in any (reasonable) imaginary extension of V .

Similarly, MAℵ1 is shown to be equivalent with the following:

(B’) For any c.c.c. forcing notion P and mathematical structures A, B, if A

has cardinality ℵ1 and ∥–P “ A is embeddable into B ”, then A is really

embeddable into B.

For another characterization of Martin’s axiom in terms of absoluteness, we

need some notions from mathematical logic and axiomatic set theory.

A logical formula (in the language of set theory) in which quantifiers appear

only in the bounded form of “∀x ∈ y” or “∃x ∈ y” is called a Σ0-formula.

The formula

(∀x ∈ f)(∀x′ ∈ f)(∃y ∈ x)(∃u ∈ y)(∃v ∈ y)(∀y′ ∈ x′)(∀u′ ∈ y′)(∀v′ ∈ y′)

(x = (u, v) ∧ u ∈ N ∧ v ∈ N ∧ (x′ = (u′, v′) ∧ u = u′ → v = v′))

asserting that f is a mapping from N to N is an example of a Σ0-formula*24.

Many predicates used in everyday mathematics can be expressed in Σ0-formulas;

the assertion that f is a continuous function from Q to Q*25 is another example of

properties expressible in Σ0-formula *26, as well as the assertion “x is an ordinal

number”.

A formula obtained from a Σ0-formula by attaching (finitely many) “unbounded”

quantifies of the form “∃x” before it is called a Σ1-formula. Note that, by this def-

inition, Σ0-formulas are also Σ1-formulas.

Since many mathematical predicates are expressible in Σ0-formulas, existence

assertions in mathematics are often expressible in Σ1-formulas.

A set x is said to be hereditarily countable if x is countable and every set y

accessible by a decreasing sequence x ∋ x1 ∋ · · · ∋ xn ∋ y with respect to the

∈-relation starting from x is countable.

*24Provided that N is allowed as a parameter.
*25Note that such f codes a continuous function from R to R.
*26Also here, N should be used as a parameter and f is a variable in this formula. We will not

give this formula explicitly since it will become quite long and complicated, and also its exact
form depends on how we introduce Q or R formally.

14



More generally, for a cardinal κ, x is hereditarily of cardinality strictly less than

κ if x is of cardinality strictly less than κ and every set y accessible by a decreasing

sequence x ∋ x1 ∋ · · · ∋ xn ∋ y starting from x is of cardinality strictly less than

κ.

Thus a set is hereditary countable if and only if it is hereditary of cardinality

strictly less than ℵ1.

Let us denote by ZF the axiom system obtained from ZFC by discarding the

Axiom of Choice. The following theorem is of importance:

Theorem 11 (Lévy-Shoenfield Absoluteness Lemma*27) Suppose that V and W

are transitive classes satisfying (a large enough finite subsystem of) ZF with V ⊆
W . If a ∈ V is hereditarily countable in the sense of V and φ is a Σ1-formula, then

φ(a) holds in V (i.e. V |= φ(a)) if and only if φ(a) holds in W (i.e. W |= φ(a)).

An interesting application of this theorem is as followscv. Suppose that a

mathematical assertion can be formulated as a Σ1-formula φ with a real a as a

parameter *28. If this assertion can be proved using the Continuum Hypothesis or

Axiom of Choice, then it is actually provable without using them: if the assertion

φ(a) cannot be proved without one of these axioms, the axiom system ZF + the

negation of the assertion (¬φ(a)) is consistent. Working in (a model V of) ZF

+ ¬φ(a), L[a] (the class of all sets definable from the parameter a by transfinite

induction) satisfies the axioms of ZFC as well as the Continuum Hypothesis. Hence

L[a] |= φ(a). But since L[a] ⊆ V and V |= ¬φ(a), this is a contradiction to

Theorem 11.

Martin’s axiom can be characterized as the following extension of the Lévy-

Shoenfield Absoluteness Lemma:

Theorem 12 (J. Bagaria [2]) MA is equivalent to the following assertion:

(C) For a c.c.c. forcing notion P, for any set a hereditarily of cardinality strictly

less than 2ℵ0 and Σ1-formula φ, we have φ(a) if and only if ∥–P “ φ(a) ”.

*27See e.g. [4] or [10] for a proof. An older version of [14] also contained this lemma and a proof.
*28A real is hereditarily countable, if R is introduced in a standard manner.
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In (C) above, we can see more clearly the feature of MA as an absoluteness asser-

tion. Moreover, this characterization tells also that MA is a natural extension of

(a part of) the Lévy-Shoenfield Absoluteness Lemma.

Similarly, MAℵ1 is shown to be equivalent to the following assertion:

(C’) For a c.c.c. forcing notion P, for any a hereditarily of cardinality strictly

less than ℵ2 and any Σ1-formula φ, φ(a) is equivalent to ∥–P “ φ(a) ”.

5 Strengthenings of Martin’s Axiom

By replacing the condition “c.c.c.” in the assertion (A’) introduced after Theo-

rem 9 by weaker properties, we obtain several other important axioms. Among the

properties of forcing notions considered in this context are the properness and the

stationary preserving. We do not give the precise definition of these notions here,

since this would require some additional preparations*29. Instead we will content

ourselves with noting that the forcing notions with these properties preserve ℵ1

(see the footnote *23) and, for any forcing notion P, we have

(∗) P has the c.c.c. ⇒ P is proper ⇒ P is stationary preserving.

The assertions obtained by replacing “c.c.c.” in (A’) by “proper” and “stationary

preserving” are called Proper Forcing Axiom (PFA) and Martin’s Maximum (MM)

respectively. The “Maximum” in the naming of MM indicates that this axiom is

the strongest among a certain class of axioms of similar form for which inconsis-

tency cannot be proved immediately. By (∗) above, we have*30 MM ⇒ PFA ⇒
MAℵ1 . In contrast to Martin’s Axiom, the consistency of PFA or MM cannot be

proved from ZFC alone. Starting from ZFC + an axiom guaranteeing the exis-

tence of a fairly large cardinal we can show the consistency of MM, and hence

also PFA([7]*31). Under MM or PFA, we can prove a number of interesting results

otherwise unprovable. Worth noticing is the fact that these axioms decide the size

of the continuum (see, e.g., [5], [7], [14]). In particular, PFA implies that the size

*29For the definition of these notions and their basic properties, see e.g. [14].
*30Actually, we have PFA ⇒ MA since PFA implies 2ℵ0 = ℵ2 ([29]).
*31More exactly, in ZFC with the axiom asserting the existence of a supercompact cardinal we

can construct a generic extension satisfying PFA or MM.
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of the continuum is equal to ℵ2 (i.e. 2ℵ0 = ℵ2). In contrast, MA imposes almost no

restriction on the size of the continuum except that it is regular and that most of

the known cardinal invariants of reals are made to be equal to it.

The assertion (B’) after Theorem 10 with the c.c.c. there replaced with proper

(stationary preserving respectively) gives a characterization of PFA (MM respec-

tively). However it is known that (C’) after Theorem 12 with corresponding replace-

ments gives axioms strictly weaker than PFA and MM. These axioms are called

the Bounded Proper Forcing Axiom (BPFA) and the Bounded Martin’s Maximum

(BMM) respectively. In particular, it is known that BPFA is equiconsistent with

the existence of a certain type of large cardinal which is fairly small compared with

the known lower bound of the consistency strength of PFA*32 ([12]).

BPFA and BMM are thus axioms with natural characterization parallel to (C’)

and, in the case of BPFA, with consistency strength exactly known and tame

enough. In this sense, these axioms can be seen as good candidates for “true”

axioms.

S. Todorcevic proved that BMM implies 2ℵ0 = ℵ2 [28]. T. Miyamoto then

proved that the Bounded Semi-Proper Forcing Axiom (BSPFA), which lies between

BPFA and BMM, together with the existence of a measurable cardinal implies the

same cardinal equation [24]. Todorcevic’s and Miyamoto’s proofs not only show the

equation 2ℵ0 = ℵ2 but they actually show that very strong combinatorial principles

called θAC and θ∗AC can be derived from BMM and BSPFA + measurable cardinal

respectively and that the equation 2ℵ0 = ℵ2 follows from these principles.

Interestingly, Miyamoto’s result recalls Gödel’s “prophecy” that large cardinals

may have some contribution to the solution of the Continuum Problem ([11]).

More recently, Justin Moore proved that the equation 2ℵ0 = ℵ2 already follows

from BPFA without any further assumptions ([25]). This improves the result by

Miyamoto and Todorcevic considerably concerning this cardinal equation. We

should note, however, that this does not mean that the results by Todorcevic and

Miyamoto are completely covered by Moore’s because of the principles θAC and

θ∗AC mentioned above.

As discussed above, BPFA is a quite natural axiom and thus we can inter-

pret Moore’s result as a strong circumstantial evidence suggesting that the size of

*32For the notion of consistency strength, see e.g. [16] or [21].
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continuum should be ℵ2.

J.R. Steel proved that PFA implies Projective Determinacy (and more see [27])

which is a very strong principle implying that almost sets of reals appearing in

everyday mathematics are free from set-theoretic pathologies. So, in particular,

such sets are all Lebesgue measurable, have the Baire property, etc. under PFA.

Some other deep results in connection with forcing axioms are to be found in H.

Woodin [30], [31].
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