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Abstract

The present paper is concerned with the relation between recurrence ax-

ioms and Laver-generic large cardinal axioms in light of principles of generic

absoluteness and the Ground Axiom.

M.Viale proved that Martin’s Maximum++ together with the assumption

that there are class many Woodin cardinals implies H(ℵ2)
V ≺Σ2 H(ℵ2)

V[G]

for a generic G on any stationary preserving P which also preserves Bounded

Martin’s Maximum. We show that a similar but more general conclusion

follows from each of (P,H(κ))Σ2-RcA
+ (which is a fragment of a reformula-

tion of the Maximality Principle for P and H(κ)), and the existence of the

tightly P-Laver-generically huge cardinal.⋆

While under “P = all stationary preserving posets”, our results are not

very much more than Viale’s Theorem, for other classes of posets, “P = all

proper posets” or “P = all ccc posets”, for example, our theorems are not

at all covered by his theorem.

The assumptions (and hence also the conclusion) of Viale’s Theorem

are compatible with the Ground Axiom. In contrast, we show that the

assumptions of our theorems (for most of the common settings of P and with

a modification of the large cardinal property involved) imply the negation of

the Ground Axiom. This fact is used to show that fragments of Recurrence

Axiom (P,H(κ))Γ-RcA
+ can be different from the corresponding fragments

of Maximality Principle MP(P,H(κ))Γ for Γ = Π2.
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1 Introduction and preliminaries

theintroIn the following, we tried very hard to make the present paper as self-contained

as possible. For notions and notation which remain unexplained, the reader may

refer to [28], [29], or [30]. Set-theoretic forcing is treated here just as in [30] with

the exception that P-names for a poset P are reresented with an under-tilde, e.g. as

∼
Q or ∼S. We adopt the (fake but consistently interpretable) narration that generic

filters “exist” though otherwise we remain in the ZFC narrative so that all classes

mentioned here are (meta-mathematically) definable classes.

The main theorem of Viale [39] states:

if it exists, is the unique cardinal κrefl (= max({ℵ2, 2
ℵ0})) for (almost?) all reasonable non-trivial

instances of P and notions of large cardinal, see [15].
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Theorem 1.1 p-theintro-a(M. Viale, Theorem 1.4 in [39]) Assume that MM++ holds, and there

are class many Woodin cardinals. Then, for any stationary preserving poset P with

∥–P“BMM ”, we have

H(ℵ2)
V ≺Σ2 H(ℵ2)

V[G] for (V,P)-generic G.

Here MM++ is the following strengthening of the Martin’s Axiom (MM):

(MM++): For any stationary preserving P, any family D of dense subsets of P

with | D | < ℵ2, and any family S of P-names of stationary subsets of

ω1 with | S | < ℵ2, there is a D-generic filter G on P such that ∼S[G] is a

stationary subset of ω1 for all ∼S ∈ S.

BMM is the Bounded Martin’s Maximum, a weakening of MM which is an

instance of Bounded Forcing Axioms: for a class P of posets closed under forcing

equivalence and a cardinal κ, the Bounded Forcing Axiom for P and <κ is the

axiom stating:

(BFA<κ(P)): For any complete Boolean1) P ∈ P , and a family D of maximal

antichains in P such that | D | < κ and | I | < κ for all I ∈ D, there is a

D-generic filter G on P.

The Bounded Martin’s Maximum (BMM) is BFA<ℵ2(stationary pres. posets).

Bounded Forcing Axioms were introduced by Goldstern and Shelah [22] answering

a problem asked by the first author of the present paper in [11].

In Theorem 1.1, the condition “ ∥–P“BMM ”” cannot be simply dropped. For

example, the formula saying that there is a set which is the power set of ω is Σ2.

Since ¬CH holds in V under MM, if P forces CH then H(ℵ2)
V ̸≺Σ2 H(ℵ2)

V[G] for

(V,P)-generic G.

We show that a conclusion similar to and more general than that of Theo-

rem 1.1 follows from each of (P ,H(κ))Σ2-RcA
+ which is a fragment of Recurrence

Axiom (a reformulation of Maximality Principle introduced in [20]) for P andH(κ),

see Section 2 below, and the existence of the tightly P-Laver-gen. large cardinal

(Theorem 4.1, Theorem 5.7).

The notion of Laver-generic large cardinal is introduced in Fuchino, Ottenbreit

Maschio Rodrigues, and Sakai [15]. The definition we give here is the slightly

modified version in later papers such as in Fuchino [13]:

1)We say that a poset P is complete Boolean if P = B\{0B} for a complete Boolean algebra. Note
that the definition of BFA<κ(P) makes sense only when P is complete Boolean (since otherwise
it can be the case that P does not have any maximal antichains of size <κ).
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For an iterable class P of posets (i.e. class P of posets satisfying (1.2) and (1.3)

below) a cardinal κ is said to be (tightly, resp.) P-Laver-gen. supercompact if, for

any λ > κ and P ∈ P , there is a P-name
∼
Q with ∥–P“

∼
Q ∈ P ”, such that for

(V,P ∗
∼
Q)-generic H, there are j,M ⊆ V[H] such that j : V

≺→κ M ,2) j(κ) > λ,

P,H, j ′′λ ∈M (and P ∗
∼
Q is of size ≤ j(κ), resp.).

This definition can be adopted to many other large cardinal notions other than

supercompactness. The reader may refer to [13] for definitions of other variants of

Laver-generic large cardinal. Defined as above, it is not obvious at first glance that

the Laver-genericity is formalizable in the language L∈ of ZFC. That it is actually

the case, is shown in Fuchino and Sakai [18].

A tightly P-Laver-generic large cardinal, if it exists, is unique and decided to

be κrefl := max({ℵ2, 2
ℵ0}) for all known reasonable non-trivial instances of P with

a strong enough large cardinal notion (see [15], or [13], [12]). This is the reason

why we often simply talk about the tightly P-Laver-generic large cardinal.

While under “P = all semi-proper posets”, our results are not much more

than slight variants of Viale’s (but without relying on the stationary tower forcing

technique), for other classes of posets, for example “P = all proper posets” or “P =

all ccc posets”, they are not at all covered by Viale’s result in [39] nor by its proof.

In the following we shall always assume that the classes P of posets we consider

are normal, that is,

(1.1) x-theintro-0-0P is closed with respect to forcing equivalence, and {1} ∈ P .

In particular, we assume that for any P0 ∈ P there is a complete Boolean2) P ∈ P
which is forcing equivalent to P0. In some cases like the case “P = all σ-closed

posets” where the original class of posets is not normal we just replace P with its

closure with respect to forcing equivalence without mention.

In some cases (like in the definition of Laver-genericity above) it is natural

to consider (normal) classes of posets which are closed with respect to two-step

iteration. A class P of posets is called iterable if

(1.2) x-theintro-0-0-a-0P is closed with respect to restriction. That is, for P ∈ P and p ∈ P, we

always have P ↾ p ∈ P , and

(1.3) x-theintro-0-0-a-1For any P ∈ P , and any P-name
∼
Q of a poset with ∥–P“

∼
Q ∈ P ”, we have

P ∗
∼
Q ∈ P .

Viale’s Absoluteness Theorem 1.1 is a result built upon the following Theo-

rem 1.2. We shall use the following notation for the formulation of the Theorem:

2) “j : V
≺→κ M” denotes the condition that j is an elementary embedding of V into a transitive

M with the critical point κ.
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For an ordinal α, let α(+) := sup({| β |+ : β < α}). Note that α(+) = α if α is a

cardinal. Otherwise, we have α(+) = |α |+.
In Bagaria [4] the following theorem contains the extra assumption that, trans-

lated into the context of the following formulation, κ is a successor of a cardinal

of uncountable cofinality. However we can eliminate this assumption by slightly

modifying the proof in [4].

Theorem 1.2 (Bagaria’s Absoluteness Theorem, Theorem 5 in [4]) p-theintro-0For an un-

countable cardinal κ and a class P of posets closed under forcing equivalence, and

restriction (in the sense of (1.2)) the following are equivalent: ( a ) BFA<κ(P).

( b ) For any P ∈ P, Σ1-formula φ in L∈ and a ∈ H(κ), ∥–P“φ(a) ” ⇔ φ(a).

( c ) For any P ∈ P and (V,P)-generic G, we have H(κ)V ≺Σ1 H((κ(+))V[G])V[G].

Proof. Note that (b) ⇔ (c) is trivial since ZFC proves that

(1.4) x-theintro-0H(µ) ≺Σ1 V for any uncountable cardinal µ

(Lévy [32]). [[ For a ∈ H(µ), let ν := | trcl+(a) | < µ (here, trcl+(a) denotes

the variant of transitive closure which satisfies a ∈ trcl+(a)). Then ν < µ. If

H(µ) |= φ(a) for a Σ1-formula φ then it follows V |= φ(a).

Suppose that φ(x) = ∃y ψ(x, y) where ψ(x, y) is a Σ0-formula, and assume that

V |= φ(a). Let b be such that V |= ψ(a, b). Let δ be large enough such that a,

b ∈ Vδ. Let M ≺ Vδ be such that trcl+(a) ⊆ M , b ∈ M , and |M | = ν. Let

m : M
∼=→ M0 be the Mostowski-collapse. Note that m ↾ trcl+(a) = id trcl+(a)

.

Thus M0 |= ψ(a,m(b)), and hence M0 |= ϕ(a). Since M0 ⊆ H(µ), it follows that

H(µ) |= φ(a). ]]

Note also that if κ = 2ℵ0 , we also have the equivalence of (a), (b), (c) with

(c’ ) For any P ∈ P and (V,P)-generic G, we have H(2ℵ0)V ≺Σ1 H((2ℵ0)V[G])V[G].

By the remark above, it is enough to prove (a) ⇔ (b).

(a) ⇒ (b): Let P ∈ P . Without loss of generality, P is completely Boolean with

P = B \ {0B}. Suppose a ∈ H(κ) and φ is a Σ1-formula in L∈. If φ(a) holds in V,

then clearly we also have ∥–P“φ(a) ”.

Suppose now that φ = ∃y ψ(x, y) for a bounded formula ψ in L∈, and ∥–P“φ(a) ”.

Without loss of generality, we may assume that a ⊆ µ for some cardinal µ < κ

(this is because a can be reconstructed from trcl+(a), and trcl+(a) can be coded by

a subset a∗ of | trcl+(a) |. The formula φ(a) can be replaced by the formula saying:

∃x ( x is the set “a” reconstructed from the transitive set coded by a∗

and φ(x) holds ).
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Note that this formula is Σ1 with the parameter a∗ if φ is Σ1). We may also assume

that a is not an ordinal (if necessary, we can replace a with a subset of µ with some

redundant complexity to make a ̸∈ On).

Let ∼b be a P-name such that ∥–P“ψ(a,∼b) ”. Let G be a (V,P)-generic filter and

we work in V[G]. Letting b = ∼b[G], we have ψ(a, b).

Working further in V[G], let λ be large enough such that Vλ satisfies large enough

fragment of ZFC, a, b ∈ Vλ, and Vλ |= ψ(a, b). Let M ≺ Vλ be such that µ ⊆M , a,

b ∈ M , and |M | = µ. Let m : M
∼=→ M0 be the Mostowski collapse of M and let

ν = On ∩M0. Note that we have m ↾ µ ∪ {a} = id µ∪{a}.

Let M := ⟨ν +µ,E, f⟩ be the structure in the language L := {E, f } such that

there is an isomorphism

(ℵ1.1) x-theintro-0-0-ai : ⟨M0,∈, rank⟩
∼=→ ⟨ν + µ,E, f⟩

such that i ↾ ν = id ν , i(a) = ν, and i(m(b)) = ν + 1

where rank is the rank function restricted to M0. Clearly we have ⟨ν + µ,E⟩ |=
ψ∗(ν, ν + 1)), where ψ∗ is the formula obtained from ψ by replacing the symbol ∈
by E .

Let ∼M, ∼E, ∼
f ∈ V be P-names of M, E and f respectively. By replacing P with

P ↾ p for some p ∈ P if necessary, we may assume that

(ℵ1.2) x-theintro-0-0-0all the properties of ⟨ν + µ,E, f⟩ used below are forced (as a statement

on ⟨ν + µ, ∼E,∼f⟩) by 1P.

In V, let D be the family of maximal antichains (each of size ≤ µ < κ) in P

consisting of the following;

(ℵ1.3) x-theintro-0-1{[[
∼
f(α) = β ]]B : β < ν} \ {0B}, for all α ∈ ν + µ.

(ℵ1.4) x-theintro-0-2{[[ ∼M |= θ(a0, ..., ak−1) ]]B, [[ ∼M |= ¬θ(a0, ..., ak−1) ]]B} \ {0B},
for all Σ0-formulas θ in L and a0, ..., ak−1 ∈ ν + µ.

(ℵ1.5) x-theintro-0-3{[[ ∼M |= η ∧ θ(a0, ..., ak−1) ]]B,

[[ ∼M |= ¬η(a0, ..., ak−1) ]]B, [[ ∼M |= ¬θ(a0, ..., ak−1) ]]B} \ {0B},
for all Σ0-formulas η, θ in L and a0, ..., ak−1 ∈ ν + µ.

(ℵ1.6) x-theintro-0-4

(
{[[¬(∃x E c) η(x, a0, ..., ak−1) ]]B} ∪
{[[ d E c ∧ η(d, a0, ..., ak−1) ]]B : d ∈ ν + µ}

)
\ {0B},

for all Σ1-formulas η = η(x, x0, ..., xk−1) in L and c, a0, ..., ak−1 ∈ ν + µ.

To see that each of the sets in (ℵ1.3) is a maximal antichain in P of size ≤ µ < κ,

suppose that α ∈ ν + µ and p ∈ P. Then there is q ≤P p which decides
∼
f(α).

Since ∥–P“
∼
f(α) ∈ ν ” by (ℵ1.2), if follows that q ∥–P“

∼
f(α) = β ” for some β ∈ ν.
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It is clear that elements of each of the sets in (ℵ1.3) are pairwise incompatible and

these sets are of size ≤ µ < κ.

It is also proved similarly that sets in (ℵ1.6) are maximal antichains in P of size

≤ µ < κ.

Now, in V, let G be D-generic filter. G exists by BFA<κ(P), and since D is a

family of maximal antichains of size <κ with | D | < κ.

Let

∼M[G] := ⟨ν + µ, ∼E[G],∼f [G]⟩.

where

(ℵ1.7) x-theintro-0-3-0∼E[G] := {⟨ξ, η⟩ : ξ, η ∈ ν + µ, p ∥–P“ ⟨ξ, η⟩ ∈ ∼E ” for some p ∈ G}, and

(ℵ1.8) x-theintro-0-3-1
∼
f [G] := {⟨ξ, η⟩ : ξ, η ∈ ν + µ, p ∥–P“ ⟨ξ, η⟩ ∈

∼
f ” for some p ∈ G}.

Claim 1.2.1 ( 1 ) ∼M[G] is an L-structure.
( 2 ) For each Σ1-formula θ = θ(x0, ..., xk−1) in L and a0, ..., ak−1 ∈ ν + µ,

(ℵ1.9) x-theintro-0-4-a[[ ∼M |= θ(a0, ..., ak−1) ]]B ∈ G if and only if ∼M[G] |= θ(a0, ..., ak−1).

( 3 ) ∼E[G] is extensional and well-founded. ∼E[G] on ν + µ coincides with the

canonical ordering on ν + µ.

⊢ (1): Since the maximal antichains in (ℵ1.3) are in D, we have
∼
f [G] : ν+µ→

ν.

(2): By induction on the construction of the formula θ using (ℵ1.4), (ℵ1.5), and
(ℵ1.6).

Suppose that a0, a1 ∈ ν + µ. Then

[[ ∼M |= a0 E a1 ]]B ∈ G ⇔ [[ a0 ∼E a1 ]]B ∈ G ⇔ ∃p ∈ G p ∥–P“ a0 ∼E a1 ”

⇔︸︷︷︸
by (ℵ1.7)

a0 ∼E[G] a1 ⇔ ∼M[G] |= a0 E a1.

The proof for “a0 =
∼
f(a1)” can be done similarly.

The induction steps for ¬ and ∨ go through since G is D-generic and the an-

tichains in (ℵ1.4) are in D.

Suppose now that the equivalence (ℵ1.9) holds for a Σ1-formula θ = θ(x, x0, ...,

xk−1) and all other Σ1-formulas with the quantifier rank (with respect to bounded

existential quantification) less than or equal to that of θ.

If [[ ∼M |= (∃x E b) θ(x, a0, ..., ak−1) ]]B ∈ G, then, by (ℵ1.6), there is [[ ∼M |=
d ∈ νµ ∧ θ(d, a0, ..., ak−1) ]]B ∈ G. By the induction hypothesis, it follows that

∼M[G] |= d E b ∧ θ(d, a0, ..., ak−1). Thus ∼M[G] |= (∃x E b) θ(d, a0, ..., ak−1).
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If ∼M[G] |= (∃x E b) θ(d, a0, ..., ak−1), then ∼M[G] |= d E b ∧ θ(d, a0, ..., ak−1) for

some d ∈ ν + µ. By induction hypothesis, it follows that [[ d E b ∧ θ(d, a0, ...,

ak−1) ]]B ∈ G. Since [[ d E b ∧ θ(d, a0, ..., ak−1) ]]B ≤B [[ (∃x E b) θ(x, a0, ..., akp−1) ]]B,

we have [[ (∃x E b) θ(x, a0, ..., akp−1) ]]B ∈ G since G is a filter.

(3): By (ℵ1.2), we have ∥–P“ ∼M |= Axiom of Extensionality ”, and

(ℵ1.10) x-theintro-0-5∥–P“ ∼M |= ∀x∀y (x∼Ey →
∼
f(x) <

∼
f(y)) ”.

By (2), it follows that ∼E[G] is extensional and the statement on the structure ∼M[G]

corresponding to (ℵ1.10) holds. A similar argument shows that the canonical or-

dering on ν coincides with ∼E[G] ↾ ν2. This and the property of ∼M[G] corresponding

to (ℵ1.10) implies that ∼E[G] is well-founded. ⊣ (Claim 1.2.1)

By Claim 1.2.1, (3), we can take the Mostowski collapse of the structure ∼M[G]

m∗ : ⟨ν + µ, ∼E[G]⟩
∼=→ ⟨M2,∈⟩. Since ⟨ν + µ, ∼E[G]⟩ |= “ψ∗(ν, ν + 1) ” by (ℵ1.1),

(ℵ1.2) and Claim 1.2.1, (2), we have m∗(ν) = a, and M2 |= ψ(a,m∗(µ+ 1)). Thus

M2 |= φ(a). Since φ is Σ1, it follows that V |= φ(a).

(b) ⇒ (a): Suppose that P ∈ P is complete Boolean and D is a set of antichains

each of size < κ with | D | < κ.

Let X =
⋃
D then |X | < κ. Say, µ := |X |. Let λ be sufficiently large with

Vλ ≺Σn V for sufficiently large n. Let M ≺ Vλ be such that |M | = µ, P, D,

X ∈M , and µ+ 1 ⊆M . Note that D ⊆M and I ⊆M for each I ∈ D.

Let m :M
∼=→M0 be the Mostowski collapse and ⟨P0,≤P0⟩ := m(⟨P,≤P⟩).

Since (V,P)-generic filter G generates an (M0,P0)-generic filter, we have

∥–P“H(κ(+)) |= there is a (M0,P0)-generic filter ”.

By assumption it follows that H(κ) |= “ there is a (M0,P0)-generic filter ” in

V[G]. Let G0 be such a filter. Then m−1 ′′G0 generates a D-generic filter on P.

(Theorem 1.2)

The following is one of many nice applications of Theorem 1.2:

Corollary 1.3 If P contains a poset adding a new real then BFA<κ(P) for κ > ℵ1

implies ¬CH.

Proof. Assume that BFA<κ(P) holds for κ > ℵ1, but also CH holds in V. Let

a = P(ω). We have a ∈ H(κ)V by CH and H(κ) |= “ a is P(ω) ”. The statement

can be formulated as a Π1-formula with the parameter a. But if P ∈ P adds

a real, H(κ)V[G] |= “ a is not P(ω) ”. This is a contradiction to Theorem 1.2, (c).

(Corollary 1.3)

Suppose that R is a definable class (proper or set). We shall say that a class

P of posets is provably correct for R if the following is provable in ZFC:
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(1.5) p-theintro-2for any P ∈ P and a (∈ V), a ∈ R ⇔ ∥–P“ a ∈ R ”.

Thus if P is provably correct for R and G is a (V,P)-generic for a P ∈ P then

(V,∈,RV) is a (class) substructure of (V[G],∈,RV[G]).

Let INS denote the non stationary ideal over ω1. Thus

INS := {X ⊆ ω1 : X is non stationary}.

Lemma 1.4 p-theintro-3If (we can prove that) all P ∈ P are stationary preserving then P is

provably correct for INS.

Proof. If s ∈ INS then there is a club c ⊆ ω1 such that s ∩ c = ∅. Since

∥–P“ c is a club in ω1 and s ∩ c = ∅ ”, we have ∥–P“ s ∈ INS ”.

If s ̸∈ INS then ∥–P“ s ̸∈ INS ” since P is stationary preserving. (Lemma 1.4)

Let R be (the L∈-definition of) a class. Let L∈,R be the language which

extends L∈ with a new unary predicate symbol R where M |= R(a) is interpreted

as a ∈ RM in an ∈-structure M . In the following, we shall often identify the

(definition) of the class R with the symbol R of R, and simply write R and L∈,R

instead of R and L∈,R . This also applies when we are talking about INS and

L∈,INS .

The following Lemma 1.5 can be proved in the same way as with the corre-

sponding lemma for L∈ formulas:

Lemma 1.5 p-theintro-4For transitive (sets or classes) M , N with M ⊆ N and a class R (i.e.

an L∈-formula with one single free variable) such that RM = RN ∩M , we have:

( 1 ) ⟨M,∈,RM⟩ |= φ(a) ⇔ ⟨N,∈,RN⟩ |= φ(a) for all Σ0-formula φ = φ(x) in

L∈,R and a ∈M .

( 2 ) ⟨M,∈,RM⟩ |= φ(a) ⇒ ⟨N,∈,RN⟩ |= φ(a) for all Σ1-formula φ = φ(x) in

L∈,R and a ∈M .

Lemma 1.6 p-theintro-4-0For a Σ1-formula φ in L∈,INS we can find a Σ2-formula in L∈ with the

parameter ω1 equivalent to φ.

Proof. “x ∈ INS” can be expressed by a Σ1-formula in L∈:

∃y (y ⊆ ω1 ∧ x ⊆ ω1 ∧ y is a club in ω1 ∧ x ∩ y = ∅)

Thus “x ̸∈ INS” can be expressed by a Π1-formula in L∈. (Lemma 1.6)
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Lemma 1.7 (A special case of Lemma 6.3 in Venturi and Viale [38]) p-theintro-4-1For a cardinal

λ ≥ 2ℵ1, we have ⟨H(λ), ∈, INS⟩ ≺Σ1 ⟨V, ∈, INS⟩.

Proof. If ⟨H(λ), ∈, INS⟩ |= φ(a) for a Σ1-formula in L∈,INS , and a ∈ H(λ), then

⟨V, ∈, INS⟩ |= φ(a) by Lemma 1.5, (2).

Suppose now that ⟨V, ∈, INS⟩ |= φ(a) for φ and a as above. Suppose that φ =

∃y ψ(x, y) for a Σ0-formula ψ in L∈,INS and let b be such that ⟨V, ∈, INS⟩ |= ψ(a, b).

Let α ∈ On be sufficiently large such that ⟨Vα, ∈, INS⟩ ≺Σn ⟨V, ∈, INS⟩ for

sufficiently large n ∈ ω.

Let µ := sup{| trcl+(a) |, 2ℵ1} and3) ⟨M, ∈ INS⟩ ≺ ⟨V, ∈, INS⟩ be such that

|M | = µ, trcl+(a), µ + 1, INS ⊆ M , and b ∈ M . Then we have ⟨M, ∈, INS⟩ |=
ψ(a, b).

Let m : M
∼=→ M0 be the Mostowski collapse. Then we have m ↾ trcl+(a) =

id trcl+(a)
and m ↾ P(ω1) = idP(ω1). It follows that ⟨M0, ∈, INS⟩ |= ψ(a,m(b)) and

hence ⟨M0, ∈, INS⟩ |= φ(a). By Lemma 1.5, (2), it follows that ⟨H(λ), ∈, INS⟩ |=
φ(a). (Lemma 1.7)

The following Theorem 1.8 is an extension of Bagaria’s Absoluteness Theo-

rem 1.2. A special case of this theorem (the case where P = the stationary pre-

serving posets) is also attributed to Bagaria in [40]. Though Theorem 1.8 in its

generality must have been known, we included it here since we could not find any

proof in the literature.

We consider the following “plus”-version of Bounded Forcing Axioms: For a

(normal) class of posets P ,

(BFA+<κ
<κ (P)): For any complete Boolean P ∈ P , a family D of maximal an-

tichains in P such that | D | < κ and | I | < κ for all I ∈ D, and for a set

S of P-names of cardinality < κ such that each ∼S ∈ S is a P-name of a

stationary subset of ω1, there is a D-generic filter G on P such that ∼S[G]

for all ∼S ∈ S are stationary subsets of ω1.

Theorem 1.8 p-theintro-5Suppose that P is a class of posets closed under forcing equivalence,

and restriction (in the sense of (1.2)) such that all elements of P are stationary

preserving and κ = 2ℵ0 = 2ℵ1. Then the following are equivalent:

( a ) BFA+<κ
<κ (P).

( b ) For any Σ1-formula φ = φ(x) in L∈,INS, a ∈ H(κ), and P ∈ P, we have

∥–P“φ(a) ” ⇔ φ(a).

3)We denote with trcl+(a) the variant of transitive closure which is the minimal transitive set
T with a ∪ {a} ⊆ T .
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( c ) For any (V,P)-generic G, we have

⟨H(2ℵ0)V,∈, IVNS⟩ ≺Σ1 ⟨H(
(
2ℵ0

)V[G]
)V[G],∈, IV[G]NS ⟩.

Proof. The equivalence of (b) and (c) follows from Lemma 1.7. (a) ⇒ (b): Let

P ∈ P . Without loss of generality, P is completely Boolean with P = B \ {0B}.
Suppose a ∈ H(κ) and φ is a Σ1-formula in L∈,INS

. If φ(a) holds in V, then we also

have ∥–P“φ(a) ” by Lemma 1.5.

Suppose now that φ = ∃y ψ(x, y) for a bounded formula ψ in L∈,INS , and

∥–P“φ(a) ”. Without loss of generality, we may assume that a ⊆ µ for some

cardinal µ < κ (this is because a can be reconstructed from trcl+(a), and trcl+(a)

can be coded by a subset a∗ of | trcl+(a) |). The formula φ(a) can be replaced by

the formula saying:

∃x ( x is the set “a” reconstructed from the transitive set coded by a∗

and φ(x) holds ).

Note that this formula is Σ1 in L∈,INS with the parameter a∗ if φ is Σ1 in L∈,INS
.

We may also assume that a is not an ordinal (if necessary, we can replace a with a

subset of µ with some redundant complexity to make a ̸∈ On).

Let ∼b be a P-name such that ∥–P“ψ(a,∼b) ”. Let G be a (V,P)-generic filter and

we work in V[G]. Letting b = ∼b[G], we have ψ(a, b).

Working further in V[G], let λ be large enough such that Vλ satisfies a large

enough fragment of ZFC, a, b ∈ Vλ, and Vλ |= ψ(a, b). Let M ≺ Vλ be such that

µ ⊆M , a, b ∈M , and |M | = µ. Note that we have ⟨M,∈, INS∩M⟩ ≺ ⟨Vλ,∈, INS⟩
since INS is definable in ⟨Vλ,∈⟩. Let m :M

∼=→M0 be the Mostowski collapse of M

and let ν = On∩M0. Note that we have m ↾ µ∪{a}∪ (INS∩M) = id µ∪{a}∪(INS∩M)

and hence INS ∩M = INS ∩M0.

Let M := ⟨ν + µ,E, I, f, g⟩ be the structure in the language L := {E, I , f , g}
such that there is an isomorphism

(1.6) a:x-theintro-0-0-ai : ⟨M0,∈, INS ∩M0, rank, g0⟩
∼=→ ⟨ν + µ,E, I, f, g⟩

such that i ↾ ν = id ν , i(a) = ν, and i(m(b)) = ν + 1

where rank is the rank function restricted to M0 and g0 : M0 → M0 is a mapping

such that f ↾ µ is an enumeration of (P(ω1)∩M0)\INS (= (the set of all stationary

subsets of ω1)
M0) and g ′′(M0 \ µ) = {∅}.

Clearly, ⟨ν + µ,E, I⟩ |= ψ∗(ν, ν + 1)) where ψ∗ is the formula obtained from ψ

by replacing symbols ∈ and INS in ψ by E and I .

Note that we have
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(1.7) a:x-theintro-1-0⟨ν + µ,E, I, f, g⟩ |= ∀x ⊆ ω1 (I(x) ∨ ∃α < κ (g(α) = x)).

Let ∼M, ∼E, ∼I, ∼
f

∼
g ∈ V be P-names of M, E, I, f and g respectively. By replacing

P with P ↾ p for some p ∈ P if necessary, we may assume that

(1.8) a:x-theintro-0-0-0all the properties of ⟨ν+µ,E, I, f, g⟩ used below are forced (as a statement

on ⟨ν + µ, ∼E,∼I,∼f,∼g⟩) by 1P.

In V, let D be the family of maximal antichains (each of size ≤ µ < κ) in P

consisting of the following;

(1.9) a:x-theintro-0-1{[[
∼
f(α) = β ]]B : β < ν} \ {0B}, and {[[

∼
g(α) = β ]]B : β < ν} \ {0B},

for all α ∈ ν + µ.

(1.10) a:x-theintro-0-2{[[ ∼M |= θ(a0, ..., ak−1) ]]B, [[ ∼M |= ¬θ(a0, ..., ak−1) ]]B} \ {0B},
for all Σ0-formulas θ in L and a0, ..., ak−1 ∈ ν + µ.

(1.11) a:x-theintro-0-3{[[ ∼M |= η ∧ θ(a0, ..., ak−1) ]]B,

[[ ∼M |= ¬η(a0, ..., ak−1) ]]B, [[ ∼M |= ¬θ(a0, ..., ak−1) ]]B} \ {0B},
for all Σ0-formulas η, θ in L and a0, ..., ak−1 ∈ ν + µ.

(1.12) a:x-theintro-0-4

(
{[[¬(∃x E c) η(x, a0, ..., ak−1) ]]B} ∪
{[[ d E c ∧ η(d, a0, ..., ak−1) ]]B : d ∈ ν + µ}

)
\ {0B},

for all Σ1-formulas η = η(x, x0, ..., xk−1) in L and c, a0, ..., ak−1 ∈ ν + µ.

To see that each of the sets in (1.9) is a maximal antichain in P of size ≤ µ,

suppose that α ∈ ν + µ and p ∈ P. Then there is q ≤P p which decides
∼
f(α).

Since ∥–P“
∼
f(α) ∈ ν ” by (1.8), if follows that q ∥–P“

∼
f(α) = β ” for some β ∈ ν.

It is clear that elements of each of the sets in (1.9) are pairwise incompatible and

these sets are of size ≤ µ < κ.

It is also proved similarly that sets in (1.12) are maximal antichains in P of size

≤ µ < κ.

By (1.8), we have that

(1.13) a:x-theintro-0-4-a∥–P“ {ξ ∈ ω1 : ξ ∼E ∼
g(α)} is a stationary subset of ω1 ”.

Now, in V, let G be D-generic filter such that

(1.14) a:x-theintro-0-4-a-0
∼
g(α)[G] := {ξ ∈ ω : p ∥–P“ ξ ∼E ∼

g(α) ” for some p ∈ G} is a stationary

subset of ω1 for all α < µ.

G exists by BFA+<κ
<κ (P), by (1.13), and since D is a family of maximal antichains

of size <κ with | D | < κ.

Let
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∼M[G] := ⟨ν + µ, ∼E[G],∼I[G],∼f [G],∼g[G]⟩.

where

∼E[G] := {⟨ξ, η⟩ : ξ, η ∈ ν + µ, p ∥–P“ ⟨ξ, η⟩ ∈ ∼E ” for some p ∈ G},

∼I[G] := {ξ : ξ ∈ ν + µ, p ∥–P“ ξ ∈ ∼I ” for some p ∈ G},

∼
f [G] := {⟨ξ, η⟩ : ξ, η ∈ ν + µ, p ∥–P“ ⟨ξ, η⟩ ∈

∼
f ” for some p ∈ G}, and

∼
g[G] := {⟨ξ, η⟩ : ξ, η ∈ ν + µ, p ∥–P“ ⟨ξ, η⟩ ∈

∼
g ” for some p ∈ G}.

Claim 1.8.1 ( 1 ) ∼M[G] is an L-structure.
( 2 ) For each Σ1-formula θ = θ(x0, ..., xk−1) in L and a0, ..., ak−1 ∈ ν + µ,

(1.15) a:x-theintro-0-4-0[[ ∼M |= θ(a0, ..., ak−1) ]]B ∈ G if and only if ∼M[G] |= θ(a0, ..., ak−1).

( 3 ) ∼E[G] is extensional and well-founded. ∼E[G] on ν + µ coincides with the

canonical ordering on ν + µ.

⊢ (1): Since the maximal antichains in (1.9) are in D, we have
∼
f [G] : ν+µ→ ν

and
∼
g[G] : ν + µ→ ν + µ.

(2): By induction on the construction of the formula θ using (1.10), (1.11), and

(1.12).

(3): By (1.8), we have ∥–P“ ∼M |= Axiom of Extensionality ”, and

(ℵ1.11) a:x-theintro-0-5∥–P“ ∼M |= ∀x∀y (x∼Ey →
∼
f(x) <

∼
f(y)) ”.

By (2), it follows that ∼E[G] is extensional and the statement on the structure ∼M[G]

corresponding to (ℵ1.11) holds. A similar argument shows that the canonical or-

dering on ν coincides with ∼E[G] ↾ ν2. This and the property of ∼M[G] corresponding

to (ℵ1.11) implies that ∼E[G] is well-founded. ⊣ (Claim 1.8.1)

By Claim 1.8.1, (3), we can take the Mostowski collapse of the structure ∼M[G]

m∗ : ⟨ν + µ, ∼E[G],∼I[G]⟩
∼=→ ⟨M2,∈, I⟩. Since ⟨ν + µ, ∼E[G],∼I[G]⟩ |= “ψ∗(ν, ν + 1) ”

by (1.6), (1.8) and Claim 1.8.1, (2), we have m∗(ν) = a and hence ⟨M2,∈, I⟩ |=
ψ(a,m∗(ν+1)) where the predicate INS is interpreted as I. Thus ⟨M2,∈, I⟩ |= φ(a).

By (1.7), (1.8), (1.14) and Claim 1.8.1, (2), we have I = INS ∩M2.

Since φ is Σ1, it follows that V |= φ(a) by Lemma 1.5, (2).

(b) ⇒ (a): Suppose that P ∈ P is complete Boolean, D is a set of antichains

each of size < κ with | D | < κ, and S is a set of P-names of stationary subsets of

ω1 with | S | < κ.

By replacing elements of S by equivalent P-names which are sufficiently nice,

we may assume that each element of S is nice P-name of size ℵ1 (this is possible

since we assumed that P is completely Boolean).
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Let X =
⋃

D then |X | < κ. Let µ := max{|X |, | S |}. Let λ be sufficiently

large with Vλ ≺Σn V for sufficiently large n. Let M ≺ Vλ be such that |M | = µ,

(1.16) : x-theintro-0-6P, D, X, S ∈M , and µ+ 1 ⊆M . Note that (1.16) implies D,S ⊆M and

I, ∼S ⊆M for each I ∈ D and ∼S ∈ S.
Let m : M

∼=→ M0 be the Mostowski collapse and ⟨P0,≤P0⟩ := m(⟨P,≤P⟩). Let
S0 := {m(∼S) : ∼S ∈ S}.

Since (V,P)-generic filter G generates an (M0,P0)-generic filter, we have

∥–P“ there is a (M0,P0)-generic filter which realizes each element of S0

to be a stationary subset of ω1 ”.

By the assumption (b), it follows that

V |=“ there is a (M0,P0)-generic filter which realizes each element of S0

to be a stationary subset of ω1 ”.

Let G0 be such a filter. Then m−1 ′′G0 generates a D-generic filter G1 on P which

realizes each element of S to be a stationary subset of ω1. (Theorem 1.8)

2 Recurrence Axioms and the Ground Axiom

rec-GA2.1 Hierarchies of Recurrence and Maximality

hierarchies-rec-maxThe term “Recurrence Axiom” was coined in Fuchino and Usuba [20] (see also

Fuchino [13]). The Recurrence Axiom for a (normal) class P of posets, a set A of

parameters, and a set Γ of L∈-formulas ( (P , A)Γ-RcA, for short) is the statement

(2.1) below.

A ground of a (transitive set or class) model W (of some set theory) is an inner

model W0 of W such that there is a poset P ∈ W0 such that W is a P-generic

extension of W0. For a class P of posets, a ground W0 of W is a P-ground of W if

there is a poset P ∈ W0 such that W0 |=“P ∈ P ” and W is a P-generic extension

of W0.

The Recurrence Axiom (P , A)Γ-RcA is the following statement formulated in

an axiom scheme in L∈ (that this axiom is not formalizable in a single formula is

discussed in [12]):

(2.1) x-theintro-1For any φ(x) ∈ Γ and a ∈ A, if ∥–P“φ(a
✓) ”, then there is a ground W of

V such that a ∈ W and W |= φ(a).
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The definition of a stronger variant (P , A)Γ-RcA+ of (P , A)Γ-RcA is obtained when

we replace “ground” in (2.1) by “P-ground”. If Γ = L∈, we simply drop Γ and

talk about (P , A)-RcA(+).
In the following, we often identify check names of sets with the sets themselves

and drop the symbol “✓”. Also we shall often replace tuples a of parameters by a

single parameter a for simplicity (actually without loss of generality in most of the

cases).

Recurrence Axioms are almost identical with Maximality Principles introduced

in [25] with the same parameters. For P , A as above, the Maximality Principle for

P and A (MP(P , A) for short) is defined as below.

For a class P of posets, an L∈-formula φ(a) with parameters a (∈ V) is said

to be a P-button if there is P ∈ P such that for any P-name
∼
Q of poset with

∥–P“
∼
Q ∈ P ”, we have ∥–P∗Q

∼
“φ(a✓) ”.

If φ(a) is a P-button then we call P as above a push of the P-button φ(a).

For a class P of posets and a set A (of parameters), the Maximality Principle

for P and A (MP(P , A), for short) is the following assertion which is formulated

as an axiom scheme in L∈:

MP(P , A): For any L∈-formula φ(x) and a ∈ A, if φ(a) is a P-button then φ(a)

holds.

Similarly to the restricted versions of Recurrence Axiom, we define, for a set Γ

of L∈-formulas:

MP(P , A)Γ: For any φ(x) ∈ Γ and a ∈ A, if φ(a) is a P-button then φ(a) holds.

Proposition 2.1 (Barton et al. [7], see also Proposition 2.2 in [20]) p-intro-1Suppose that

P is a class of posets and A a set (of parameters).

( 1 ) (P , A)-RcA+ is equivalent to MP(P , A).
( 2 ) (P , A)-RcA is equivalent to the following assertion:

(2.2) x-intro-5-0For any L∈-formula φ(x) and a ∈ A, if φ(a) is a P-button then φ(a) holds

in a ground of V.

See Lemma 3.4 in Section 3 below and its proof.

Recurrence Axiom (⇔ Maximality Principle) can be also characterized as the

ZFC version of Sy-David Friedman’s Inner Model Hypothesis [10] (see Barton et al

[7], see also Fuchino, and Usuba [20] or Fuchino [13]).

In contrast to the proposition above, (P , A)Γ-RcA+ is not necessarily equivalent

to MP(P , A)Γ for some set Γ of formulas. In the next section, we prove that
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(under the consistency of certain large cardinal axioms) MP(P , A)Σ2 does not imply

(P , A)Σ2-RcA and MP(P , A)Π2 does not imply (P , A)Π2-RcA (see Corollary 3.12).

Later we shall also consider a restricted form of (2.2) which we will callMP−(P , A)Γ:

MP−(P , A)Γ: For any φ(x) ∈ Γ and a ∈ A, if φ(a) is a P-button then φ(a) holds

in a ground of V.

Writing MP−(P , A) for MP−(P , A)L∈ , the assertion of Proposition 2.1, (2) is

reformulated as (P , A)-RcA ⇔ MP−(P , A).
While Recurrence Axioms are assertions about the richness of the grounds of

the universe V, their characterizations as Maximality Principles may be seen as a

variation of generic absoluteness. This is best seen in their further characterization

as the principle MP∗(P , A) defined around (3.21), see also Subsection 6.3.

The following is an immediate consequence of Bagaria’s Absoluteness Theo-

rem 1.2:

Theorem 2.2 (Ikegami-Trang (reformulated for our hierarchy of restricted Recur-

rence Axioms) [27]) p-theintro-1For a (normal) class P of posets and a cardinal κ, the following

are equivalent:

( a ) (P ,H(κ))Σ1-RcA
+.

( b ) (P ,H(κ))Σ1-RcA.

( c ) BFA<κ(P).

Proof. (a) ⇒ (b): is trivial.

(b) ⇒ (c): Assume that (P ,H(κ))Σ1-RcA holds, and suppose that P ∈ P , φ is

a Σ1-formula in L∈ and a ∈ H(κ). By Bagaria’s Absoluteness Theorem 1.2, it is

enough to show that ∥–P“φ(a) ” ⇔ φ(a) holds.

∥–P“φ(a) ” ⇐ φ(a): is clear since φ is Σ1.

∥–P“φ(a) ” ⇒ φ(a): Assume that ∥–P“φ(a) ”. By (P ,H(κ))Σ1-RcA, there is

a ground W of V such that a ∈ W and W |= φ(a). Since φ is Σ1 it follows that

V |= φ(a).

(c) ⇒ (a): Assume that BFA<κ(P) holds. Suppose that ∥–P“φ(a) ” for P,

φ, a as above. Then, by Bagaria’s Absoluteness Theorem 1.2, we have φ(a). In

particular, since {1} ∈ P (remember the convention set at (1.1)), φ(a) holds in a

P-ground of V (namely V itself). (Theorem 2.2)

According to Joel Hamkins [25] it is an observation of his former PhD student

George Leibman that MA follows from Maximality Principle for P = ccc posets,

and the set of parameters H(2ℵ0). This observation is now a part of Theorem 2.2,

since MA is equivalent to BFA< 2ℵ0 (P) for this P .
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Strictly speaking, Theorem 2.2 is different from the original theorem in Ikegami-

Trang [27] (Theorem 1.13 there) in that Ikegami and Trang are talking about the

Σn, Πn-hierarchy MP(· · · )Γ for Γ = Σn, Πn etc., which is shown to be different from

(· · · )Γ-RcA+ hierarchy (see Corollary 3.12 and the remark before the corollary).

The proof above together with the proof of Theorem 1.13 in [27] actually shows that

for a normal class of posets, (P ,H(ℵ2))Σ1-RcA
+ coincides withMP(P ,H(ℵ2))Σ1 (see

Theorem 3.1 and Corollary 3.2).

(P ,H(ℵ2))Γ-RcA
+ and MP(P ,H(ℵ2))Γ in general can be different principles.

We will address to this subtle difference in the next Section 3, and show that these

two hierarchies can split up drastically on the Π2 and Σ2 levels (see Corollary 3.12).

2.2 (In)compatibility of Recurrence and Maximality with

Ground Axiom

ground-axiomThe Ground Axiom (abbreviation: GA) is the axiom asserting that there is no

proper ground of the universe V. The axiom is introduced by Joel Hamkins and

Jonas Reitz. Its basic properties including the formalizability of the axiom in L∈

are proved in Reitz [33].

The relative consistency of GA with PFA is proved in [33] (see also the proof of

Theorem 3.8 below; actually GA is even consistent with MM++, see Theorem 6.3).

In particular, this and Ikegami-Trang Theorem 2.2 imply:

Theorem 2.3 p-rec-GA-0GA is relatively consistent with (P ,H(ℵ2))Σ1-RcA
+ for a class of

posets P whose elements are proper.

Since the Recurrence Axiom implies that there are “many” different grounds, it

is clear that Proposition 2.3 cannot be generalized for (· · · )Γ-RcA for arbitrary Γ.

In particular, since Ground Axiom itself is formalizable in a Π3-sentence in L∈ (see

the remark after Lemma 3.4), and it is not true in any non-trivial generic extension

of the ground model, we obtain:

Theorem 2.4 p-rec-GA-0-aSuppose (P , ∅)Σ3-RcA holds for a non-trivial class P of posets. Then

GA does not hold.

MP−(P , ∅)Σ3 for a non-trivial P also implies ¬GA.

Proof. Assume toward a contradiction that (P , ∅)Σ3-RcA holds for a non-trivial

class P of posets, and GA also holds. Let ψ be the Π3-sentence expressing that

the universe does not have a non-trivial ground. Let P ∈ P be non-trivial forcing.

Then ∥–P“¬ψ ”. Since ¬ψ is a Σ3-sentence, (P , ∅)Σ3-RcA implies that there is a

ground W of V such that W |= ¬ψ. Since we also assumed GA, W must be identical

with V. Thus V |= ¬ψ. This is a contradiction.
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Since ψ above is a P-button, the same proof leads to a contradiction under

MP−(P , ∅)Σ3 . (Proposition 2.4)

Actually we also have the following delimitation, which show that Theorem 2.3

is optimal in many instances of P .

In the following, we use a variant of the cardinal invariant b∗ introduced in

Eda-Kada-Yuasa [9]:

b∗∗ := min{κ ∈ Card : for any B ⊆ ωω, if B is unbounded in ωω with

respect to ≤∗ , then there is B′ ⊆ B with

|B′ | ≤ κ such that B′ is unbounded in B}.

Lemma 2.5 p-rec-GA-0-0( 1 ) b = ℵ1 can be formulated as a Σ2-sentence φ in L∈.

( 2 ) b∗∗ = ℵ1 can be formulated as a Π2-sentence ψ in L∈.

( 3 ) b < d can be formulated as a Π2-sentence η in L∈.

Proof. (1): The following formula φ will do:

∃B ∃R ∃F (B ⊆ ωω ∧ “R is an ω1-like linear ordering on B which is

witnessed by F ” ∧ ∀f (f ∈ ωω → (∃g ∈ B) (g ̸<∗ f))) .

(2): The following formula ψ will do:

∀B (

Σ0︷ ︸︸ ︷
B ⊆ ωω ∧

Π1 and hence its negation is Σ1︷ ︸︸ ︷
B is unbounded in ωω →

∃B′ ∃R ∃F (

Σ0︷ ︸︸ ︷
B′ ⊆ B ∧

Σ0︷ ︸︸ ︷
B′ is unbounded in B

∧ R is ω1-like order on B′ which is witnessed by F︸ ︷︷ ︸
Σ0

)) .

(3): “b = d” is characterized by the existence of a bounding family ⊆ ωω which

is well ordered with respect to ≤∗. Similarly to above, this can be formulated by a

Σ2-sentence. Hence, the negation of the equality (⇔ b < d) is Π2 in L∈. (Lemma 2.5)

Lemma 2.6 p-rec-GA-0-1b ≤ b∗∗ ≤ d.

Proof. Let ⟨fα : α < b⟩ be such that fα ≤∗ fα′ for all α < α′ < b, and

{fα : α < b} is unbounded in ωω (this can be done by letting {gα : α < b}
be a unbounded subset of ωω, and defining fα, α < b inductively such that we

have gα ≤∗ fα for all α < b). Let B = {fα : α < b}. Then no B′ ⊆ B with

|B′ | < |B | = b is unbounded in B.
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Note that the sequence ⟨fα : α < b⟩ as above also shows that b is a regular

cardinal.

This proves that b ≤ b∗∗.

To show that b∗∗ ≤ d, suppose that D ⊆ ωω is dominating in ωω (with respect

to ≤∗), and |D | = d.

For any unbounded B ⊆ ωω, and for each d ∈ D let bd ∈ B be such that bd ̸≤∗ d.

Then B′ = {bd : d ∈ D} ⊆ B is unbounded in ωω and hence also unbounded in B

and is of cardinality ≤ d. This shows that b∗∗ ≤ d. (Lemma 2.6)

In the following, we denote with Cκ the finite support κ-product of Cohen

forcing, and with D the finite support iteration of Hechler forcing of length ω1. It is

easy to see that (over an arbitrary ground model V) we have ∥–Cκ “ b = ℵ1, d ≥ κ ”

for any regular κ ≥ ℵ1, and ∥–D“ d = ℵ1 ”. More generally, letting Dκ be the FS-

iteration of Hechler forcing of length κ for regular κ, we have ∥–Dκ “ b = d = κ ”.

Proposition 2.7 p-rec-GA-1Suppose P is a class of posets with D ∈ P and (2.3) : x-rec-GA-a-0b > ℵ1

holds.

( 1 ) If (P , ∅)Σ2-RcA holds, then GA does not hold.

( 2 ) If (P , ∅)Π2-RcA holds, then GA does not hold.

Proof. Suppose that P is as above, and (2.3) holds.

(1): Suppose that (P , ∅)Σ2-RcA and GA hold.

Since we have ∥–D“ b = ℵ1 ”, and since “b = ℵ1” is expressible in a Σ2-sentence

in L∈ by Lemma 2.5, (1), it follows by (P , ∅)Σ2-RcA, that there is a ground W0 with

W0 |=“ b = ℵ1 ”. Since V = W0 by GA, this is a contradiction to (2.3).

(2): Suppose that (P , ∅)Π2-RcA and GA hold.

Note that by (2.3) and Lemma 2.6, we have (2.4) : x-rec-GA-0V |= b∗∗ > ℵ1.

Since we have ∥–D“ d = ℵ1 ”, we have ∥–D“ b
∗∗ = ℵ1 ” by Lemma 2.6. Since

“b∗∗ = ℵ1” is expressible in a Π2-sentence in L∈ by Lemma 2.5, (2), it follows by

(P , ∅)Π2-RcA, that there is a ground W0 with W0 |=“ b∗∗ = ℵ1 ”. Since V = W0 by

GA, it follows that V |=“ b∗∗ = ℵ1 ”. This is a contradiction to (2.4). (Proposition 2.7)

The following can be proved similarly to Proposition 2.7, (1).

Proposition 2.8 p-rec-GA-1-0Suppose that P is a class of posets with Cℵ1 ∈ P and b ≥ ℵ2

holds. Then (P , ∅)Σ2-RcA implies that GA does not hold.

Note:

Lemma 2.9 p-rec-GA-1-1CH can be formulated both as Σ2-sentence and Π2-sentence in L∈ with-

out parameters.

Proof. Consider
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∃F ∃R (

Π1: note that we need here the quantification of the sort ∀f (f ∈ ωω → ...)︷ ︸︸ ︷
R is ω1-like ordering on ωω and R witnesses the ω1-likeness )

and

∀F ∀S ∀A ( (

Π1, so the negation is Σ1︷ ︸︸ ︷
S = “ ωω ” ∧ A is an ordinal ∧ F : S → A is a surjection )

→ A < ω2︸ ︷︷ ︸
Σ1

).

(Lemma 2.9)

Proposition 2.10 p-rec-GA-1-1-0( 1 ) Suppose that ¬CH holds and P contains a poset collapsing

2ℵ0 to ℵ1 without adding reals. Then each of (P , ∅)Σ2-RcA and (P , ∅)Π2-RcA implies

¬GA.
( 2 ) Suppose that CH holds and P contains a poset Q adding ≥ℵ2 reals without

collapsing cardinals ≤ℵ2. Then each of (P , ∅)Σ2-RcA and (P , ∅)Π2-RcA implies ¬GA.
( 3 ) Suppose that P contains sufficiently many ccc posets (containing enough CS-

iterations of Cohen and Hechler posets would suffice), then each of (P , ∅)Σ2-RcA and

(P , ∅)Π2-RcA implies ¬GA.

Proof. Similarly to the proof of Proposition 2.7 using Lemma 2.9. For (3), we

consider cases where (a) ℵ1 = b = d, (b) ℵ1 < b = d, or (c) ℵ1 < b < d, and apply

Lemma 2.5 in all of the cases. (Proposition 2.10)

2.3 Incompatibility of Laver genericity with Ground Ax-

iom

In the following we want to discuss the impact of the results we obtained above

on axioms stating that there is a Laver-generic large cardinal (Laver-gen. large

cardinal axioms).

The strongest Laver-generic large cardinal axiom which has been considered so

far, is the tightly super-C(∞) P-Laver-generically hyperhuge cardinal (see Fuchino

and Usuba [20]). Here, a cardinal κ is said to be (tightly, resp.) super C(∞) P-

Laver-generically hyperhuge if for all n ∈ N and for any λ0 > κ there are λ ≥ λ0

with Vλ ≺Σn V, and j, M ⊆ V such that j : V
≺→κ M , j(κ) > λ, j(λ)M ⊆ M ,

Vj(λ) ≺Σn V (and P ∗
∼
Q is of size ≤ j(κ), resp.).4)

We can also define (tightly) super C(∞) P-Laver gen. large cardinal analogously

for notions of large cardinal other than hyperhugeness (see [20] or [13]). For an

4)When we say “a poset P is of cardinality ≤ µ” we actually mean that there is a poset Q
forcing equivalent to P such that |Q | ≤ µ.
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iterable class P of posets which also permits transfinite iteration with some suitable

support, we can prove that the existence of the tightly super C(∞) P-Laver gen.

hyperhuge cardinal is consistent under a 2-huge cardinal ([20]).

Note that we cannot formulate the (genuine) large cardinal property correspond-

ing to (tightly) super C(∞) P-Laver-generically large cardinal in L∈. However, for a

natural class P of posets like proper posets, semiproper posets, ccc posets, etc. we

can formulate the notion of (tightly) super C(∞) P-Laver-generically hyperhugeness

in an axiom scheme in L∈. This is because P-Laver-generically hyperhugeness of

a cardinal κ implies κ = κrefl (:= max{ℵ2, 2
ℵ0}) for these classes P of posets, and

hence we can formulate the (tightly) super C(∞) P-Laver-generically hyperhugeness

of such κ in infinitely many formulas without introducing a new constant symbol

for the cardinal.

In Fuchino and Usuba [20], it is proved that if κ is tightly super C(∞) P-Laver-

generically ultrahuge, then (P ,H(κ))-RcA+ holds. Here the tightly super C(∞)

P-Laver-generically ultrahugeness is apparently much weaker than tightly super

C(∞) P-Laver-generically hyperhugeness.

Note that (P ,H(κ))-RcA+ is also an assertion formalizable only in infinitely

many formulas. In contrast, it is proved in [12], that, in a sense, Laver-genericity

without “super C(∞)” details never implies the full (P ,H(κ))-RcA+.

By the result mentioned above and by Theorem 2.4, it follows immediately that:

Proposition 2.11 p-rec-GA-1-1-1For any iterable class P of posets, if κ is tightly super C(∞)

P-Laver-generically ultrahuge, then GA does not hold.

In [20], it is proved that if κ is tightly P-generically hyperhuge (not necessarily

Laver-generic) then there is the bedrock (i.e. the ground satisfying GA) and κ his

hyperhuge in the bedrock.

On the other hand, it is shown in [13] that a tightly P-Laver-generically ultra-

huge cardinal for nice iterable P is ≤ κrefl . Here an iterable class P of posets is said

to be nice if either P preserves ω1 and Col(ω1, {ω2}) ∈ P , or P contains a poset

which adds a new real. Actually the following lemma is one of the main rationales

of the definition of the cardinal κrefl .

Lemma 2.12 p-rec-GA-1-1-2Suppose that P is a nice iterable class of posets. If κ is P-Laver-gen.

supercompact, then κ ≤ κrefl .

Proof. By Lemma 6.,(2) and (3) in [13]. (Lemma 2.12)

Thus we obtain:
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Proposition 2.13 p-rec-GA-1-2For a nice iterable class P of posets, suppose that there is a

tightly P-Laver-generically hyperhuge cardinal. Then the bedrock exists and it is

different from V. In particular, GA does not hold.

Proof. By Lemma 2.12, the tightly P-Laver-generically hyperhuge cardinal is

≤ κrefl (in V) while κ is hyperhuge in the bedrock W. This implies that V ̸= W. In

particular, GA does not hold. (Proposition 2.13)

At the moment we do not know if the existence of a tightly P-generically hyper-

huge in theorem in [20] mentioned above can be weakened to the existence of some

tight generic large cardinal of lower consistency strength. However, in [13], it is

proved that for an iterable class P of posets, if κ is tightly P-Laver-gen. ultrahuge

then (P ,H(κ))Σ2-RcA
+ holds (Theorem 21 in [13]). Note that ultrahuge cardinal

is apparently much weaker than hyperhuge cardinal.

Theorem 2.14 p-rec-GA-2Suppose that P is an iterable class of posets satisfying one of the

conditions in Proposition 2.10.

If κrefl is tightly P-Laver-gen. ultrahuge then GA does not hold.

Proof. If κ is tightly P-Laver-gen. ultrahuge then (P ,H(κ))Σ2-RcA
+ holds by

Theorem 21 in [13]. Thus if D ∈ P then (by Proposition 5.5 below and) by

Proposition 2.7,(1), it follows that GA does not hold.

Other cases can treated similarly by applying other assertions of Proposition 2.10.

(Theorem 2.14)

3 Hierarchies of restricted Recurrence Axioms

and Maximality Principles

hierarchiesIkegami and Trang [27] formulated Maximality Principle slightly different from our

notation. Their Maximality Principle in restricted form is defined for a class P of

posets, cardinal κ and set Γ of formulas (in L∈) as:

(3.1) x-hierarchies-aFor any formula φ ∈ Γ and A ⊆ κ, if φ(A) is a P-button then φ(A) holds

in V .

Since (tuples of) elements of H(κ+) can be coded by subsets of κ we have:

LemmaA3.1 p-hierarchies-0For any class of posets P, cardinal κ, and a set Γ of L∈-formulas,

we have:

The Maximality Principle of Ikegami and Trang (3.1) ⇔ MP(P ,H(κ+))Γ.

Thus, Ikegami and Trang’s Theorem (Theorem 1.13 in [27]) is reformulated as:
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(3.2) x-hierarchies-0MP(P ,H(ℵ2))Σ1 ⇔ BFA<ℵ2(P) for any (normal) class P of posets.

Actually, almost the same argument as the proof of Theorem 2.2 given above,

we can show the following more general theorem:

Theorem 3.1 (Generalization of the original Ikegami-Trang Theorem) p-hierarchies-1For a (nor-

mal) class P of posets, and a cardinal κ the following are equivalent:

( a ) MP(P ,H(κ))Σ1.

( b ) MP−(P ,H(κ))Σ1.

( c ) BFA<κ(P).

Proof. (a) ⇒ (b): is trivial,

(b) ⇒ (c): Assume MP−(P ,H(κ))Σ1 . By Bagaria’s Absoluteness Theorem 1.2,

it is enough to show that φ(a) ⇔ ∥–P“φ(a) ” for all P ∈ P , Σ1-formula φ in L∈

and a ∈ H(κ).

If φ(a) holds then, since φ is Σ1, ∥–P“φ(a) ” also holds.

Suppose that ∥–P“φ(a) ”. Then, for any P-name
∼
Q of poset ∥–P“ ∥–Q

∼
“φ(a) ” ”

since φ is Σ1. In particular φ(a) is a P-button with the push P of the button. By

MP−(P ,H(κ))Σ1 , there is a ground W0 of V such that a ∈ W0 and W0 |= φ(a).

Since φ is Σ1, it follows that V |= φ(a).

(b) ⇒ (c): Assume BFA<κ(P). By Bagaria’s Absoluteness Theorem 1.2, this

means that φ(a) ⇔ ∥–P“φ(a) ” for all P ∈ P , Σ1-formula φ in L∈ and a ∈ H(κ).

Suppose that ∥–P“ ∥–Q “φ(a) ” for all Q ∈ P ” for P, φ, a as above. Since

{1} ∈ P it follows that ∥–P“φ(a) ”. By assumption, it follow that φ(a) holds.

(Theorem 3.1)

Corollary 3.2 p-hierarchies-2For a class P of posets and for an infinite cardinal κ, we have

MP(P ,H(κ))Σ1, ⇔ MP−(P ,H(κ))Σ1, ⇔ BFA<κ(P),

⇔ (P ,H(κ))Σ1-RcA, ⇔ (P ,H(κ))Σ1-RcA
+.

Proof. By Theorem 2.2 and Theorem 3.1. (Corollary 3.2)

The following lemma holds since Π1-formulas are downward absolute.

Lemma 3.3 p-hierarchies-3For any class P of posets, and any set A, (P , A)Π1-RcA
+ and

MP(P , A)Π1 hold (in ZFC). In particular, we have

(P , A)Π1-RcA ⇔ (P , A)Π1-RcA
+ ⇔ MP−(P , A)Π1 ⇔ MP(P , A)Π1 .

In the following, we show that the equivalence in Lemma 3.3 does not hold for

Π2.

Nevertheless, we have the following implications.
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Lemma 3.4 p-hierarchies-4Suppose that P is a (normal) class of posets defined by a Σm-formula

without parameters for some number m, and A a set.5)

( 1 ) (P , A)Πn-RcA
+ ⇒ MP(P , A)Πn, for all n ≥ max{m, 1}.

( 2 ) MP(P , A)Σn ⇒ (P , A)Σn-RcA
+, for all n ≥ max{m, 3}.

Proof. The following proofs are just re-examinations of the easy proof of Propo-

sition 2.1, (1) (e.g. the one given in Fuchino and Usuba [20]).

(1): Note that, for n = 1, the claim also follows from Lemma 3.3.

Assume that (P , A)Πn-RcA
+ holds for n ≥ max{m, 2}. To show thatMP(P , A)Πn

holds, suppose that φ = φ(x) is a Πn-formula, a ∈ A, and P ∈ P is such that

∥–P“ ∀P ∈ P ( ∥–P “φ(a) ”) ” holds in V.

“∀P ∈ P ( ∥–P “φ(x) ”)” is Πn by the choice of n. Let us denote this formula

by φ∗. Thus, we have ∥–P“φ
∗(a) ”.

By (P , A)Πn-RcA
+, it follows that there is a P-ground W of V such that a ∈ W

and W |= φ∗(a). By the definition of φ∗, and since W is a P-ground, it follows that

V |= φ(a).

(2): Assume that MP(P , A)Σn holds. Suppose that φ is Σn-formula, a ∈ A, and

P ∈ P is such that

(3.3) x-hierarchies-1-0∥–P“φ(a) ”.

Then we have ∥–P“φ(a) holds in a P-ground ”.

The assertion

(3.4) x-hierarchies-2“φ(x) holds in a P-ground”

can be expressed in a Σn-formula φ∗∗ = φ∗∗(x) (see the remark after the proof of the

present lemma). By (3.3) and by the definition (3.4) of φ∗∗ we have ∥–P∗Q
∼
“φ∗∗(a) ”

for all P-names
∼
Q with ∥–P“

∼
Q ∈ P ”. Thus, by MP(P , A)Σn , it follows that V |=

φ∗∗(a). By the definition of φ∗∗, it follows that there is a P-ground W0 such that

W0 |= φ(a). (Lemma 3.4)

The fact that (3.4) can be formulated in a Σn-formula for n ≥ max{m, 3}, can
be seen as follows: First, let us recall the following fact.

5)Note that “x is c.c.c. poset”, “x is proper posets”, “x is semi-proper poset” are all Σ2-
statements. In case of “x is (semi-)proper poset”, this can be seen in the formulation:

“∃κ ∃F (κ is a cardinal ∧ F “codes” the fact “κ ≥ (ℶω)+(|x |)” ∧ · · · ).”

Here, the underline to κ is added to suggest that the symbol does not denote a constant symbol
but rather a variable in the language L∈. We shall keep this convention in the following.
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Lemma 3.5 p-hierarchies-4-0Suppose that ψ = ψ(x, y) is a Σm-formula and φ is Σn-formula (Πn-

formula, resp.). Then φψ(x;y) is a Σmax{m,n}-formula (a Πmax{m,n}-formula, resp.).6)

Proof. For quantifier free formula φ, the claim of the Lemma is true since φψ = φ.

Suppose that, for a Σn-formula φ0 = φ0(x0, x) (Πn-formula φ1 = φ1(x0, x)),

φ0
ψ(x;y) is Σk (φ1

ψ(x;y) is Πk resp.).

Then

(∀x0)(ψ(x0, y) → φ0
ψ(x;y)) is Πmax{m,k+1}, and

(∃x0)(ψ(x0, y) ∧ φ1
ψ(x;y)) is Σmax{m,k+1}.

Using this fact, the claim of the Lemma can be proved now by induction on n.

(Lemma 3.5)

An examination of [6] and [33] reveals a construction of a Π2-formula

Φ(x, P , δ, r, G) which says that

P is a poset, δ is a regular cardinal in V, there is a uniquely determined

inner model M with δ-cover and δ-approximation properties such that

r = (δ>2)M, P ∈ M, M ̸= V, G is an (M, P )-generic set such that

V = M[G], and x ∈ M.

Let ψ = ψ(x) be a Σm-formula expressing “x ∈ P”. Then, for a Σn-formula

φ = φ(x) for n ≥ max{m, 3}, the formula φ∗∗(x) defined as

∃P∃ δ ∃ r ∃G (Φ(∅, P , δ, r, G) ∧ ψΦ(x;··· )(P ) ∧ φΦ(x;··· )(x))

is Σn by Lemma 3.5, and φ∗∗(a) expresses “φ(a) holds in a P-ground”.

We shall also use the following variant of Maximality Principle. Let P , A, Γ be

as before.

MP+(P , A)Γ : For φ ∈ Γ, and a ∈ A, if φ(a) is a P-button, then {1} is a push of

the P-button φ(a).

As before, we drop the subscript Γ from MP+(P , A)Γ if Γ = L∈.

Lemma 3.6 p-hierarchies-5( 1 ) MP+(P , A)Γ ⇒ MP(P , A)Γ.
( 2 ) (Hamkins [25]) MP+(P , A) ⇔ MP(P , A). More precisely, if P is Σm-

6)Here, we denote by φψ(x;y) the formula φ restricted to ψ(x, y) where ψ(x, y) is thought to be
the definition of the class Ay = {x : ψ(x, y)} with parameters (or, more precisely, place holders
for parameters) y. The semi-colon in “φψ(x;y)” should remind this allocation of roles among the
free variables of ψ.

Thus φψ(x,y) corresponds to the informal statement: Ay |= φ.
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definable, then for any n ≥ max{m, 1}, we have MP+(P , A)Πn ⇔ MP(P , A)Πn.

( 3 ) For an iterable P, if MP+(P , A)Γ, then for any P ∈ P, we have

∥–P“MP+(P , A)Γ ”.

Proof. (1): is clear by definition.

(2): By (1), it is enough to show “⇐”, Assume that MP(P , A) holds, and

suppose that φ(a) is a P-button for an L∈-formula φ and a ∈ A. Then φ∗ :=

∀Q (Q ∈ P → ∥–Q “φ(a) ”) is a P-button. Hence, by MP(P , A), φ∗ holds in V.

But this means that {1} is a push for the button φ.

(3): Suppose that MP+(P , A)Γ holds (in V). For φ ∈ Γ, and a ∈ A, let P ∈ P
be such that it forces that φ(a) is a P-button. By Maximal Principle (of forcing),

there is a P-name
∼
Q of a poset such that

∥–P“
∼
Q ∈ P ∧ ∥–Q

∼
“ ∀R (R ∈ P → ∥–R “φ(a) ”) ” ”.

Since P is iterable, it follows that φ(a) is a P-button over V. Thus, by

MP+(P , A)Γ, {1} is a push of the P-button φ(a) (in V).

Again since P is iterable, it follows that ∥–P“ {1} is a push of the P-button φ(a) ”.

(Lemma 3.6)

The following should be folklore:

Lemma 3.7 p-hierarchies-5-0( 1 ) If α is a limit ordinal and Vα satisfies a sufficiently large finite

fragment of ZFC, then for any P ∈ Vα and (V,P)-generic G, we have Vα[G] = Vα
V[G].

( 2 ) If α is a limit ordinal and Vα satisfies a sufficiently large finite fragment of

ZFC, then for any direct limit P of an iteration of length OnVα in P ∈ Vα definable

in Vα and preserving cardinals in Vα, if G is (V,P)-generic, then we have

Vα[G] = Vα
V[G].

( 3 ) For each natural number k, there is a sufficiently large k′ > k such that for

any α ∈ On if Vα ≺Σk′
V (i.e. α is Σk′-correct), then for any poset P ∈ Vα and

(V,P)-generic G, Vα
V[G] ≺Σk

V[G].

( 4 ) Suppose that ⟨Pα,
∼
Qα : α ∈ On⟩ is an Easton support class iteration of

increasingly directed closed posets and P is the class direct limit of the iteration.

If k is a natural number and κ is a regular cardinal which is Σk′-correct for a

sufficiently large k′ > k, then we have Vκ
V[Gκ] ≺Σk

V[G] for any (V,P)-generic G

and Gκ = G ∩ Pκ.

Proof. (1): See e.g. Lemma 3.2 in [20]. (2): follows from (1).
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(3): see the proof of Lemma 4.8, (1) in the extended version of [20].

(4): Let Φ = Φ(x) be an L∈-formula which defines P. Then by the choice of

κ, we have Pκ = ΦVκV
. The claim (3) follows from this fact with an argument

practically identical to that for (3). (Lemma 3.7)

By Theorem 2.4, we cannot replace Π2 in the next theorem by Σ3.

Theorem 3.8 p-hierarchies-6Suppose that P is a Σ2-definable iterable class of posets containing

all σ-closed posets, and that MP+(P ,H(κrefl ))Π2 holds. Suppose further that there

is a proper class K of supercompact cardinals.

If P is the class poset for Laver preparation for K (see the proof below for more

details), then we have

∥–P “GA + MP(P ,H(κrefl ))Π2

+ there are class many supercompact cardinals ”.

Proof. Let P , K be as above.

Let f : On → V be a universal Laver function for K. I.e., a class function f

such that

(3.5) x-hierarchies-2-0for any κ ∈ K, we have f ↾ κ : κ → Vκ, and for any x ∈ V and any

λ ≥ max{κ, | trcl(x) |}, there is a normal ultrafilter Uκ,λ,x over Pκ(λ) and
associated elementary embedding fκ,λ,x : V

≺→κ M with jκ,λ,x(f)(κ) = x.

We may also assume that

(3.6) x-hierarchies-2-1f(α) = 0 for all α < κrefl .

Note that f ↾ κ, κ ∈ K are uniformly definable across Vκ ( = H(κ)) for all κ ∈ K.

A universal Laver function exists (see e.g. Apter [1], Lemma 1).

Let ⟨Pα : α ∈ On⟩ be the Laver preparation along with f making supercom-

pactness of all κ ∈ K indestructible by κ-directed closed forcing.7) I.e., ⟨Pα : α ∈
On⟩ is defined as the iterative part of the Easton support8) iteration ⟨Pα,

∼
Qα : α ∈

On⟩ with a control sequence ⟨λα : α ∈ On⟩ of cardinals defined recursively by

(3.7) x-hierarchies-3If α ∈ On is a limit and closed with respect to ⟨λβ : β < α⟩, f(α) = ⟨
∼
Q, λ⟩

with ∥–Pα “ ∼
Q is <α-directed closed poset ”, then

∼
Qα =

∼
Q and λα = λ;

(3.8) x-hierarchies-4Otherwise λα = sup{λβ : β < α} and ∥–Pα “Qα = {1} ”.

7)Note that κ-directed closed means ≤κ-directed closed.

8) I.e. direct limit at Pα for regular α and inverse (≈ full support) limit at singular α.
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Let P be the class forcing which is the direct limit of ⟨Pα : α ∈ On⟩. For each
κ ∈ K, let P>κ be (the class Pκ-name of) the κ-directed closed tail part of the

iteration. Thus P ∼ Pκ ∗P>κ and ∥–Pκ “P>κ is a κ-directed closed class poset ”.

Let G be (V,P)-generic. For each κ ∈ K, let Gκ = G ∩ Pκ. Each κ ∈ K
is made indestructible under κ-directed closed forcing by Pκ (see e.g. [31]). In

particular, κ remains supercompact in V[Gλ] for all λ ∈ K. It follows that κ

remains supercompact also in V[G].

V[G] |= GA. This is because V[G] satisfies Continuum Coding Axiom (CCA),

and GA follows from it (see [33] Theorem 3.2). That V[G] satisfies CCA follows

from the fact that in V[G] there are cofinally many indestructible supercompact

cardinals. [[The first author learned the following from G.Goldberg: Suppose

that a ⊆ α. Let κ > α be an indestructible supercompact cardinal. Let P be

κ-directed closed poset such that ∥–P“ ∀β < α (2ℵκ+β+1 = (ℵκ+β+1)
+ ↔ β ∈ a) ”.

Since ∥–P“κ is supercompact ” by assumption and a supercompact cardinal is Σ2-

correct. It follows that

∥–P“Vκ |= ∃δ ∀β < α (2ℵδ+β+1 = (ℵδ+β+1)
+ ↔ β ∈ a) ”

Since ∥–P“Vκ = (Vκ)
V ” by κ-directed closedness of P, it follows that

V |=“Vκ |= ∃δ ∀β < α (2ℵδ+β+1 = (ℵδ+β+1)
+ ↔ β ∈ a) ”.

Hence the assertion holds in V. ]]

Thus, it is enough to show that V[G] |= MP(P ,H(κrefl ))Π2 . Note that we have

(3.9) x-hierarchies-5H(κrefl )
V = H(κrefl )

V[Gκ] = H(κrefl )
V[G]

by min(K)-directed closedness of P, and (3.6). Also

(3.10) x-hierarchies-6Vκ
V[Gκ] = Vκ

V[G]

for all κ ∈ K by κ-directed closedness of P>κ and Lemma 3.7, (2).

Working in V[G], suppose that φ = φ(x) is a Π2-formula and a ∈ H(κrefl )

(= H(κrefl )
V).

Further in V[G], suppose that S ∈ P is such that

(3.11) x-hierarchies-7-a-aV[G] |= ∥–S“ ∀T ∈ P ( ∥–T “φ(a) ”) ”.

We want to show that φ(a) holds (in V[G]).

By replacing V by V[Gκ0 ], and K by K \ κ0 + 1 for a large enough κ0 ∈ K
with S ∈ V[Gκ0 ], we may assume that S ∈ Vκ0

V for a κ0 < min(K). Let g be

(V[G],S)-generic. Since S ∈ P and since P is iterable, we have
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(3.12) x-hierarchies-7-aV[G][g] |= ∀T ∈ P ( ∥–T “φ(a) ”).

By (3.10) (and Lemma 3.7, (2)), we have

(3.13) x-hierarchies-6-0Vκ
V[Gκ][g] = Vκ

V[G][g]

for all κ ∈ K.

Note that each κ ∈ K remains supercompact in all of V [Gκ], V[Gκ][g], V [G],

and V[G][g]. Thus,

(3.14) x-hierarchies-7-0-aVκ
V[G] ≺Σ2 V[G],

(3.15) x-hierarchies-7-0Vκ
V[G][g] ≺Σ2 V[G][g],

(3.16) x-hierarchies-7-a-0-0Vκ
V[Gκ] ≺Σ2 V[Gκ], and

(3.17) x-hierarchies-7-a-1Vκ
V[Gκ][g] ≺Σ2 V[Gκ][g]

for all κ ∈ K. By (3.10), and (3.14), we have

(3.18) x-hierarchies-7-a-2Vκ
V[Gκ] ≺Σ2 V[G]

for all κ ∈ K. Similarly

(3.19) x-hierarchies-7-0-0Vκ
V[Gκ][g] ≺Σ2 V[G][g]

holds for all κ ∈ K by (3.13) and (3.15),

“∀T ∈ P ( ∥–T “φ(a) ”)” is Π2 (note that we need Σ2-definability of P for this).

Hence Vκ
V[Gκ][g] |= ∀T ∈ P ( ∥–T “φ(a) ”) by (3.12) and (3.19). By (3.17), it follows

that V[Gκ][g] |= ∀T ∈ P ( ∥–T “φ(a) ”). This implies that φ(a) is a P-button in

V[Gκ].

Similarly, since V[G] |= S ∈ P , and P is Σ2, we have V[Gκ] |= S ∈ P by (3.18)

and (3.16).

Since we have V[Gκ] |= MP+(P ,H(κrefl ))Π2 by Lemma 3.6, (3), it follows that

V [Gκ] |= φ(a) for all κ ∈ K.

Since φ is Π2 and K is cofinal in On, it follows that V[G] |= φ(a) by (3.18).

This shows that V[G] |= MP(P ,H(κrefl ))Π2 holds. (Theorem 3.8)

If we start from a ground model with a proper class K of C(n)-supercompact

cardinals (see Bagaria [5]) for sufficiently large n, we can improve the condition “P
is Σ2-definable” in Theorem 3.8 by “P is Σ3-definable” (see the remark after the

proof of Proposition 3.10).

“Π2” and “MP(P ,H(κrefl ))Π2” in Theorem 3.8 can be also replaced by “∆3” and

“MP∗(P ,H(κrefl ))∆3” which is not covered byMP(P ,H(κrefl ))Π2 (Proposition 3.10).
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In the following, we quickly review the definition and some needed facts about

the variation MP∗(P , A)Γ of the Maximality Principle which will be further studied

in Fuchino, Gappo, Lietz, and Parente [14].

For an iterable class P of posets, a set A of parameters, and a set Γ of L∈-

formulas, let (Γ)∗P be the set of provably P-persistent formulas in Γ. That is, the

collection of all formulas φ ∈ Γ, φ = φ(x) such that the L∈-sentence

(3.20) x-YAH-a(φ)∗P := ∀x (φ(x) → ∀P ∈ P ( ∥–P“φ(x) ”)).

is provable in ZFC.

Note that if Γ is closed with respect to equivalence (which is provable in ZFC)

and has a recursive representatives (modulo the equivalence), then the same holds

for (Γ)∗P (as far as P is a definable class but this is always assumed).

Now MP∗(P , A)Γ is defined as the axiom scheme consisting of formulas of the

form

(3.21)φ x-YAH-0(∀P ∈ P) (∀x ∈ A) ( ∥–P“φ(x) ” → φ(x))

for each φ ∈ (Γ)∗P .

Similarly to the MP(· · · )Γ and (· · · )Γ-RcA+ hierarchies, we write MP∗(P , A) for
MP∗(P , A)L∈ .

The main point of the definition of MP∗(P , A)Γ is that the persistence is coded

in the collection (Γ)∗P so that each formula (3.21)φ in MP∗(P , A)Γ remains at about

the same complexity of φ.

Lemma 3.9 p-YAH-0For an iterable class P of posets, arbitrary set A of parameters and

set Γ of formulas, the following are equivalent:

( a ) MP(P , A)(Γ)∗P , ( b ) MP+(P , A)(Γ)∗P , ( c ) (P , A)(Γ)∗P -RcA
+ ,

( d ) MP∗(P , A)Γ.

Proof. We show (a) ⇔ (d). Other equivalences can be proved similarly.

(a) ⇒ (d): Assume that MP(P , A)(Γ)∗P holds. Suppose that φ ∈ (Γ)∗P , a ∈ A

and ∥–P“φ(a) ” holds for a P ∈ P . Then, since φ ∈ (Γ)∗P , φ(a) is a P-button

and P is its push. By MP(P , A)(Γ)∗P it follows that V |= φ(a). This shows that

MP∗(P , A)Γ holds.

(d) ⇒ (a): Assume that MP∗(P , A)Γ holds and suppose that φ ∈ (Γ)∗P , a ∈ A,

φ(a) is a P-button and P ∈ P is its push. Then, since {1} ∈ P , ∥–P“φ(a) ”.

By MP∗(P , A)Γ it follows that V |= φ(a). This shows that MP(P , A)(Γ)∗P holds.

(Lemma 3.9)
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The hierarchy of this type of restricted Maximality Principles appears in Good-

man [23]. Our MP∗(P , A)Γ is called “Γ-MPP(A)” in [23]. Though the choice of

symbols in [23] is so that letter Γ is used to denote the class of posets and Φ to

denote the class of formulas.

The hierarchy ofMP∗ is actually a special case of the hierarchy of “BFA(P ,Γ)κ,λ”
in Asperó [2] (see [14]: see also Lemma 6.10).9)

The proof of Lemma 3.4, (2), shows also the implication:

(2’) MP∗(P , A)Σn ⇒ (P , A)Σn-RcA
+, for all n ≥ max{m, 3} where P is Σm.

Thus, by Theorem 2.4, MP∗(P , A)Σn for n ≥ max{m, 3} for m as above implies

¬GA. In particular, for Σ3-definable P , MP∗(P , A)Σ3 implies ¬GA. This shows

that the condition ∆3 in the following proposition is (almost) optimal.

Proposition 3.10 p-hierarchies-6-1Suppose that P is a Σ3-definable iterable class of posets con-

taining all σ-closed posets, and that MP+(P ,H(κrefl ))∆3 holds. Suppose further that

there is a proper class K of C(n)-supercompact cardinals for a sufficiently large n

and P is the class poset defined as in the proof of Theorem 3.8 for this K.

Then we have

∥–P “GA + MP∗(P ,H(κrefl ))∆3 ”.

Proof. Suppose that K and P are as above and MP+(P ,H(κrefl ))∆3 holds.

Let G be a (V,P)-generic filter.

As it has been already shown in the proof of Theorem 3.8, we have V[G] |= GA.

So we prove V[G] |= MP∗(P ,H(κrefl ))∆3 . Working in V[G], suppose that φ =

φ(x) is a (∆3)
∗
P-formula and a ∈ H(κrefl ) (= H(κrefl )

V).

Further in V[G], suppose that S ∈ P is such that

(3.22) x-hierarchies-8-0V[G] |= ∥–S“φ(a) ”.

We want to show that φ(a) holds (in V[G]).

Similarly to the proof of Theorem 3.8, we may assume that S ∈ Vκ0
V for a

κ0 < min(K). Let g be (V[G],S)-generic. By the choice (3.22) of S, we have

(3.23) x-hierarchies-8-1V[G][g] |= φ(a).

By the choice of the “sufficiently large” n (in terms of Lemma 3.7, (4) and (3)),

and by (3.10),

(3.24) x-hierarchies-8-2Vκ
V[Gκ] ≺Σ3 V[G],

9)These principles are related but different from the Bounded Forcing Axioms BFA<κ(P).
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(3.25) x-hierarchies-9Vκ
V[Gκ][g] ≺Σ3 V[G][g],

and, since κ remains supercompact in V[Gκ] and V[Gκ][g],

(3.26) x-hierarchies-9-0Vκ
V[Gκ] ≺Σ2 V[Gκ],

(3.27) x-hierarchies-10Vκ
V[Gκ][g] ≺Σ2 V[Gκ][g]

for all κ ∈ K.

By (3.24), S ∈ P (in V[G]), and since P is Σ3, Vκ
V[Gκ] |= S ∈ P . Hence, by

(3.26), V[Gκ] |= S ∈ P .

Since φ is ∆3, (3.23) and (3.25) implies Vκ
V[Gκ][g] |= φ(a). This and (3.27) imply

V[Gκ][g] |= φ(a).

By φ ∈ (∆3)
∗
P , it follows that V[Gκ][g] |= ∀Q ∈ P ( ∥–Q“φ(a) ”). Thus V[Gκ] |=

∃S ∈ P (∀
∼
Q ( ∥–S“

∼
Q ∈ P → φ(a) ”)).

Since V[Gκ] |= MP+(P ,H(κrefl ))∆3 by Lemma 3.6, (3), it follows that

(3.28) x-hierarchies-11V[Gκ] |= φ(a).

Since φ is ∆3, and hence Π3 in particular, Vκ
V[Gκ] |= φ(a) by (3.26). Thus, by

(3.28), it follows that V[G] |= φ(a).

This shows that V[G] |= MP∗(P ,H(κrefl ))∆3 holds. (Proposition 3.10)

The first half of the proof of Proposition 3.10 can be applied to the proof of

Theorem 3.8 to obtain:

(A variant of Theorem 3.8) Suppose that P is a Σ3-definable iterable class of

posets containing all σ-closed posets, and that MP+(P ,H(κrefl ))Π2 holds.

Suppose further that there is a proper class K of C(n)-supercompact car-

dinals for a sufficiently large n.

If P is the class poset for Laver preparation for K (see the proof below for

more details), then we have

∥–P “GA + MP(P ,H(κrefl ))Π2

+ there are class many supercompact cardinals ”.

The following theorem is also obtained by combining the proofs of Theorem 3.8

and Proposition 3.10 taking Lemma 3.9 into account.

Theorem 3.11 p-hierarchies-6-2( 1 ) Suppose that P is a Σ2-definable iterable class of posets con-

taining all σ-closed posets such that MP+(P ,H(κrefl ))Γ holds where Γ denotes here

the set of all formulas representable as the conjunction of a Σ2-formula and a (∆3)
∗
P-

formula. Suppose further that there is a proper class K of supercompact cardinals

and P is the class poset defined as in the proof of Theorem 3.8 for this K.
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Then we have

∥–P “GA + MP∗(P ,H(κrefl ))Γ ”.

( 2 ) Suppose that P is a Σ3-definable iterable class of posets containing all σ-closed

posets such that MP+(P ,H(κrefl ))Γ holds where Γ is the set of formulas defined as in

(1). Suppose further that there is a proper class K of C(n)-supercompact cardinals for

a sufficiently large n, and P is the class poset defined as in the proof of Theorem 3.8

for this K.

Then we have

∥–P “GA + MP∗(P ,H(κrefl ))Γ ”.

The following Corollary shows in particular that the implication in Lemma 3.4,

(1) for n = 2 cannot be reversed.

Corollary 3.12 p-hierarchies-7( 1 ) Suppose that P is a Σ2-definable iterable class of posets con-

taining all σ-closed posets, and also a poset adding a real. Assume further that there

is a proper class K of supercompact cardinals, and MP+(P ,H(κrefl ))Γ holds where

Γ is defined just as in Theorem 3.11. Then, there is a class poset P such that we

have

∥–P “¬ (P , ∅)Π2-RcA, ¬ (P , ∅)Σ2-RcA and MP(P ,H(κrefl ))Γ ”.

( 2 ) Suppose that P is a Σ3-definable iterable class of posets containing all σ-

closed posets, and a poset adding a real. Assume further that there is a sta-

tionary proper class K of C(n)-supercompact cardinals for sufficiently large n, and

MP+(P ,H(κrefl ))Γ holds for the set of formulas Γ as defined in Theorem 3.11. Then,

there is a class poset P such that we have

∥–P “¬ (P , ∅)Π2-RcA, ¬ (P , ∅)Σ2-RcA and MP∗(P ,H(κrefl ))Γ ”.

Proof. Note that MP+(P ,H(κrefl ))Σ1 for P as here implies ¬CH (see Fuchino and

Usuba [20], Theorem 3.3).

(1): By Proposition 2.10, (1) and Proposition 3.11, (1).

(2): By Proposition 2.10, (1) and Theorem 3.11, (2). (Corollary 3.12)

Typical instances of P in Corollary 3.12 are when P is the class of all proper

posets, the class of all semi-proper posets, or the class of all stationary preserving

posets.

Problem 3.13 Do some theorems hold which would imply certain non-implications

similar to those in Corollary 3.12 for P = σ-closed posets, or P = ccc posets?
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4 Generic absoluteness under Recurrence Axioms

genabs-recThe conclusion of the following Theorem 4.1 generalizes that of Viale’s Theorem 1.1

(Theorem 1.4 in [39]). Note that the assumption in our Theorem 4.1, the Recur-

rence Axiom (P ,H(κ))-RcA+ for an uncountable cardinal κ and an iterable class

P of posets, namely, is of much lower consistency strength than the assumptions in

Viale’s Theorem for some instances of P . Actually the assumption of Theorem 4.1

is even compatible with V = L for many “natural” classes P of posets including

the cases “P = all ccc posets” or “P = all proper posets” (see Theorems 5.6, 5.10

in [25]). For “P = all stationary preserving posets”, Theorem 1.6 in Ikegami and

Trang [27] proves that the existence of proper class many strongly compact cardi-

nals plus a reflecting cardinal is an upper bound of the consistency strength of the

Maximality Principle for the P .

Known lower bound of this Recurrence Axiom is also large. By Ikegami-

Trang Theorem 2.2, (stationary preserving,H(2ℵ0))-RcA is equivalent with BMM.

Schindler [34] shows that BMM implies that there is an inner model with a strong

cardinal.

In contrast, the Maximality Principle for P = semi-proper posets, the con-

sistency strength is much lower than this by Asperó [2]. Note that, in general,

semi-proper and stationary preserving are not identical notions.

The existence of the tightly super-C(∞) P-Laver-gen. hyperhuge cardinal κ is

the known Laver-generic large cardinal axiom which implies the full Recurrence

Axiom for P and H(κ) (see Fuchino, and Usuba [20]).

There is practically no (consistent) generic large cardinal axiom formalizable in

a single formula which also implies (P , ∅)-RcA for any sufficiently general class P
of posets ([12]).

In [20], it is proved that for an iterable class P of posets, the existence of

the tightly super-C(∞) P-Laver-gen. hyperhuge cardinal κ with κ = κrefl implies

(P ,H(κrefl ))-RcA
+ where κrefl is defined as κrefl := max{2ℵ0 ,ℵ2}. Note that this

does not contradict what we mentioned in the last paragraph since the tightly super-

C(∞) P-Laver-gen. hyperhugeness of κrefl is only expressed by an axiom schema.

Note that by [20] we know the exact consistency strength of this principle (as that

of κrefl being super-C(∞) hyperhuge in the bedrock).

In Section 5 we show that the generalization of the conclusion of Viale’s Theo-

rem 1.1 (like that of the following Theorem 4.1) already follows from tight P-Laver-

gen. hugeness. This assumption is still much stronger than that of Viale’s Theo-

rem 1.1 but the upper bound of the consistency strength of this Laver-genericity is

far below the consistency strength of a tight super-C(∞) P-Laver-gen. hyperhuge
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cardinal.

Theorem 4.1 p-genabs-rec-0Suppose that P is an iterable Σn-definable class of posets for n ≥ 2

and (P ,H(κ))Σn∪Γ-RcA
+ holds for an uncountable cardinal κ where Γ is the set of

all formulas which are conjunction of a Σ2-formula and a Π2-formula. Then, for

any P ∈ P such that ∥–P“BFA<κ(P) ”,

H(µ+)V ≺Σ2 H(µ+)V[G] holds for all µ < κ and for (V,P)-generic G.

Thus, we have H(κ)V ≺Σ2 H((κ(+))V[G])V[G].

Proof. Suppose that P ∈ P is such that ∥–P“BFA<κ(P) ” and G is a (V,P)-

generic filter. Let φ = φ(x) be a Σ2-formula in L∈, and φ(x) = ∃y ψ(x, y) for a

Π1-formula ψ in L∈. Let µ < κ and a ∈ H(µ+) (⊆ H(κ)). We have to show that

H(µ+)V |= φ(a) ⇔ H((µ+)V[G])V[G] |= φ(a).

Suppose first that H(µ+)V |= φ(a). Let b ∈ H(µ+)V be such that H((µ+)V)V |=
ψ(a, b). Since we have V |= BFA<κ(P) by Ikegami-Trang Theorem 2.2, it follows

that H((µ+)V[G])V[G] |= ψ(a, b) by Bagaria’s Absoluteness Theorem 1.2, and thus

H((µ+)V[G])V[G] |= φ(a).

Note that we did not use the assumption “ ∥–P“BFA<κ(P) ”” for this direction.

Suppose now H((µ+)V[G])V[G] |= φ(a). By (P ,H(κ))Σn∪Γ-RcA
+, there is a P-

ground W of V such that

(4.1) x-genabs-rec-a-0W |=“BFA<µ+(P) ∧ H(µ+) |= φ(a) ”.

Note that the formula in (4.1) is Σn if n ≥ 3 and Γ if n = 2.

Let b ∈ H((µ+)W)W be such that W |= “H(µ+) |= ψ(a, b) ”. By Bagaria’s

Absoluteness Theorem 1.2, and since V is a P-generic extension of W, it follows

that V |=“H(µ+) |= ψ(a, b) ” and hence H(µ+)V |= φ(a).

For the last statement of the present theorem, let φ be a Σ2-formula, and

a ∈ H(κ). If H(κ) |= φ(a), then, by (1.4), there is µ < κ such that H(µ+) |= φ(a).

By the first part of the theorem, it follows that H((µ+)V[G])V[G] |= φ(a). Thus

H((κ(+))V[G])V[G] |= φ(a) by (1.4).

IfH((κ(+))V[G])V[G] |= φ(a), then there is µ < κ such thatH((µ+)V[G])V[G] |= φ(a)

(this is also shown using (1.4)). Hence H((µ+)V) |= φ(a) by the first part of the

theorem. (Theorem 4.1)

Note that by Lemma 1.6, the conclusion (4.1) of Theorem 4.1 can be yet

strengthened to

(4.2) x-genabs-rec-a-1(H(µ+),∈, INS)
V ≺Σ2 (H(µ+),∈, INS)V[G] holds for all µ < κ and for

(V,P)-generic G.
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5 Generic absoluteness under Laver-genericity

genabs-LaverLaver-genericity also implies a conclusion similar to that of Viale’s Theorem 1.1.

Although this fact does not have an advantage in terms of consistency strength in

comparison with Theorem 4.1, the Laver-generic large cardinal we need in Theo-

rem 5.7 below is much weaker than the tight super C(∞) P-Laver-generic hyperhuge-

ness, the generic large cardinal property which is known to imply the corresponding

Recurrence Axiom used in Theorem 4.1 (see [12] and [20]).

In Viale [39], the absoluteness statement of his Theorem 1.1 is also discussed

in connection with the Resurrection Axiom (see Theorem 5.2).

Adopting the generalized setting introduced in Fuchino [12], we define the Res-

urrection Axiom as follows: for an iterable class P of posets and a definition µ• of

an uncountable cardinal (e.g. as ℵ1, ℵ2, 2
ℵ0 , (2ℵ0)+, κrefl etc.),

10) the Resurrection

Axiom for P and µ• is the statement:

RA(P , µ•): For any P ∈ P , there is a P-name
∼
Q of a poset such that ∥–P“

∼
Q ∈

P ” and H(µ•)V ≺ H(µ•)V[H] for any (V,P ∗
∼
Q)-generic H.11)

Lemma 5.1 (Hamkins, and Johnstone [26]) p-genabs-Laver-a-0Assume that P is an iterable class of

posets, µ• is a definition of an uncountable cardinal, and RA(P , µ•) holds. Then

( 1 ) BFA<µ•(P) holds.

( 2 ) If all elements of P preserve stationarity of subsets of ω1, 2
ℵ0 = 2ℵ1, and

µ• = “ 2ℵ0”, then BFA+<µ•

<µ• (P) holds.

Proof. (1): It is easy to check that (c) of Bagaria’s Theorem 1.2 holds.12)

Suppose that a ∈ H(µ•) and φ is a Σ1-formula in L∈. For P ∈ P , let G be a

(V,P)-generic filter.

If H(µ•)V |= φ(a), then we have V |= φ(a) and hence V[G] |= φ(a). Thus we

have H(µ•)V[G] |= φ(a) by (1.4).

Suppose now that H(µ•)V[G] |= φ(a). Let
∼
Q be a P-name of a poset such that

∥–P“
∼
Q ∈ P ” such that for a (V[G],

∼
QG)-generic H,

(ℵ5.1) x-genabs-Laver-a-aH(µ•)V ≺ H(µ•)V[G∗H].

10)More precisely, when we say “µ• is a definition of an uncountable cardinal” we mean that ZF
or ZFC proves the statement “µ• uniquely exists and µ• is an uncountable cardinal”.

11)Here we mean with “H(µ•)V ≺ H(µ•)V[H]” the elementarity H((µ•)V)V ≺ H((µ•)V[H])V[H].

12)Actually we do not need this condition in this part of the proof and hence we can obtain the
Bounded Forcing Axiom under a weaker notion of Resurrection Axiom in which the second step

∼
Q may be anything.
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Since V[G] |= φ(a), we have H(µ•)V[G∗H] |= φ(a) by the same argument as in

the first part of this proof. Thus, by (ℵ5.1), it follows that H(µ•)V |= φ(a).

(2): Similarly to (1) using (c) of Theorem 1.8.13) (Lemma 5.1)

Theorem 5.2 (A generalization of Theorem 5.1 in Viale [39]) p-genabs-Laver-a-1Suppose that P is an

iterable class of posets, µ• is a definition of an uncountable cardinal and RA(P , µ•)

holds. Then we have

H(µ•)V ≺Σ2 H(µ•)V[G]

for any P ∈ P such that ∥–P“BFA<µ•(P) ”, and (V,P)-generic G.

Proof. An argument similar to that of Lemma 5.1 will do. (Theorem 5.2)

In [12], the boldface version of the following is proved:

Theorem 5.3 (Fuchino [12]) p-genabs-Laver-a-2For an iterable class P of posets, and a definition µ•

of a cardinal, if µ• is tightly P-Laver gen. superhuge, then RA(P , µ•) holds.

Corollary 5.4 p-genabs-Laver-a-3For an iterable class P of posets, , and a definition µ• of a cardinal,

if µ• is tightly P-Laver gen. superhuge, Then we have

H(µ•)V ≺Σ2 H(µ•)V[G]

for any P ∈ P such that ∥–P“BFA<µ•(P) ” and (V,P)-generic G.

Proof. By Theorem 5.2 and Theorem 5.3. (Corollary 5.4)

Note that for many cases (with natural setting of P and the notion of large

cardinal), if κ is P-Laver-gen. large cardinal, then κ = κrefl (see Fuchino, Ottenbreit

Maschio Rodrigues, and Sakai [15]).

In the following, we show in a direct proof, that Corollary 5.4 can be yet slightly

improved (see Theorem 5.7 below).

It is known that Laver-gen. large cardinal axiom proves strong forms of double-

plus forcing axioms (see Theorem 5.7 in [15]). In the Proposition 5.5 below we only

recap a part of this result needed for the following argument.

For a class P of posets, and cardinals κ and λ,

(FA+<λ
<κ (P)): For any P ∈ P , any family D of dense subsets of P with | D | < κ,

and any family S of P-names of stationary subsets of ω1 with | S | < λ,

there is a D-generic filter G on P such that ∼S[G] is a stationary subset of

ω1 for all ∼S ∈ S.

13)Note that for this proof, the weaker variant of RA(P) as in the proof of (1) is apparently not
sufficient.
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Note that MM++ is just FA+<ℵ2
<ℵ2

(stationary preserving posets). FA<κ(P) is the

principle we obtain by dropping the mention about S from the definition of FA+<λ
<κ (P).

Proposition 5.5 p-genabs-Laver-a( 1 ) Suppose that κ is P-Laver-gen. supercompact. Then

FA<κ(P) holds.

( 2 ) If all elements of the class P of posets are stationary preserving and κ is

P-Laver-gen. supercompact, then FA+<κ
<κ (P) holds.

Proof. We prove (2). (1) can be shown by a subset of this proof.

Assume that κ is a P-Laver-gen. supercompact cardinal, and let P , D, S be as

in the definition of FA+<κ
<κ (P). Let Dα, α < µ and ∼Sα, α < µ′ be enumerations of

D and S respectively.

Let λ = |P |. Without loss of generality, we may assume that λ > κ and the

underlying set of P is λ. Let
∼
Q be a P-name with ∥–P“

∼
Q ∈ P ” and such that for

any (V,P ∗
∼
Q)-generic H, there are j, M ⊆ V[G] such that j : V

≺→κ M , j(κ) > λ,

j ′′λ, P, P ∗
∼
Q, H ∈M .

Let G be the P part of H. Then, since j(µ) = µ, j(µ′) = µ′, j(D) = {j(Dα) :

α < µ}, and j(S) = {j(∼Sα) : α < µ}, we have

(5.1) x-genabs-rec-0M |=“ j ′′G generates a filter on j(P) which is

j(D)-generic, and realizes elements of j(S) to be stationary ”.

Note that we need here the condition that P is stationary preserving since otherwise

the stationary set ∼S[G] in V[G] might be no more stationary in V[H].

(5.1) implies that

M |=“ there is a j(D)-generic filter on j(P)

which realizes all elements of j(S) to be stationary ”.

By elementarity, it follows that

V |=“ there is a D-generic filter on P

which realizes all elements of S to be stationary ”.

(Proposition 5.5)

Lemma 5.6 p-genabs-Laver-0Suppose that κ is P-Laver-gen. supercompact for an iterable P. Then

we have H(κ)V ≺Σ1 H((κ(+))V[G])V[G] for any P ∈ P and (V,P)-generic G.

Proof. By Proposition 5.5, (1) and Bagaria’s Absoluteness Theorem 1.2. (Lemma 5.6)

The following theorem improves Corollary 5.4.
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Theorem 5.7 p-genabs-Laver-1For an iterable class P of posets, suppose that BFA<κ(P) holds, and

κ is tightly P-Laver-gen. huge.14) Then, for any P ∈ P such that ∥–P“BFA<κ(P) ”,

H(µ+)V ≺Σ2 H(µ+)V[G] holds for all µ < κ and for (V,P)-generic G.

Thus, we have H(κ)V ≺Σ2 H((κ(+))V[G])V[G].

Proof. Suppose that ∥–P“H(µ+) |= φ(a) ” for P ∈ P with ∥–P“BFA<κ(P) ”,

µ < κ, Σ2-formula φ and for a ∈ H(µ+). Let G be a (V,P)-generic filter. Then we

have

(5.2) x-genabs-Laver-a-0V[G] |=“BFA<κ(P) ∧H(µ+) |= φ(a) ”.

Let φ = ∃yψ(x, y) where ψ is a Π1-formula in L∈. Let b ∈ H((µ+)V[G])V[G]. be such

that H((µ+)V[G])V[G] |= ψ(a, b).

Let
∼
Q be a P-name with ∥–P“

∼
Q ∈ P ” such that, for (V,P ∗

∼
Q)-generic H with

(5.3) x-genabs-Laver-a-1G ⊆ H (under the identification P ⩽◦ P ∗
∼
Q),

there are j, M ⊆ V[H] such that j : V
≺→κ M ,

(5.4) x-genabs-Laver-0|P ∗
∼
Q | ≤ j(κ) (by tightness),

(5.5) x-genabs-Laver-1P, P ∗
∼
Q, H ∈M and

(5.6) x-genabs-Laver-2j ′′j(κ) ∈M .

By (5.2), (5.3) and Bagaria’s Absoluteness Theorem 1.2 (applied to V [G]), we

have V[H] |=“ψ(a, b) ” and hence V[H] |=“H(µ+) |= ψ(a, b) ”.

By (5.4), (5.5) and (5.6), there is a P-name of b in M . By (5.5), it follows

that b ∈ M . By similar argument, we have H((µ+)V[H])V[H] ⊆ M and hence

H((µ+)V[H])V[H] = H((µ+)M)M ∈M . Thus we have M |=“H(µ+) |= ψ(a, b) ”.

By elementarity, it follows that V |= “H(µ+) |= ψ(a, b) ”, and hence V |=
“H(µ+) |= φ(a) ” as desired.

Suppose now that P, µ, φ, a are as above and assume that V |=“H(µ+) |= φ(a) ”

holds. For a Π1-formula ψ as above, let b ∈ H(µ+)V be such that V |=“H(µ+) |=
ψ(a, b) ”.

Since V |= BFA<κ(P) by assumption, it follows that V[G] |= ψ(a, b) by Bagaria’s

Absoluteness Theorem 1.2, and hence V[G] |= φ(a).

The last assertion of the theorem follows by the same argument as that given

at the end of the proof of Theorem 4.1. (Theorem 5.7)

14)
fn-genabs-Laver-0Note that by Proposition 5.5, BFA<κ(P) follows from the assumption that κ is P-Laver-

generic supercompact. Thus the conclusion of the theorem follows from the combination of the
assumption κ being P-Laver-generic supercompact and tightly P-Laver-gen. huge. Note also that
this combination follows from the tight P-Laver-gen. superhugeness of κ.
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6 Some more remarks and open questions

miscIn this final section we collect some observations we could not put in the appropriate

places in previous sections, and mention some open questions.

Since most of the claims in this section are easy consequences of known results,

some of them may be already known.

6.1 Restricted Recurrence Axioms under Laver-genericity

RRALAs we already mentioned at the end of Section 2, the existence of a tightly P-

Laver gen. ultrahuge cardinal κ implies (P ,H(κ))Σ2-RcA
+ (Theorem 21 in [13]).

This result can be slightly improved so that its conclusion stands in line with the

assumptions of Theorem 4.1 for the case of n = 2 .

Theorem 6.1 (A slightly improved version of Theorem 21 in Fuchino [13]) p-Lg-RcA-0Suppose

that κ is tightly P-Laver-generically ultrahuge for an iterable class P of posets. Then

(P ,H(κ))Γ-RcA
+ holds where Γ is the set of all formulas which are conjunctions of

a Σ2-formula and a Π2-formula.

Proof. A slight modification of the proof given in [13] will do. Nevertheless,

we present the proof here because of the subtlety of the modification of the proof

around (6.8).

Assume that κ is tightly P-Laver generically ultrahuge for an iterable class P
of posets.

Suppose that φ = φ(x) is Σ2 formula (in L∈), ψ = ψ(x) is Π2 formula (in L∈),

a ∈ H(κ), and P ∈ P is such that

(6.1) x-Lg-RcA-aV |= ∥–P“φ(a) ∧ ψ(a) ”.

Let λ > κ be such that P ∈ Vλ and

(6.2) x-Lg-RcA-0Vλ ≺Σn
V for a sufficiently large n.

In particular, we may assume that we have chosen the n above so that a sufficiently

large fragment of ZFC holds in Vλ (“sufficiently large” means here, in particular, in

terms of Lemma 3.7, (1) and that the argument at the end of this proof is possible).

Let
∼
Q be a P-name such that ∥–P“

∼
Q ∈ P ”, and for (V,P ∗

∼
Q)-generic H, there

are j, M ⊆ V[H] with

(6.3) x-Lg-RcA-1j : V
≺→κ M ,

(6.4) x-Lg-RcA-1-0j(κ) > λ,
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(6.5) x-Lg-RcA-1-1P ∗
∼
Q, P, H, Vj(λ)

V[H] ∈M, and

(6.6) x-Lg-RcA-1-2|P ∗
∼
Q | ≤ j(κ).

By (6.6), we may assume that the underlying set of P∗
∼
Q is j(κ) and P∗

∼
Q ∈ Vj(λ)

V.

Let G := H ∩ P. Note that G ∈M by (6.5) and we have

(6.7) x-Lg-RcA-2Vj(λ)
M =︸︷︷︸
by (6.5)

Vj(λ)
V[H]

Since Vj(λ)
M (= V

V[H]
j(λ) ) satisfies a sufficiently large fragment of ZFC

by elementarity of j, and hence the equality follows by Lemma 3.7, (1)︷︸︸︷
= Vj(λ)

V[H].

Thus, by (6.5) and by the definability of grounds, we have Vj(λ)
V ∈ M and

Vj(λ)
V[G] ∈ M . We may assume that V V

j(λ) as a ground of V M
j(λ) satisfies a large

enough fragment of ZFC.

Claim 6.1.1 cl-Lg-RcA-0Vj(λ)
V[G] |= φ(a) ∧ ψ(a).

⊢ By Lemma 3.7, (1), Vλ
V[G] = Vλ

V[G], and Vj(λ)
V[G] = Vj(λ)

V[G]. By (6.2), both

Vλ
V[G] and V V

j(λ)[G] satisfy still large enough fragment of ZFC. Thus, by Lemma 6.2

below, it follows that

(6.8) x-Lg-RcA-2-0Vλ
V[G] ≺Σ1 Vj(λ)

V[G] ≺Σ1 V [G].

By (6.1) and (6.2), we have Vλ
V[G] |= φ(a) and V[G] |= ψ(a). By (6.8) and since φ

is Σ2, and ψ is Π2, it follows that Vj(λ)
V[G] |= φ(a) ∧ ψ(a). ⊣ (Claim 6.1.1)

Thus we have

(6.9) x-Lg-RcA-3M |=“ there is a P-ground N of Vj(λ) with N |= φ(a) ∧ ψ(a) ”.

By the elementarity (6.3), it follows that

(6.10) x-Lg-RcA-4V |=“ there is a P-ground N of Vλ with N |= φ(a) ∧ ψ(a) ”.

Now by (6.2), it follows that there is a P-ground W of V such that

W |= φ(a) ∧ ψ(a). (Theorem 6.1)

We used the following variation of (1.4) in the proof of Theorem 6.1 to obtain

(6.8):

Lemma 6.2 p-Lg-RcA-0-0Suppose that δ, δ′ ∈ On, δ < δ′ and both Vδ and Vδ′ satisfy a suffi-

ciently large fragment of ZFC. Then we have Vδ ≺Σ1 Vδ′ ≺Σ1 V.

Proof. Suppose that a ∈ Vδ and ψ(x, y) is a bounded formula in L∈.

If Vδ |= ∃yψ(a, y), then there are b ∈ Vδ such that Vδ |= ψ(a, b). It follows that

Vδ′ |= ψ(a, b) and hence Vδ′ |= ∃yψ(a, y).
Suppose now that Vδ′ |= ∃yψ(a, y). Since Vδ′ satisfies a sufficiently large frag-

ment of ZFC, there is M ∈ Vδ′ such that
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Vλ′ |=“ | trcl(a) | = |M |, M is transitive, a ∈M, there are b ∈M

such that M |= ψ(a, b) ”.

But then such M as above must be an element of Vλ and thus

Vλ |=“ | trcl(a) | = |M |, M is transitive, a ∈M, there are b ∈M

such that M |= ψ(a, b) ”.

It follows that Vδ |= ∃y ψ(a, y).
The argument above shows that Vδ ≺Σ1 Vδ′ . Vδ′ ≺Σ1 V can be shown with

practically the same argument. (Lemma 6.2)

6.2 Separation of some other axioms and assertions

SepIn Section 3, we separated some instances of (P ,H(κ))Γ-RcA and MP(P ,H(κ))Γ

by compatibility with the Ground Axiom (GA). The same idea can be also used to

separate some other principles and axioms.

Theorem 6.3 p-Lg-RcA-1-0“MM++ + there are class many supercompact cardinals” (or even

class many extendible cardinals) is consistent with GA.

Proof. Sean Cox [8] proved thatMM++ is preserved by <ω2-directed closed forcing

(Theorem 4.7 in [8]). Starting from a model with cofinally many supercompact

cardinals, use the first supercompact to force MM++. Then the class forcing just

like that in the proof of Theorem 3.8 (or like the one in [21]) will produce a desired

model. (Theorem 6.3)

Corollary 6.4 p-Lg-RcA-2MM++ or even MM++ + “there are class many super compact cardi-

nals” does not imply that the continuum is a tightly P-Laver gen. ultrahuge cardinal

for any of the large enough subclass P of the class of all semiproper posets.

Proof. Let P = semiproper posets. Note that, if κ is P-Laver generically su-

percompact, then κ = 2ℵ0 follows (see e.g. Theorem 5 and Lemma 6 in Fuchino

[13]).

If κ is the tightly P-Laver generically ultrahuge continuum, then Theorem 6.1

together with each one of the Propositions 2.7, 2.8, 2.10 implies that GA does not

hold. Thus the model of MM++ + “there are class many super compact cardinals”

+ GA of Theorem 6.3 witnesses the desired non-implication. (Corollary 6.4)

Note that Corollary 6.4 with “tightly P-Laver gen. ultrahuge” replaced by

“tightly P-Laver gen. hyperhuge” is trivial. This is because consistency strength

of the existence of the tightly P-Laver gen. hyperhuge cardinal is known to be that
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of the existence of a (genuinely) hyperhuge cardinal (see the remark right after

Proposition 2.11).

Our Theorems 4.1 and 5.7 generalize Viale’s Theorem 1.1 in terms of possible

instances of the class P not covered Theorem 1.1 and also in terms of the cardinal

κ in the conclusion of the theorems which can be strictly bigger than ℵ2 (which

can really happen if e.g. P is the class of ccc posets).

On the other hand, the premise of Viale’s Theorem 1.1 is consistent with GA by

Theorem 6.3 while this is not the case with Theorem 4.1 for many natural instances

of P by Propositions 2.7, 2.8, 2.10 and unclear in case of P = stationary preserving

posets with Theorem 5.7.

Viale’s Theorem 1.1 implies, in particular:

Corollary 6.5 (to Viale’s Theorem 1.1 and Theorem 6.3) p-misc-0The assertion

H(ℵ2)
V ≺Σ2 H(ℵ2)

V[G] for any stationary preserving poset P with

∥–P“BMM ”, and (V,P)-generic G.

is consistent with GA.

Concerning Theorem 5.7, it is open at the moment if the existence of a tightly

P-Laver-gen. huge cardinal is inconsistent with GA. However some of its strength-

enings do contradict GA for many instances of the class P of posets as we saw in

Proposition 2.13 and Theorem 2.14.

The positive answer to the following question would give a clear separation of

Laver-genericity from the corresponding forcing axiom with double plus:

Problem 6.6 Does the (tightly) P-Laver gen. supercompact cardinal axiom (i.e.,

the existential statement of such a cardinal, e.g. for P as in Corollary 3.12) imply

the negation of GA?

Though Corollary 6.4 makes the positive answer to the following problem rather

unpromising, Theorem 2.53 of Woodin [40] and its variants (e.g. Theorem 4.5 in

[8]) seem to suggest a positive answer:

Problem 6.7 Is there any reasonable assumption under which MM++ and (tightly)

P-Laver gen. supercompact cardinal axiom are equivalent?

The next subsection has been removed from the version for publication of the

current paper as we have decided to move the material to the subsequent paper

which is currently in preparation.

43



6.3 Yet another hierarchy of restricted Recurrence Axioms

YahThe hierarchy MP(·, ·)· of Maximality Principles (⇔ Recurrence Axioms) intro-

duced in Section 3 is suitable for the analysis of consistency strength and strictness

of the hierarchy of restricted form of these principles.

Lemma 6.8 p-Yah-0Suppose that P is an iterable class of posets.

( 1 ) (P , A)Γ-RcA+ ⇒ MP∗(P , A)Γ.
( 2 ) If A ⊆ A′, and Γ ⊆ Γ′ then (P , A′)Γ′-RcA+ ⇒ (P , A)Γ-RcA+, and

MA∗(P , A′)Γ′ ⇒ MA∗(P , A)Γ.
( 3 ) If P ⊆ P ′, A ⊆ A′, and Γ ⊆ Γ′ then (P ′, A′)Γ′-RcA ⇒ (P , A)Γ-RcA.
( 4 ) MP∗(P , A)Π1 holds (in ZFC).

( 5 ) (P , A)Σ1-RcA ⇔ (P , A)Σ1-RcA
+ ⇔ MP∗(P , A)Σ1.

Proof. (1): Suppose that (P , A)Γ-RcA+ holds. Let φ be a provably P-persistent

formula in Γ and a ∈ A. If φ(a) is forced by P ∈ P , then P is a push of the

P-button ∀P( ∥–P“φ(a) ”) by (φ)∗P which is provable by assumption. By (P , A)Γ-
RcA+, it follows that φ(a) holds (in V). This shows that (6.8)φ holds.

(2), (3): by definitions.

(4): (P , A)Π1-RcA
+ holds by Lemma 3.3. Thus (1) implies MP∗(P , A)Π1 .

(5): The first equivalence is a part of Theorem 2.2. The second equivalence is

proved from this and argument similar to the proof of Theorem 2.2. (Lemma 6.8)

The monotonicity Lemma 6.8, (3) is used in Fuchino [13] in the argument to sin-

gle out the maximal instance of Recurrence Axiom (stationary preserving,H(κrefl ))-

RcA under 2ℵ0 = ℵ2 and the other maximal instance (all posets,H(2ℵ0))-RcA under

CH.

Lemma 6.8, (4) and (5) shows that the list of equivalent assertions in Corol-

lary 3.2 and Lemma 3.3 can also include MP∗(P ,H(κ))Σ1 and MP∗(P , A)Π1 respec-

tively.

MP∗(· · · )Γ is almost identical with (· · · )Γ-RcA+.

Proposition 6.9 p-Yah-1Suppose that P is an iterable class of posets and A is any set.

( 1 ) If P is Σm-definable then for any natural number n with max{4,m} ≤ n, we

have (P , A)Σn-RcA
+ ⇔ MP∗(P , A)Σn.

( 2 ) (P , A)-RcA+ (⇔ MP(P , A)) ⇔ MP∗(P , A).
( 3 ) If P is Σ4-definable, and one of the conditions in Proposition 2.10 holds, then

MP∗(P , ∅)Σ4 implies ¬GA (cf. Theorem 3.10).
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Proof. (1): Suppose that P is Σn-definable iterable class of posets, and n ≥
max{3,m}. If (P , A)Σn-RcA

+ holds, then we have MP∗(P , A)Σn by Lemma 6.8, (1).

Assume now that MP∗(P , A)Σn holds, and suppose that Σn formula φ = φ(x)

and a ∈ A are such that ∥–P“φ(a) ” for a P ∈ P .

With the proof of definability of grounds in mind (see e.g. [33]), let φ∗(x) be

the formula claiming

∃X ( “X is the parameter which codes a P-ground”

∧ “x ∈ the P-ground coded by X

∧ “the ground coded by X satisfies φ(x)”).

By the choice of n, m, P , φ∗ can be expressed as Σn-formula and, it is provably

P-persistent since P is iterable. We also have ∥–P“φ
∗(a) ”. By MP∗(P , A)Σn , it

follows that V |= φ∗(a). By definition of φ∗, this means that there is a P-ground

W of V such that W |= φ(a).

This shows that (P , A)Σn-RcA
+ holds.

(2): follows from (1) (the first equivalence in parentheses is by Proposition 2.1,

(1)).

(3): By (1) and Proposition 2.10. (Proposition 6.9)

For a class of posets P , a set Γ of formulas, and infinite cardinals κ, λ with

κ ≤ λ, the principle BFA(P ,Γ)κ,λ is defined by

BFA(P ,Γ)κ,λ : For any a ∈ H(λ) and φ = φ(x) ∈ Γ with ∥–P“φ(a) ” for some

P ∈ P , there are stationarily many X ∈ [H(λ)]<κ such that X (as an ∈-
model) satisfies the Axiom of Extensionality, a ∈ X, and V |= φ(mX(a))

where mX denotes the Mostowski collapse of X.

Note that X as above should satisfy the Axiom of Extensionality so that the

Mostowski collapse of X is defined (and injective). BFA(P ,Γ)κ,λ was introduced

in Asperó [2]. Note that this principle is not formulated as a generalization of the

original definition of BFA<κ(P) (see Section 1) but rather a statement which stands

in analogy with the property in Bagaria’s Absoluteness Theorem 1.2 characterizing

BFA<κ(P).

Lemma 6.10 p-Yah-2(Goodman [23]) Suppose that P is a class of posets and Γ a set of

formulas ⊆ L∈. ( 1 ) BFA(P ,Γ)κ,κ holds if and only if

(6.11) x-Yah-1For any a ∈ H(κ) and φ = φ(x) ∈ Γ with ∥–P“φ(a) ”, V |= φ(a) holds.

( 2 ) BFA(P , (Γ)∗P)κ,κ ⇔ MP∗(P ,H(κ))Γ holds.
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Proof. (1): Suppose that BFA(P ,Γ)κ,κ holds. For a ∈ H(κ) and φ = φ(x) ∈ Γ,

suppose that ∥–P“φ(a) ”. Then there are stationarily many X ∈ [H(κ)]<κ = H(κ)

such that a ∈ X and V |= φ(mx(a)). In particular, there is such X that trcl+(a) ⊆
X. Then mX(a) = a and V |= φ(a). Thus (6.11) holds.

Conversely, if (6.11) holds, then X := {X ∈ [H(κ)]<κ : trcl+(a) ⊆ X} is

stationary (actually club) in [H(κ)]<κ. For each X ∈ X , we have mX(a) = a. This

shows that BFA(P ,Γ)κ,κ holds.

(2): follows from (1). (Lemma 6.10)

The following argument leading to Proposition 6.15 and Proposition 6.19 is

mostly a combination of ideas already utilized somewhere in Asperó [2], Goodman

[23], and/or Hamkins [25]. We include the details of the proofs here for convenience

of the reader.

Lemma 6.11 p-Yah-3Suppose that MP∗(P ,H(κrefl ))Σ2 holds and 2ℵ0 is regular. If, either

( a ) there is a poset in P collapsing κrefl , or ( b ) there is a poset in P adding

κrefl
+ reals without collapsing κrefl

+, then κrefl
V is inaccessible in L.

Proof. Assume that MP∗(P ,H(κrefl ))Σ2 holds.

Consider the sentence φ(x) saying

∃µ′ (L |=“µ′ is a cardinal ” ∧ x < µ′ < κrefl ).

φ(x) is Σ2 and it is provably P-persistent.

In both of the cases, there is P ∈ P such that ∥–P“ |κrefl V | < κrefl ”. Suppose

that µ < κrefl is a cardinal in L.

Since κrefl is a regular cardinal in L, it follows that ∥–P“φ(µ) ”.

By MP∗(P ,H(κrefl ))Σ2 , it follows that V |= φ(µ). I.e., (µ+)L < κrefl . (Lemma 6.11)

Lemma 6.12 p-Yah-4Suppose that 2ℵ0 is regular and P is a class of posets such that either

(a’) for any cardinal λ ≥ κrefl , there is a poset P ∈ P which collapses λ to cardi-

nality ℵ1 , or (b’) for cofinally many cardinals λ > 2ℵ0, there is P ∈ P adding at

least λ many reals without collapsing λ. Then, for any n ≥ 2, MP∗(P ,H(κrefl ))Σn

implies Lκrefl V ≺Σn L.

Proof. For n = 2, MP∗(P ,H(κrefl ))Σn implies that κrefl is an inaccessible cardinal

in L by Lemma 6.11. Thus L |= Lκrefl V = H(κrefl
V). By (1.4), it follows that

(6.12) x-Yah-1-0Lκrefl V ≺Σ1 L.

Thus it is enough to show that Lκrefl V ≺Σn L holds for n ≥ 2 assuming

(6.13) x-Yah-2MP∗(P ,H(κrefl ))Σn , and
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(6.14) x-Yah-3Lκrefl V ≺Σn−1 L.

Note that for n = 2, (6.14) is just (6.12).

To prove this claim, assume (6.13) and (6.14), and let δ := κrefl
V, ψ = ψ(x, y)

a Πn−1-formula, and a ∈ Lδ. Since δ is a limit ordinal, there is δ0 < δ such that

a ∈ Lδ0 .

If Lδ |= ∃yψ(a, y), then L |= ∃yψ(a, y) by (6.14).

Assume now that L |= ∃yψ(a, y). Let η = η(u) be the Σn-formula

∃v (“v = Lκrefl ”∧ (∀x ∈ u) (“L |= ∃yψ(x, y)” → (∃y ∈ v) (“L |= ψ(x, y)”))).

This formula is clearly provably P-persistent. By the assumption (a’) or (b’),

and by an argument similar to the proof of Lemma 6.11, it follows (in both of the

cases (a’) and (b’)) that there is P ∈ P such that ∥–P“ η(Lδ0) ”. Thus by (6.13),

V |= η(Lδ0).

In particular, there is b ∈ Lδ such that L |= ψ(a, b). By (6.14), it follows that

Lδ |= ψ(a, b) and thus Lδ |= φ(a). (Lemma 6.12)

The following proposition can be seen as a subset of Theorem 2.6 in [2] and

the proof given here is also more or less identical with the one in [2] :

Proposition 6.13 p-Yah-5For a natural number n, assume that λ is an infinite cardinal

and κ ≥ λ is an inaccessible Σn-correct cardinal (i.e. a cardinal κ with the property

Vκ(= H(κ)) ≺Σn V).

Suppose that P is a Σn-definable iterable class of posets such that

(6.15) x-Yah-4all P ∈ P preserve cardinals ≤ λ, and if λ < κ, then the equation

λ = max{µ ∈ Card : all P ∈ P preserves cardinals ≤ µ}

is provable (in ZFC);15)

(6.16) x-Yah-5P admits iteration ⟨Pα,
∼
Qβ : α ≤ κ, β < κ⟩ of length κ with some appro-

priate kind of iteration (e.g. either FS-, CS-, or Easton-support iteration)

such that

(6.16 a) {x-Yah-5}{a}Pκ is the direct limit of ⟨Pα : α < κ⟩.

(6.16b) {x-Yah-5}{b}Pκ ∈ P;

(6.16 c) {x-Yah-5}{c}∥–Pα “Pκ/∼Gα ∈ P ” for all α < κ;

(6.16d) {x-Yah-5}{d}Pα ∈ Vκ for all α < κ, and Pκ satisfies the κ-cc.

Then there is an iteration ⟨Pα,
∼
Qβ : α ≤ κ, β < κ⟩ satisfying (6.16) above such that

∥–Pκ “MP∗(P ,H(κ))Σn ”.
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Proof. Let f : κ→ κ×ω×κ be a surjection such that each ⟨α0, nα1⟩ ∈ κ×ω×κ

appears κ times as a value of f . Let ⟨φm : m ∈ ω⟩ be an enumeration of (Σn)
∗
P

(as a set in ZFC) corresponding to the recursive enumeration of (Σn)
∗
P in meta-

mathematics.

Let ⟨Pα,
∼
Qβ : α ≤ κ, β < κ⟩ be an iteration in P satisfying (6.16) defined along

with the sequences ⟨∼aαξ : ξ < κ⟩ in Vκ for each α < κ such that

(6.17) x-Yah-6∥–Pα “ {∼a
α
ξ : ξ < κ}• = H(κ) ”.16)

The successor step of the iteration is set by the following:

(6.18) x-Yah-7If f(α) = ⟨α0,m, α1⟩, α0 ≤ α, and

∥–Pα “ (∃Q ∈ P) (Q ∈ H(κ) ∧ ∥–Q“φm(∼a
α0
α1
) ”) ”,17)

then
∼
Qα ∈ Vκ is such a Pα-name as Q as above;

otherwise
∼
Qα = {1}•.

We show that this iteration with Pκ is as desired. Let Gκ be a (V,Pκ)-generic

filter.

Suppose that ∼a is a tuple of Pκ-names of elements of H(κ)V[Gκ] (= H(κ)V[Gκ]),

and
∼
Q be Pκ-name of poset in P and ∥–Pκ∗Q

∼
“φ(∼a) ” for a (concretely given) provably

P-persistent Σn-formula φ. By definition of the sequence ⟨φm : m ∈ ω⟩ there is a

number m∗ such that φ = φm∗ . By (6.16 d), there is γ < κ such that ∼a corresponds

to Pγ-names which we shall also denote with ∼a. Thus, there is β∗ < κ such that

∼a = ∼a
γ
β∗ .

Note that for all α ∈ κ \ γ we have

(6.19) x-Yah-8∥–Pα “ ∥– (Pκ/G∼α)∗Q
∼
“φ(∼a) ” ” and ∥–Pα “Pκ/∼Gα ∗ ∼

Q ∈ P ”

by (6.16 c) and by iterability of P .

Let α∗ ∈ κ \ γ be such that

(6.20) x-Yah-9f(α∗) = ⟨γ, n∗, β∗⟩.

By (6.19) we have ∥–Pα∗ “ ∥– (Pκ/G∼α∗ )∗Q
∼
“φm∗(∼a

γ
β∗) ” ”, and ∥–Pα∗ “Pκ/∼Gα∗ ∗

∼
Q ∈ P ”.

Thus we have

15) In this case, we assume that λ is definable e.g. as ℵ1 so that we can formulate the condition
without introducing a new constant symbol.

16)With the superscript bullet ”· · ·•” in connection with forcing with a poset P, we denote the
canonical P-name corresponding to the object “· · · ” describes where we assume that P-names
are introduced as in Kunen [30].

17) Strictly speaking we mean with ∼a
α0
α1

the (Q-check names) of the Pα-names corresponding to
the Pα0 -names.
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(6.21) x-Yah-10V |= ∃
∼
Q ( ∥–Pα∗ “

∼
Q ∈ P ∧ ∥–Q

∼
“φm∗(∼a

γ
β∗) ” ”).

Since the property in (6.21) is formalizable in Σn, and κ is Σn-correct, it follows

that

Vκ |= ∃
∼
Q ( ∥–Pα∗ “

∼
Q ∈ P ∧ ∥–Q

∼
“φm∗(∼a

γ
β∗) ” ”).

By (6.18) it follows that ∥–Pα∗ “ ∥–Q
∼α∗ “φ(∼a) ” ”. Since φ is provably P-persistent, it

follows by (6.16 c) that ∥–Pα∗ “ ∥–Pκ/G∼α∗ “φ(∼a) ” ”. This is equivalent to ∥–Pκ “φ(∼a) ”.

(Proposition 6.13)

Lemma 6.14 (Fact 2.2 in Asperó [2]) p-Yah-5-0If κ is inaccessible and Σn+1-correct for

some n ≥ 1 then there are unboundedly many inaccessible Σn-correct cardinals below

κ.

Proposition 6.15 p-Yah-6Assume that n ≥ 2. Suppose P is a Σn-definable iterable class

of posets such that P satisfies the condition (a’) or (b’) of Lemma 6.12, and it is

also provable that P satisfies (6.15) and (6.16) of Proposition 6.13 for any infinite

cardinal λ and inaccessible κ ≥ λ.

Then, assuming the consistency of the theory

(6.22) x-Yah-10-0ZFC + “ 2ℵ0 is regular” + MP∗(P ,H(κrefl ))Σn,

this theory does not imply MP∗(P ,H(κrefl ))Σn+1.

Proof. Suppose, toward a contradiction, that ZFC proves that

MP∗(P ,H(κrefl ))Σn implies MP∗(P ,H(κrefl ))Σn+1 .

Working in the theory ZFC + MP∗(P ,H(κ))Σn , we also have MP∗(P ,H(κ))Σn+1

by the assumption. By Lemma 6.12 applied to n + 1, and then by Lemma 6.14,

combined with Downward Löwenheim-Skolem Theorem and Mostowski Collapsing

Lemma, we obtain a countable transitive model M of ZFC + ∃κ (κ is inaccessible ∧
Vκ ≺Σn V).

By Proposition 6.13, there is a generic extension M [G] which is a model of

ZFC+ MP∗(P ,H(κ))Σn .
18) By (a’) and (b’) we have M [G] |= κ = κrefl .

Thus we obtained a proof of consis(ZFC + MP∗(P ,H(κrefl ))Σn) in ZFC +

MP∗(P ,H(κrefl ))Σn . This is a contradiction by The Second Incompleteness Theo-

rem. (Proposition 6.15)

18)The proof of Proposition 6.13 is written as a proof of V[Gκ] |= MP∗(· · · )Σn
for the axiom

scheme MP∗(P,H(κrefl ))Σn
in the sense of meta-mathematics, but for the set model M this

proof can be almost verbosely adopted to prove M [Gκ] |= MP∗(· · · )Σn
for the axiom scheme

MP∗(P,H(κrefl ))Σn in the sense of ZFC.
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Corollary 6.16 p-Yah-6-0Under the same assumption on n and P as in Proposition 6.15, if

(6.22)′ ZFC + “ 2ℵ0 is regular” + (P ,H(κrefl ))Σn-RcA
+,

is consistent then this theory does not prove (P ,H(κrefl ))Σn+1-RcA
+,

Proof. By Proposition 6.9 and Proposition 6.15. (Corollary 6.16)

In case of n ≥ 3 Proposition 6.15 can be further improved (see Proposition 6.19

below).

Lemma 6.17 p-Yah-7Suppose P is a class of posets satisfying (a’) or (b’) of Lemma 6.12.

( 1 ) If n ≥ 3, MP∗(P , ∅)Πn implies that there are unboundedly many Σn−1-correct

inaccessible cardinals in L.

( 2 ) Suppose that MP∗(P , ∅)Π2 holds. If there is at least one inaccessible cardinal,

then there are cofinally many inaccessible cardinals.

Proof. (1): Assume, toward a contradiction that

(6.23) x-Yah-11MP∗(P , ∅)Πn holds

but the class B of all Σn−1-correct cardinals in L is bounded.

By (a’) or (b’) there is a poset P ∈ P such that

∥–P“κrefl > B ”.

The forced statement is Πn and it is provably P-persistent. Thus, by (6.23), V |=
“κrefl > B ”. This is a contradiction to Lemma 6.12 with n replaced by n− 1.

(2): Suppose that MP∗(P , ∅)Π2 holds but there are only boundedly many but

at least one inaccessible cardinals. Then, by the condition on P , there is P ∈ P
such that

(6.24) x-Yah-11-0∥–P“ there are no inaccessible cardinals ”.

Since the statement in (6.24) is Π2 and provably P-persistent. It follows that

V |=“ there are no inaccessible cardinals ”. This is a contradiction. (Lemma 6.17)

Lemma 6.18 p-Yah-8For n ≥ 2, if the theory

ZFC + “ ∃κ (κ is Σn-correct and inaccessible )”

is consistent, then this theory does not prove

∃κ∃λ (κ < λ ∧ κ is Σn-correct and inaccessible

∧ λ is Σn−1-correct and inaccessible ).
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Proof. Suppose otherwise. Working in the theory ZFC + “∃κ (κ is Σn-correct

and inaccessible )”, assume that κ is Σn-correct and inaccessible and there is a

Σn−1-correct inaccessible cardinal λ > κ.

Claim 6.18.1 Cl-Yah-0Vλ |=“κ is Σn-correct and inaccessible ”.

⊢ Suppose that ψ(x, y) is Πn−1 and a ∈ Vκ. If Vκ |= ∃yψ(a, y), then there are

b ∈ Vκ such that Vκ |= ψ(a, b). Since ψ is Πn−1, it follows that Vλ |= ψ(a, b). Thus

Vλ |= ∃yψ(a, y).
If Vλ |= ∃yψ(a, y), then there are y ∈ Vλ such that Vλ |= ψ(a, b). Ti follows

that V |= ψ(a, b). Hence V |= ∃yψ(a, y). Now since κ is Σn-correct, it follows that

Vκ∃yψ(a, y). ⊣ (Claim 6.18.1)

Thus we proved consis(ZFC + ∃κ (κ is Σn-correct and inaccessible )). But this

is a contradiction by The Second Incompleteness Theorem. (Proposition 6.18)

Proposition 6.18 can be still improved as follows:

Proposition 6.19 p-Yah-9Suppose P is a Σn-definable iterable class of posets such that

P satisfies the condition (a’) or (b’) of Lemma 6.12, and it is also provable that

P satisfies (6.15) and (6.16) of Proposition 6.13 for any infinite cardinal λ and

inaccessible κ ≥ λ.

( 1 ) For n ≥ 3, assuming the consistency of the theory

(6.25) x-Yah-12ZFC + “ 2ℵ0 is regular” + MP∗(P ,H(κrefl ))Σn,

this theory does not prove MP∗(P ,H(κrefl ))Πn.

(1’) For n ≥ 3, assuming the consistency of the theory

(6.26) x-Yah-12-aZFC + “ 2ℵ0 is regular” + (P ,H(κrefl ))Σn-RcA
+,

this theory does not prove (P ,H(κrefl ))Πn-RcA
+.

( 2 ) Assume the consistency of the theory

(6.27) x-Yah-12-0ZFC + “ there is a supercompact cardinal and an inaccessible above it.”

Then MP∗(P ,H(κrefl ))Σ2 does not imply MP∗(P , ∅)Π2.

Proof. (1): Assume otherwise and suppose that the theory (6.25) provesMP∗(P ,H(κrefl ))Πn

for some n ≥ 3.

By Lemma 6.12, in the theory (6.25), we have Lκrefl V ≺ L. Thus from the

assumption of the consistency of the theory (6.25), it follows the consistency of

ZFC + “κrefl is inaccessible in L” + Lκrefl V ≺ L.
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By Lemma 6.18, we obtain the consistency of the following theory:

(6.28) x-Yah-13ZFC + V = L +

∃κ (“κ is inaccessible” ∧ Lκ ≺Σn L

∧ “there is no Σn−1-correct inaccessible cardinals above κ”︸ ︷︷ ︸
(6.29) x-Yah-14

).

Working in this theory (6.28), we find a poset Pκ ∈ P such that

∥–Pκ “MP∗(P ,H(κrefl ))Σn ” by Proposition 6.13. By (6.29) and Lemma 6.17, (1)

∥–Pκ “¬MP∗(P ,H(κrefl ))Πn ”. This is a contradiction to the assumption we set at

the beginning of the proof.

(1’): By (1) and Proposition 6.9, (1).

(2): We work in the theory ZFC + “there is a supercompact κ and a single

inaccessible µ above it”. The consistency of this theory follows form (6.27). In the

following we shall use some notions and results from Goodman [23] (see also the

paragraph right before Lemma 6.8 above).

The supercompact κ is also supercompact for C(1) by Lemma 2.2.6 in [23].

By Theorem 3.1.6 in [23], there is a poset P ∈ P of size κ such that V[G] |=
Σ2-CFA<κ(P) for a (V,P)-generic G (for the definition of this principle, see Def-

inition 3.1.2 in [23] — this Theorem 3.1.6 is proved similarly to our Proposi-

tion 6.13). By modifying the construction of P slightly if necessary, we also obtain

V[G] |= κ = κrefl .

By Theorem 3.1.4 in [23], this implies V[G] |=“MP∗(P ,H(κrefl ))Σ2 ”.

On the other hand, since µ is the unique inaccessible cardinal in V[G] above κ,

Lemma 6.17, (2) implies V[G] |=“¬MP∗(P , ∅)Π2 ”. (Theorem 6.19)

Some possible non-implications still remain. For example:

Problem 6.20 Is MP∗(P ,H(κrefl ))Π2 + ¬MP∗(P ,H(κrefl ))Σ2 consistent?

Cf. Proposition 6.9, (3).
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