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Abstract

Continuing the research began in Fuchino, Juhász, Soukup, Szent-
miklóssy and Usuba [9], we study further the Fodor-type Reflection Prin-
ciple (FRP) and its consequences.

We show that FRP is equivalent to the non-existence of almost es-
sentially disjoint ladder system on any stationary subset of a regular
uncountable cardinal consisting of ordinals of countable cofinality (The-
orem 2.7). Using this characterization, we show that FRP is actually
equivalent to many known “mathematical” reflection theorems over ZFC.

For example, it is shown that FRP is equivalent to the statement:
“For any locally countably compact topological space X, if all subspaces
of X of cardinality ≤ ℵ1 are metrizable, then X itself is also metrizable”
(Theorem 2.8). Another example of statements equivalent to FRP is:
“For any graph G, if all subgraphs of G of cardinality ≤ ℵ1 have count-
able coloring number then G itself also has countable coloring number”
(Theorem 3.1).

We construct models of ZFC separating FRP from Reflection Prin-
ciple (RP) and Ordinal Reflection Principle (ORP) (Theorems 5.2, 5.4
and 6.1).
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1 Introduction

Let λ be a cardinal of cofinality ≥ ω1. The Fodor-type Reflection Principle for

λ (FRP(λ)) introduced in [9] is the following statement:

FRP(λ) : For any stationary E ⊆ Eλ
ω and mapping g : E → [λ]≤ℵ0 there is

I ∈ [λ]ℵ1 such that

(1.1) cf(I) = ω1;

(1.2) g(α) ⊆ I for all α ∈ I ∩ E;

(1.3) for any regressive f : E ∩ I → λ such that f(α) ∈ g(α) for all

α ∈ E ∩ I, there is ξ∗ < λ such that f−1 ′′{ξ∗} is stationary in

sup(I).

Here, for cardinals κ < λ, Eλ
κ denotes the set {α < λ : cf(α) = κ}. Similarly,

we shall also write Eλ
<κ, E

λ
>κ, etc. to denote {α < λ : cf(α) < κ}, {α < λ :

cf(α) > κ}, etc., respectively.

In [9] it is shown that FRP(λ) is inconsistent for any singular λ. Thus we

have to define the global version of the Fodor-type Reflection Principle as:

FRP: FRP(λ) holds for all regular λ > ℵ1.

Note that FRP(ℵ1) is just a consequence of the Fodor’s Lemma in ZFC.

The following local but cumulative version of FRP is proved to be useful (see

e.g. Theorem 2.7 below). For any cardinal λ, let FRP(< λ) be the following

principle:

FRP(< λ): FRP(κ) holds for all regular uncountable κ < λ.

A mapping g : S → [λ]ℵ0 for some cardinal λ and S ⊆ λ is said to be

essentially disjoint if there is a mapping f : S → [λ]<ℵ0 such that g(α) \ f(α),

α ∈ S are pairwise disjoint. g is said to be almost essentially disjoint if g � D
is essentially disjoint for all D ∈ [dom(g)]<|dom(g) |.

Clearly, if g � D is essentially disjoint and D′ ⊆ D then g � D′ is also

essentially disjoint. Hence if dom(g) is a regular cardinal λ then g is almost

essentially disjoint if and only if g � β is essentially disjoint for all β < λ.

For a regular cardinal λ, the following principle was first considered by S.

Shelah. The notation with “ADS−” was used in [9] in analogy to the principle

ADS in [2]:

ADS−(λ): There are a stationary set S ⊆ λ and g : S → [λ]ℵ0 such that
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(1.4) g(α) ⊆ α and otp(g(α)) = ω for all α ∈ S;

(1.5) g is almost essentially disjoint.

In [9], it is proved that, in the definition of ADS−(λ), we may assume that

S ⊆ Eλ
ω.

A mapping g : S → [λ]ℵ0 for some cardinal λ and S ⊆ Eλ
ω is said to be a

ladder system if g(α) is a cofinal subset of α of order-type ω for all α ∈ S. Note

that a ladder system g : S → [λ]ℵ0 is essentially disjoint if and only if there is a

regressive function f : S → λ such that g(α)\f(α), α ∈ S are pairwise disjoint.

(1.4) of the definition of ADS−(λ), we may drop the condition otp(g(α)) = ω

or further demand that g be a ladder system (see Lemma 2.5).

In Section 2, we show that FRP(< λ) for any uncountable cardinal λ is

equivalent to the statement that ADS−(µ) does not hold for all regular µ < λ

(Theorem 2.7). Using this characterization, we show that many known reflection

theorems in terms of topology and infinite graph theory are actually equivalent

to FRP: see (A) ∼ (E’) in Theorems 2.8, 3.1 and 4.1. Further equivalent

assertions in topology and boolean algebras are given in [7], [8] and [10].

In [9], it is proved that FRP(κ) follows from RP([κ]ℵ0) for all regular un-

countable κ where RP([κ]ℵ0) is the following principle:

RP([κ]ℵ0) : For any stationary S ⊆ [κ]ℵ0 , there is an I ∈ [κ]ℵ1 such that

(1.6) ω1 ⊆ I;

(1.7) cf(I) = ω1;

(1.8) S ∩ [I]ℵ0 is stationary in [I]ℵ0 .

The global version RP of this principle is defined as the assertion that RP([κ]ℵ0)

holds for all uncountable cardinal κ of uncountable cofinality.

The principle obtained from RP([κ]ℵ0) by excluding the condition (1.7) is

called sometimes simply ‘reflection principle’. Adopting the terminology of

Foreman and Todorcevic [6] or König, Larson and Yoshinobu [15], we shall

call this principle the Weak Reflection Principle for [κ]ℵ0 and denote it with

WRP([κ]ℵ0). Its global version WRP is also defined similarly, that is, WRP

holds if and only if WRP([κ]ℵ0) holds for all uncountable κ. Since WRP enjoys

the downward transfer property: κ < κ′ ∧ WRP([κ′]ℵ0) ⇒ WRP([κ]ℵ0), RP

implies WRP.

FRP is preserved by c.c.c. generic extension (see Theorem 3.4 in [9]). Since

WRP([ℵ2]
ℵ0) implies 2ℵ0 ≤ ℵ2 (Todorcevic, see [13]), we obtain a model of FRP

+¬WRP([ℵ2]
ℵ0) by starting from a model of FRP and then forcing 2ℵ0 ≥ ℵ3
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by any c.c.c. partial ordering. Unfortunately, it seems that we cannot modify

this method to prove the consistency of FRP with ¬RP (or ¬WRP) under

2ℵ0 ≤ ℵ2. In, Section 5, we give several models which separate FRP and WRP

under 2ℵ0 ≤ ℵ2.

Let us call the following reflection principle on stationarity of subsets of Eκ
ω

the Ordinal Reflection Principle for κ and abbreviate it as ORP(κ):

ORP(κ): For any stationary S ⊆ Eκ
ω, there is I ∈ [κ]ℵ1 such that (1.6), (1.7)

and

(1.8)’ S ∩ I is stationary in sup(I).

The global version ORP of this principle is the assertion that ORP(κ) holds

for every cardinal κ > ω1 of cofinality ≥ ω1. FRP(λ) implies ORP(λ). By

the transfer property ORP(cf(κ)) ⇒ ORP(κ), we also have the implication

FRP ⇒ ORP. Shelah [23] proved that WRP([κ]ℵ0) implies ORP(κ).

In Section 6, we construct a model of ¬FRP(κ) + ORP for arbitrary regular

κ assuming MA+(σ-closed).

The reflection principles we discussed above can be put in a yet larger pic-

ture: It is obvious that RP follows from Axiom R of Fleissner ([4]) and Axiom

R follows from MA+(σ-closed) (Beaudoin [1]).

The known relations between these principles with some results from [9]

as well as from Sections 5 and 6 of the present paper are summarized in the

following diagram:

MA+(σ-closed) Axiom R RP WRP ORP

FRP 2ℵ0 ≤ ℵ2

MM

Section 5

Section 6

[9]

MA+(σ-closed)

does not imply ¬CH
[20] [17]

Recently we obtained a result which further extends the diagram above: In

[11] it is namely proved that FRP follows from Rado Conjecture (RC). The

separation of RC and FRP can be easily obtained: Since RC implies 2ℵ0 ≤ ℵ2

([24]) any model of FRP and 2ℵ0 > ℵ2 would separate these principles. Under

2ℵ0 = ℵ2 a model of MM would provide such a separation. The model in

Theorem 5.4 gives the separation under CH since it is known that RC implies

RP([ℵ2]
ℵ0) (see [24]).

4



2 Further characterizations of FRP

For a set X, we call a sequence 〈Xα : α < κ〉 a filtration of X if

(2.1) κ = cf(|X |);
(2.2) 〈Xα : α < κ〉 is a continuously increasing sequence of subsets of X of

cardinality < |X |; and

(2.3) X =
∪

α<κXα.

For I ∈ [λ]ℵ1 with cf(I) = ω1, we can find a sup-increasing filtration 〈Iξ : ξ <

ω1〉. Here, for a set S of ordinals, a sequence 〈Sξ : ξ < κ〉 of subsets of S for

κ = cf(|S |) is said to be a sup-increasing filtration if 〈Sξ : ξ < κ〉 is a filtration

of S and

(2.4) 〈sup(Sξ) : ξ < κ〉 is strictly increasing.

Lemma 2.1. Suppose that λ is a regular cardinal > ℵ1, E ⊆ Eλ
ω is stationary

in λ and g : E → [λ]ℵ0 is such that

(2.5) g(α) ∩ α is cofinal in α for all α ∈ E.

If

(2.6) I ∈ [λ]ℵ1 is closed with respect to g and

(2.7) cf(I) = ω1,

then the following are equivalent:

(a) For any f : E ∩ I → I such that f(α) ∈ g(α) ∩ α for all α ∈ E ∩ I,

there is ξ∗ ∈ I such that f−1 ′′{ξ∗} is stationary in sup(I);

(b) For any f : E ∩ I → I such that f(α) ∈ g(α) ∩ α for all α ∈ E ∩ I,

there is ξ∗ ∈ I such that f−1 ′′{ξ∗} is cofinal in sup(I);

(c) The set Z = {x ∈ [I]ℵ0 : sup(x) ∈ E ∩ I and g(sup(x)) ∩ sup(x) ⊆ x}
is stationary in [I]ℵ0.

Note that (a) above is identical with the condition (1.3) in the definition of

FRP(λ).

Proof. “(a) ⇒ (b)” is clear. So we shall prove “(c) ⇒ (a)” and “(b) ⇒ (c)”.

“(c) ⇒ (a)”: Assume that I satisfies (c) and suppose that f : E ∩ I → λ is

such that f(α) ∈ g(α) ∩ α for all α ∈ E ∩ I. Since
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Z ′ = {x ∈ [I]ℵ0 : sup(x) ∈ E ∩ I and f(sup(x)) ∈ x} ⊇ Z,

Z ′ is stationary in [I]ℵ0 by the assumption. By Fodor’s Lemma, it follows that

there is a ξ∗ ∈ I such that

Z ′′ = {x ∈ Z ′ : sup(x) ∈ E ∩ I and f(sup(x)) = ξ∗}

is stationary in [I]ℵ0 . Then f−1 ′′{ξ∗} = {α ∈ sup(I) : sup(x) = α for some x ∈
Z ′′} is stationary in sup(I). Note that we need here the condition (2.7).

“(b) ⇒ (c)”: We prove the contraposition. Assume that (c) does not hold.

We show that (b) does not hold then. Since (c) does not hold, there is a sup-

increasing filtration 〈Iη : η < ω1〉 of I such that, for all η < ω1,

(2.8) if sup(Iη) ∈ E ∩ I then g(sup(Iη)) ∩ sup(Iη) 6⊆ Iη.

Let f : E ∩ I → λ be defined by

(2.9) f(α) = min ((g(α) ∩ α) \ Iηα),

where ηα = sup{η < ω1 : sup(Iη) < α} for α ∈ E ∩ I. Note that f is well-

defined since, for α ∈ E ∩ I, if sup(Iηα) < α then (g(α) ∩ α) \ Iηα 6= ∅ by (2.5);

otherwise, we have again (g(α) ∩ α) \ Iηα 6= ∅ by (2.8). By the definition (2.9),

f(α) ∈ g(α)∩ α for all α ∈ E ∩ I. So the following claim shows that this f is a

counterexample to (b):

Claim 2.1.1. f−1 ′′{ξ} is bounded in sup(I) for all ξ ∈ I.

` For ξ ∈ I, let η∗ = min{η < ω1 : ξ ∈ Iη}. Then we have ξ ∈ Iη∗ ⊆ Iηα

for all α ∈ (E ∩ I) \ sup(Iη∗). By (2.9), it follows that f(α) 6= ξ for all α ∈
(E ∩ I) \ sup(Iη∗). Thus we have f−1 ′′{ξ} ⊆ sup(Iη∗). a (Claim 2.1.1)

(Lemma 2.1)

The following proposition gives one of the seemingly weakest assertions

among the diverse reformulations of FRP(λ).

Proposition 2.2. For a regular λ > ℵ1, FRP(λ) is equivalent to the following

assertion:

(2.10)λ For any stationary E ⊆ Eλ
ω and a ladder system g : E → [λ]ℵ0, there

is an I ∈ [λ]ℵ1 such that

(2.10a) cf(I) = ω1;

(2.10b) I is closed with respect to g;
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(2.10c) for any f : E ∩ I → I such that f(α) ∈ g(α) for all α ∈ E ∩ I,
there is a ξ∗ ∈ I such that f−1 ′′{ξ∗} is cofinal in sup(I).

Proof. It is clear that FRP(λ) implies (2.10)λ. To show the other implication,

assume (2.10)λ and suppose that E ⊆ Eλ
ω is stationary and g : E → [λ]ℵ0 . We

have to show that there is an I as in the definition of FRP(λ) for these E and

g.

Without loss of generality, we may assume that g(α) ∩ α is cofinal in α for

every α ∈ E.

Let h : λ→ λ be a λ to 1 surjection and let

(2.11) C = {α < λ : (a) α is closed with respect to g and h;

(b) {γ < α : h(γ) = β} is cofinal in α for all β < α }.

C is a club subset of λ: To see that C is unbounded in λ, note that, for a

sufficiently large regular θ and M ≺ H(θ) with g, h ∈ M and λ ∩M ∈ λ, we

have λ ∩M ∈ C.

It follows that E0 = E ∩C is stationary. For α ∈ E0, let {ξα
i : i ∈ ω} be an

enumeration of g(α) ∩ α and let 〈ηα
i : i ∈ ω〉 be a strictly increasing sequence

of ordinals cofinal in α such that h(ηα
i ) = ξα

i . This is possible since α ∈ C and

thus α satisfies (2.11), (b). Let g0 : E0 → [λ]ℵ0 be the ladder system defined by

(2.12) g0(α) = {ηα
i : i ∈ ω} for α ∈ E0.

By the assumption (2.10)λ there is an I0 ∈ [λ]ℵ1 satisfying (2.10)λ (for

E = E0 and g = g0). Let I be the closure of I0 with respect to g. Since I0

satisfies (2.10c) for E = E0 and g = g0, E0 ∩ I0 is cofinal in I0. It follows that

sup(I0) ∈ C and, by (2.11), (a), we have sup(I) = sup(I0).

We claim that this I satisfies (1.3). Suppose that f : E ∩ I → λ is such that

f(α) ∈ g(α) ∩ α for all α ∈ E ∩ I. Let f0 : I0 ∩ E0 → λ be defined by

(2.13) f0(α) ∈ g0(α) and h(f0(α)) = f(α)

for all α ∈ E0 ∩ I0. In particular, we have then

(2.14) h ◦ f0 = f � E0 ∩ I0.

Since I0 was chosen according to (2.10)λ, there is ξ∗ ∈ I0 such that f−1
0

′′{ξ∗} is

cofinal in sup(I0) = sup(I). By (2.14), it follows that f−1 ′′{h(ξ∗)} is cofinal in

sup(I). Thus we have shown that I satisfies (b) of Lemma 2.1. By Lemma 2.1,

it follows that I satisfies (1.3). (Proposition 2.2)
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Lemma 2.3. For a regular cardinal λ > ℵ1, a stationary E ⊆ Eλ
ω, a mapping

g : E → [λ]ℵ0 such that g(α) is a cofinal subset of α for all α ∈ E, and α∗ ∈ Eκ
ω1

,

the following are equivalent:

(a) There is I ∈ [α∗]ℵ1 such that sup(I) = α∗, I is closed with respect to g

and

ZI = {x ∈ [I]ℵ0 : sup(x) ∈ E and g(sup(x)) ⊆ x}

is stationary;

(a’) For any I ∈ [α∗]ℵ1 such that sup(I) = α∗ and I is closed with respect

to g as well as with respect to the order topology of α∗, we have that

ZI = {x ∈ [I]ℵ0 : sup(x) ∈ E and g(sup(x)) ⊆ x}

is stationary;

(b) The set

Zα∗ = {x ∈ [α∗]ℵ0 : sup(x) ∈ E and g(sup(x)) ⊆ x}

is stationary.

Proof. “(a’) ⇒ (a)” is clear.

“(a) ⇒ (b)”: Suppose that Zα∗ is not stationary and let C ⊆ [α∗]ℵ0 be a

club disjoint from Zα∗ . Let I ∈ [α∗]ℵ1 be such that I is cofinal in α∗ and closed

with respect to g. Let

(2.15) C ′ = {x ∩ I : x ∈ C and sup(x) = sup(x ∩ I)}.

Then we can find a C ′′ ⊆ C ′ which is a club in [I]ℵ0 . C ′′ is still disjoint from

Zα∗ and hence also from ZI . Thus ZI is not stationary.

“(b) ⇒ (a’)”: Assume that Zα∗ is stationary. Let I ∈ [α∗]ℵ1 be such that

sup(I) = α∗ and I is closed with respect to g as well as with respect to the

order topology of α∗. We have to show that ZI is stationary in [I]ℵ0 . Suppose

that C ⊆ [I]ℵ0 is a club. Let

(2.16) C̃ = {x ∪ y : x ∈ C, y ∈ [α∗ \ I]ℵ0 , sup(x) ≥ sup(y)}.

Then C̃ is a club in [α∗]ℵ0 . Hence, by the assumption, there is z ∈ Zα∗ ∩ C̃. Let

x = z ∩ I. By (2.16) and since I is closed with respect to the order topology

of α∗, we have sup(z) = sup(x) ∈ E ∩ I. By closedness of I with respect to

g, it follows that g(sup(x)) ⊆ I. Hence g(sup(x)) ⊆ z ∩ I = x. Thus we have

x ∈ ZI ∩ C. This shows that ZI is stationary. (Lemma 2.3)
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Proposition 2.4. For a regular λ > ℵ1, FRP(λ) is equivalent to the assertion:

(2.17)λ For any stationary E ⊆ Eλ
ω and a ladder system g : E → [λ]ℵ0, there

is α∗ ∈ Eλ
ω1

such that

{x ∈ [α∗]ℵ0 : sup(x) ∈ E, g(sup(x)) ⊆ x}

is stationary in [α∗]ℵ0.

Proof. By Proposition 2.2, FRP(λ) is equivalent to (2.10)λ. The equivalence of

(2.17)λ to (2.10)λ follows from Lemma 2.3 and Lemma 2.1. (Proposition 2.4)

Lemma 2.5. Suppose that λ is a regular cardinal. Then ADS−(λ) is equivalent

to the following assertion:

(2.18)λ There are a stationary E∗ ⊆ Eλ
ω and a ladder system g∗ : E∗ → [λ]ℵ0

such that

(2.18a) g∗ is almost essentially disjoint, i.e., g∗ � α is essentially dis-

joint for all α < λ.

Proof. “(2.18)λ ⇒ ADS−(λ)” is trivial. The proof of “ADS−(λ) ⇒ (2.18)λ”

can be done similarly to the proof of Proposition 2.2 using the λ to 1 surjection

argument. (Lemma 2.5)

Proposition 2.6. Suppose that FRP does not hold and let

λ∗ = min{µ : µ is regular and FRP(µ) does not hold}.

Then we have ADS−(λ∗).

In [9], it is proved that, for all regular µ, FRP(µ) implies ¬ADS−(µ). Thus

Proposition 2.6 implies the following characterization of FRP:

Theorem 2.7. FRP(< λ) is equivalent to the assertion:

(2.19) ADS−(µ) does not hold for all regular µ < λ.

Proof of Proposition 2.6: First note that λ∗ is regular and ≥ ℵ2. By Propo-

sition 2.2 and Lemma 2.1, there are a stationary E ⊆ Eλ∗
ω and a ladder system

g : E → [λ∗]ℵ0 such that, for any I ∈ [λ∗]ℵ1 closed with respect to g with

cf(I) = ω1, we have

(2.20) ZI = {x ∈ [I]ℵ0 : sup(x) ∈ E ∩ I and g(sup(x)) ⊆ x} is non-stationary

in [I]ℵ0 .
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Let σ : λ∗ → ℵ0>λ∗ be a λ∗ to 1 surjection and

(2.21) C∗ = {α < λ∗ : for all a ∈ ℵ0>α, {γ < α : σ(γ) = a} is cofinal in α}.

Similarly to the argument after (2.11), we can show that C∗ is a club subset of

λ∗. Thus E∗ = E ∩ C∗ is a stationary subset of λ∗.

For α ∈ E∗, let 〈ηα
i : i < ω〉 be an increasing sequence of ordinals cofinal in

α such that

(2.22) σ(ηα
i ) = 〈ξα

k : k ≤ i〉

where 〈ξα
k : k < ω〉 is a fixed enumeration of g(α). Let g∗ : E∗ → [λ∗]ℵ0 be the

ladder system defined by

(2.23) g∗(α) = {ηα
i : i < ω}.

We show that g∗ is almost essentially disjoint. To this end, we prove a series of

claims.

Claim 2.6.1. Suppose that I ∈ [λ∗]ℵ1, cf(I) = ω1 and I is closed with respect to

g and g∗. For a sufficiently large regular θ, let N ≺ H(θ) be such that |N | = ℵ0

and I, σ, λ∗, g, g∗ ∈ N . Then we have | g∗(α)∩N | < ℵ0 for all α ∈ (E∗∩I)\N .

` We prove the claim by induction on sup(I).

Since g∗(α) is a cofinal subset of α∩ I of order-type ω, the claim is trivial if

α > sup(α ∩N). So let us assume

(2.24) α = sup(α ∩N).

Case I: α = sup(I ∩N).

By (2.20) and by elementarity of N , there is a sup-increasing filtration 〈Iξ :

ξ < ω1〉 ∈ N of I such that

(2.25) for all ξ < ω1, if sup(Iξ) ∈ E then g(sup(Iξ)) 6⊆ Iξ.

For ζ = N ∩ω1 we have I ∩N = Iζ and α = sup(Iζ). By (2.25), there is k0 ∈ ω

such that ξα
k0

6∈ Iζ . Then we have ηα
i 6∈ N for all i ∈ ω \ k0 by (2.22) and hence

by (2.23) | g∗(α) ∩N | < ℵ0.

Case II: α < sup(I ∩N).

Let δ = min((I ∩N) \ α). Then I ∩ δ ∈ N and α ∈ (I ∩ δ) \ sup((I ∩ δ) ∩N).

Hence cf(I ∩ δ) = ω1. Since sup(I ∩ δ) < sup(I), we may apply the induction

hypothesis to I ∩ δ to conclude | g∗(α) ∩N | < ℵ0. a (Claim 2.6.1)
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Claim 2.6.2. If I ∈ [λ∗]ℵ1 is such that cf(I) = ω1 and I is closed with respect

to g and g∗, then there is a sup-increasing filtration 〈Iξ : ξ < ω1〉 of I such

that, for all ξ < ω1,

(2.26) Iξ is closed with respect to g and g∗;

(2.27) | g∗(α) ∩ Iξ | < ℵ0 for every α ∈ (E∗ ∩ I) \ Iξ.

` Let θ be a sufficiently large regular cardinal and let 〈Nξ : ξ < ω1〉 be a

continuously increasing chain of countable elementary submodels of H(θ) such

that I, σ, λ∗, g, g∗ ∈ N0 and I ⊆
∪

ξ<ω1
Nξ.

Then, by Claim 2.6.1, Iξ = I ∩Nξ for all ξ < ω1 are as desired.

a (Claim 2.6.2)

Claim 2.6.3. For any I ∈ [λ∗]ℵ1, g∗ � (E∗ ∩ I) is essentially disjoint.

` By blowing up I if necessary, we may assume that cf(I) = ω1 and I is closed

with respect to g and g∗. Let 〈Iξ : ξ < ω1〉 be a filtration of I as in Claim

2.6.2. For ξ < ω1, let 〈ρξ
n : n < ω〉 be an enumeration of E∗ ∩ (Iξ+1 \ Iξ) where

we assume without loss of generality that |E∗ ∩ (Iξ+1 \ Iξ) | = ℵ0 for all ξ < ω1.

By (2.27), for each n < ω there is ζξ
n < ρξ

n such that (g∗(ρξ
n) \ ζξ

n) ∩ Iξ = ∅.
We can find νξ

n with ζξ
n ≤ νξ

n < ρξ
n such that g∗(ρξ

n) \ νξ
n is disjoint from g∗(ρξ

i )

for all i < n.

Now, for α ∈ E∗ ∩ I, let ξ < ω1 and n < ω be such that α = ρξ
n and let

f(α) = νξ
n. Then g∗(α)\f(α), α ∈ E∗∩I are pairwise disjoint. a (Claim 2.6.3)

Claim 2.6.4. Suppose δ < λ∗, κ = cf(δ) ≥ ℵ1 and W ∈ [δ]κ is such that W is

club in δ and closed with respect to g and g∗. If 〈Wξ : ξ < κ〉 is a sup-increasing

filtration of W then

C = {ξ < κ : for all α ∈ E∗ ∩ (W \Wξ), | g∗(α) ∩Wξ | < ℵ0}

contains a club subset of κ.

` Assume, toward a contradiction, that κ \ C is stationary.

Let S = (κ \ C) ∩ Eκ
ω.

Subclaim 2.6.4.1. S is stationary.

` If C is bounded then this is clear. Otherwise, let D = {ξ < κ : C ∩
ξ is unbounded in ξ}. Then D is a club subset of κ and D ∩ Eκ

>ω ⊆ C. Since

κ \ C is assumed to be stationary, it follows that S must be stationary.

a (Subclaim 2.6.4.1)

Note that, for all ξ ∈ S, there is αξ ∈ W \Wξ such that
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(2.28) | g∗(αξ) ∩Wξ | = ℵ0.

Without loss of generality, we may assume that αξ ∈ Wξ+1 \Wξ.

Let π : κ → W be a bijection such that π−1 ′′Wξ ∈ κ for all ξ < κ. Let

π−1 ′′Wξ = βξ for ξ < κ and B = {βξ : ξ ∈ S}. Then B is a stationary subset

of Eκ
ω.

For β ∈ B with β = βξ for some ξ < κ, let g′(β) = π−1 ′′(g∗(αξ)∩Wξ). Then,

by Claim 2.6.3, g′ � (B∩I) is essentially disjoint for any I ∈ [κ]ℵ1 . In particular

B and g′ make up a counterexample to FRP(κ). But this is a contradiction

since we have FRP(κ) by cf(κ) = κ < λ∗. a (Claim 2.6.4)

Now, we can show that g∗ � (E∗ ∩ δ) is essentially disjoint for all δ < λ∗ by

induction on δ.

For δ = 0, this is trivial. If the essential disjointness holds for an ordinal

δ ∈ λ∗ \ E∗, then we have E∗ ∩ δ = E∗ ∩ (δ + 1) and hence the essential

disjointness also holds for δ + 1.

If δ ∈ E∗ then let f : E∗ ∩ δ → λ∗ be a regressive function witnessing

the essential disjointness for δ. For each α ∈ E∗ ∩ δ, let να < α be such that

g∗(α) \ να and g∗(δ) are disjoint and let f∗ : E∗ ∩ (δ + 1) → λ∗ be defined by

f ∗(α) =

{
max{f(α), να}; if α ∈ δ,

0; otherwise (i.e. if α = δ).

Then f ∗ witnesses the essential disjointness for δ + 1.

Suppose now that δ is a limit ordinal and we have shown the essential

disjointness for all δ′ < δ.

Case I. cf(δ) = ω.

Let 〈δn : n < ω〉 be a strictly increasing sequence of ordinals cofinal in δ. For

each n ∈ ω, let fn : E∗ ∩ (δn + 1) → δn be a regressive function witnessing

the essential disjointness of g∗ � (E∗ ∩ (δn + 1)). Let f ∗
0 = f0 and let f∗

n+1 :

E∗ ∩ ((δn+1 + 1) \ (δn + 1)) → λ∗ be defined by f∗
n+1(α) = max{fn+1(α), δn}

for α ∈ E∗ ∩ ((δn+1 + 1) \ (δn + 1)). Then it is easy to see that f =
∪

n∈ω f
∗
n

witnesses the essential disjointness for δ.

Case II. cf(δ) > ω.

Let κ = cf(δ) and let W be a club subset of δ of cardinality κ which is closed

with respect to g and g∗. By Claim 2.6.4, there is a sup-increasing filtration

〈Wξ : ξ < κ〉 of W such that, for every ξ < κ and α ∈ E∗ ∩ (W \Wξ), we have

| g∗(α) ∩Wξ | < ℵ0. For ξ < κ, let ηξ = sup(Wξ).
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For α ∈ E∗ ∩W , let ξα < κ be such that α ∈ Wξα+1 \Wξα and let να < α

be such that (g∗(α) \ να) ∩Wξα = ∅. For α ∈ (E∗ ∩ δ) \W , let ξ∗α < κ be such

that ηξ∗α ≤ α < ηξ∗α+1. Note that actually we have ηξ∗α < α in this case: Since

α 6∈ W and W is closed, α is not a limit of W . Thus there is a µα < α such

that (g∗(α) \ µα) ∩W = ∅.
By induction hypothesis, there is a regressive fξ : E∗ ∩ ηξ → ηξ witnessing

the essential disjointness of g∗ � (E∗∩ηξ) for every ξ < κ. Now let f : E∗∩δ → δ

be defined by

(2.29) f(α) =

{
max{fξα+1(α), να}; if α ∈ W,

max{fξ∗α+1(α), ηξ∗α , µα}; otherwise

for α ∈ E∗ ∩ δ. Then f witnesses the essential disjointness of g∗ � E∗ ∩ δ.

(Proposition 2.6)

In virtue of FRP in Theorem 2.7 we can also obtain many “mathematical”

characterizations of FRP.

For the notions and notations used in (A) and (B) see [9]; for (C) and (C’),

see Fleissner [4] or Fuchino [7].

Theorem 2.8. For a cardinal λ, FRP(< λ) is equivalent to each of the following

assertions over ZFC:

(A) For every locally separable countably tight topological space X with L(X) <

λ, if all subspaces of X of cardinality ≤ ℵ1 are meta-Lindelöf, then X

itself is also meta-Lindelöf.

(B) For every locally countably compact topological space X with L(X) < λ,

if all subspaces of X of cardinality ≤ ℵ1 are metrizable, then X itself is

also metrizable.

(C) For every T1-space X of cardinality < λ with point countable base, if

all subspaces of X of cardinality ≤ ℵ1 are left-separated then X itself is

also left-separated.

(C’) For every metrizable space X of cardinality < λ, if all subspaces of X

of cardinality ≤ ℵ1 are left-separated then X itself is also left-separated.

Proof. The implications “FRP(< λ) ⇒ (A), (B)” are proved in Fuchino et al.

[9]. It is also proved in [9] that ADS−(λ∗) implies the existence of a topological

space X of cardinality λ∗ which is a counter-example to both of (A) and (B).

Note that we have L(X) ≤ |X | = λ∗. Hence, it follows from Theorem 2.7 that

both of the assertions (A) and (B) are equivalent to FRP(< λ).
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The implication “FRP(< λ) ⇒ (C)” is proved in Fuchino [7]. “(C) ⇒ (C’)”

is trivial noting that every metric spaces are T1 and have a point countable

base by Stone’s theorem. For the implication “(C’) ⇒ FRP(< λ)”, assume that

ADS−(λ∗) holds for a regular cardinal λ∗ and we show that there is a topological

space X of cardinality λ∗ which is a counter-example to the assertion of (C’).

Let E∗ and g∗ be such that E∗ is a stationary subset of Eλ∗
ω and g an almost

essentially disjoint ladder system on E∗.

The topological space given below is a modification of an example given in

Fleissner [4].

Let X = E∗ be the metric space with the metric d defined by

d(α, β) =
1

kα,β + 1

for α, β ∈ X where

kα,β = min{k < ω : the set of the first k elements of g∗(α) and the set

of the first k elements of g∗(β) are distinct}.

Let O be the topology of X which is induced from d. We show that (X,O) is

a counter-example to the assertion (C’).

Since λ∗ is a regular cardinal and subspaces of a left-separated space are

also left-separated, the next claim implies that all subspaces of X of cardinality

< λ∗ are left-separated:

Claim 2.8.1. E∗ ∩ β as a subspace of X is left-separated for all β < λ∗.

` Let β < λ∗. Since g∗ is almost essentially disjoint, there is a regressive

f : E∗ ∩ β → β such that g∗(α) \ f(α), α ∈ E∗ ∩ β are pairwise disjoint.

For n ∈ ω, let

Dn = {α ∈ E∗ ∩ β : g∗(α) ∩ f(α) consists of

the first n elements of g∗(α)}.

Then E∗ ∩ β =
∪

n∈ω Dn. Each Dn is discrete since d(α, α′) ≥ 1
n+1

for every α,

α′ ∈ Dn. By Theorem 2.2 in [4], it follows that E∗ ∩ β is left-separated.

a (Claim 2.8.1)

To show that (X,O) itself is not left-separated, it is enough to show the

following claim. Note that there are stationarily many α ∈ E∗ which can be

represented as αM as below. Also note that it is stated implicitly in Theorem

2.2. in [4] that a T1-space X with point countable base is left-separated if and

only if it is left-separated in order-type |X |.

14



Claim 2.8.2. Let θ be a sufficiently large regular cardinal. If M ≺ H(θ) is

such that |M | < λ∗, λ∗, E∗, g ∈ M and αM = λ∗ ∩M ∈ E∗. Then we have

αM ∈ αM ∩ E∗.

` Let 〈αn : n ∈ ω〉 be an increasing enumeration of g∗(αM). For each k ∈ ω,

let ψk be the formula asserting

“there exists an α ∈ E∗ such that the first k elements of g∗(α) are

α0,. . . , αk−1”.

H(θ) |= ψk holds for each k ∈ ω since α∗ is a witness of all of ψk, k ∈ ω. It

follows that M |= ψk for each k ∈ ω by elementarity. But, by the definition

of d, this means that there is α ∈ αM ∩ E∗ such that d(αM , α) ≤ 1
k+1

for each

k ∈ ω. a (Claim 2.8.2)

(Theorem 2.8)

3 Coloring number of graphs

We consider here a graph G as a pair 〈G, E〉 where the elements of G are points

and the elements of E ⊆ [G]2 represent the edges of the graph. For a graph

G = 〈G, E〉, the coloring number of G is defined by:

(3.1) col(G) = min{µ : there is a well-ordering ≺ of G such that

| {y ∈ G : y ≺ x and {x, y} ∈ E} | < µ for all x ∈ G}.

For a graph G = 〈G, E〉 and I ⊆ G, we denote with G � I the subgraph

〈G ∩ I, E ∩ [I]2〉 of G. Sometimes we also identify a subset G′ of G with the

subgraph 〈G′, E ∩ [G′]2〉. For I ⊆ G and x ∈ G we write:

Ex
I = {y ∈ I : {x, y} ∈ E}.

The following is the main theorem of this section:

Theorem 3.1. For any cardinal λ ≥ ℵ2, FRP(< λ) is equivalent to the asser-

tion:

(D) For any graph G = 〈G, E〉 of cardinality < λ, if col(G � I) ≤ ℵ0 for all

I ∈ [G]≤ℵ1, then col(G) ≤ ℵ0.

Let us begin with the characterization of coloring number ≤ µ by Erdős and

Hajnal (Lemma 3.4).

Lemma 3.2. Suppose that G = 〈G, E〉 is a graph and f : G → [G]<µ for a

cardinal µ is such that
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(3.2) at least one of x ∈ f(y) and y ∈ f(x) holds for all {x, y} ∈ E.

If G′ ⊆ G is closed with respect to f then | Ex
G′ | < µ for all x ∈ G \G′.

Proof. Suppose that x ∈ G \ G′. If x′ ∈ G′ then f(x′) ⊆ G′ by the closedness

of G′ with respect to f . Thus we have x 6∈ f(x′). Hence, if {x, x′} ∈ E , then we

must have x′ ∈ f(x). It follows that Ex
G′ ⊆ f(x) and | Ex

G′ | ≤ | f(x) | < µ.

(Lemma 3.2)

Lemma 3.3. Suppose that G = 〈G, E〉 is a graph of cardinality λ, κ = cf(λ) and

µ an infinite cardinal. If 〈Gα : α < κ〉 is a filtration of G such that col(Gα) ≤ µ

for all α < κ and | Ex
Gα

| < µ for all α < κ and x ∈ Gα+1 \ Gα, then we have

col(G) ≤ µ and G has a well-ordering ≺ of order-type λ witnessing col(G) ≤ µ.

Proof. For each α < κ, let ≺α be a well-ordering ofGα+1 witnessing col(Gα+1) ≤
µ. That is, ≺α is such that

| {y ∈ Gα+1 : y ≺α x and {x, y} ∈ E} | < µ for all x ∈ Gα+1.

Let ≺ be the well-ordering of G defined by

x ≺ y ⇔ (x, y ∈ Gα+1 \Gα and x ≺α y for some α < κ) or

(x ∈ Gα and y 6∈ Gα for some α < κ)

for x, y ∈ G. Then ≺ witnesses col(G) ≤ µ:

Claim 3.3.1. | {y ∈ G : y ≺ x and {x, y} ∈ E} | < µ for all x ∈ G.

` Suppose x ∈ G and let α < κ be such that x ∈ Gα+1 \Gα. Then we have

{y ∈ G : y ≺ x and {x, y} ∈ E}
= Ex

Gα
∪ {y ∈ Gα+1 \Gα : y ≺α x and {x, y} ∈ E}.

Since | Ex
Gα

|, | {y ∈ Gα+1 \Gα : y ≺α x} | < µ by the assumption of the lemma

and the choice of ≺α, it follows that | {y ∈ G : y ≺ x and {x, y} ∈ E} | < µ.

a (Claim 3.3.1)

By the definition of ≺, it is clear that ≺ is of order-type λ. (Lemma 3.3)

Lemma 3.4 (Erdős and Hajnal [3]). For a cardinal µ and a graph G = 〈G, E〉,
the following are equivalent:

(a) col(G) ≤ µ;

(b) there exists a mapping f : G→ [G]<µ satisfying (3.2);

(c) there is a well ordering ≺ of G of order-type |G | such that
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(3.3) | {y ∈ G : y ≺ x and {x, y} ∈ E} | < µ for all x ∈ G.

Proof. “(c) ⇒ (a)” is trivial. We show “(a) ⇒ (b)” and “(b) ⇒ (c)”.

“(a) ⇒ (b)”: Suppose that col(G) ≤ µ and ≺ is a well-ordering of G wit-

nessing this. Let f : G→ [G]<µ be defined by

f(x) = {y ∈ G : y ≺ x and {x, y} ∈ E}

for x ∈ G. Then f clearly satisfies (3.2).

“(b) ⇒ (c)”: It is enough to prove that the following (3.4)λ holds for all

cardinal λ by induction on λ:

(3.4)λ for any graphG = 〈G, E〉 of cardinality λ with a mapping f : G→ [G]<µ

satisfying (3.2), there is a well-ordering ≺ on G of order-type |G | such

that (3.3) holds.

For λ ≤ µ, this is trivial (for a graph G = 〈G, E〉 of cardinality µ, any well-

ordering of G of order-type µ will do).

Now, assume that λ > µ and we have proved (3.4)λ′ for all λ′ < λ. Suppose

that G = 〈G, E〉 is a graph of cardinality λ and f : G→ [G]<µ satisfies (3.2).

Let 〈Gα : α < κ〉 be a filtration of G for κ = cf(λ) such that each Gα,

α < cf(λ) is closed with respect to f . By the induction hypothesis col(Gα) ≤ µ

for all α < κ. | Ex
Gα

| < µ for all α < κ and x ∈ Gα+1 by Lemma 3.2. By Lemma

3.3, it follows that there is a well-ordering ≺ of G of order-type |G | satisfying

(3.3). (Lemma 3.4)

Proposition 3.5. Suppose that FRP does not hold and let

λ∗ = min{λ : λ is regular and FRP(λ) does not hold}.

Then there is a graph G = 〈G, E〉 of cardinality λ∗ such that col(G) > ℵ0 but

all subgraphs of G of cardinality < λ∗ have countable coloring number.

Proof. By Proposition 2.6, there are a stationary E∗ ⊆ Eλ∗
ω and an almost

essentially disjoint ladder system g∗ on E∗. Without loss of generality, we may

assume that g∗(α) consists of successor ordinals for all α ∈ E∗ since, e.g., we

may replace g∗ by g∗∗ defined by g∗∗(α) = {ξ + 1 : ξ ∈ g∗(α)} for all α ∈ E∗.

Let D∗ = λ∗ \ Lim(λ∗) and let G = E∗ ∪D∗ be the graph with its edges E
defined by

(3.5) E = {{α, β} : α < β < λ∗, α ∈ D∗, β ∈ E∗ and α ∈ g∗(β)}.

We show in the following two claims that this G = 〈G, E〉 is as desired.
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Claim 3.5.1. col(G) > ℵ0.

Proof. Otherwise there would be a mapping f : G → [G]<ℵ0 satisfying (3.2).

We may assume that f(α) ⊆ g∗(α) ⊆ D∗ ∩ α for all α ∈ E∗ .

Let f∗ : E∗ → λ∗ be the regressive function defined by f∗(α) = max f(α)+1

for α ∈ E∗. By Fodor’s Lemma, there are a ξ∗ < λ∗ and a stationary E ′ ⊆ E∗

such that f∗(α) = ξ∗ for all α ∈ E ′. Similarly, there are a ξ∗∗ < λ and a

stationary E ′′ ⊆ E ′ such that min(g∗(α) \ ξ∗) = ξ∗∗ for all α ∈ E ′′. Let

α∗ ∈ E ′′ \ f(ξ∗∗). Then {ξ∗∗, α∗} ∈ E but α∗ 6∈ f(ξ∗∗) and ξ∗∗ 6∈ f(α∗). This is

a contradiction.

a (Claim 3.5.1)

Claim 3.5.2. col(G � β) ≤ ℵ0 for every β < λ∗.

` For β < λ∗, let f ∗ : E∗ ∩ β → λ∗ be a regressive function witnessing the

essential disjointness of g∗ � (E∗ ∩ β). Let f : G∩ β → [G∩ β]<ℵ0 be defined by

f(α) =


{γ}, if α ∈ D∗ ∩ β and α ∈ g∗(γ) \ f ∗(γ)

for some γ ∈ E∗ ∩ β;

g∗(α) ∩ f∗(α), if α ∈ E∗ ∩ β;

∅, otherwise

for α ∈ G ∩ β. Then f satisfies (3.2). a (Claim 3.5.2)

(Proposition 3.5)

The following theorem is going to be used in the proof of Theorem 3.7.

Though it can be obtained as a corollary of Shelah’s Singular Compactness

Theorem ([22]), we give below a direct proof for completeness. Note however

that the following Theorem 3.6 does not cover everything about coloring number

obtained from Shelah’s Singular Compactness Theorem: It also proves Theorem

3.6 for arbitrary infinite κ in place of ℵ0 while our proof does not cover these

cases.

Theorem 3.6 (A consequence of the main result in S. Shelah, [22]). Suppose

that G = 〈G, E〉 is a graph of singular cardinality λ. If

(3.6) col(G′) ≤ ℵ0 for all G′ ∈ [G]<λ,

then col(G) ≤ ℵ0.

Proof. We prove the theorem in the following two cases:

Case I: cf(λ) = ω.

Let 〈Gα,n : n < ω〉 and 〈fα,n : n < ω〉 for α < ω1 be sequences constructed by

induction on α < ω1 such that
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(3.7) 〈Gα,n : n < ω〉 is a filtration of G;

(3.8) fα,n : Gα,n+1 → [Gα,n+1]
<ℵ0 and fα,n is a witness of col(Gα,n+1) ≤ ℵ0

(which holds by the assumption on G) in the sense of Lemma 3.4, (b);

(3.9) For each n < ω, 〈Gα,n : α < ω1〉 is a continuously increasing sequence;

(3.10) Gα+1,n is the closure of Gα,n in Gα,n+1 with respect to fα,n.

Let

(3.11) Gn =
∪

α<ω1
Gα,n for each n < ω.

〈Gn : n < ω〉 is then a filtration of G. By assumption on G, we have col(Gn) ≤
ℵ0 for all n < ω.

Claim 3.6.1. For any n < ω and x ∈ Gn+1 \Gn, we have | Ex
Gn

| < ℵ0.

` Let α∗ < ω1 be such that x ∈ Gα∗,n+1 \ Gα∗,n. Then x ∈ Gα,n+1 for

all α∗ ≤ α < ω1. Since 〈Gα,n : α∗ ≤ α < ω1〉 is an increasing sequence,

〈Ex
Gα,n

: α∗ ≤ α < ω1〉 is also increasing. By (3.10) and Lemma 3.2, Ex
Gα,n

for

α∗ ≤ α < ω1 are finite sets. Hence there is α∗ ≤ α∗∗ < ω1 and a finite set e

such that Ex
Gα,n

= e for all α∗∗ ≤ α < ω. By (3.11), it follows that Ex
Gn

= e.

a (Claim 3.6.1)

By Lemma 3.3, it follows that col(G) ≤ ℵ0.

Case II. cf(λ) > ω.

Let κ = cf(λ) and 〈Gα : α < κ〉 be a filtration of G. By the assumption, we

have col(Gα) ≤ ℵ0 and thus there is a fα : Gα → [Gα]<ℵ0 which is a witness of

this in the sense of Lemma 3.4 (b) for each α < κ.

Let 〈Hβ : β < κ〉 be (possibly) another filtration of G such that each Hβ

is closed with respect to fα for all α < κ. Note that we can construct such a

filtration since κ < λ. By the assumption of the theorem, we have col(Hβ) ≤ ℵ0

for all β < κ.

Claim 3.6.2. For all β < κ and x ∈ G \Hβ, we have | Ex
Hβ

| < ℵ0.

` Suppose that x ∈ Gα∗ for some α∗ < κ. Hβ ∩Gα is closed with respect tofα

for all α < κ by the construction of 〈Hβ : β < κ〉. By Lemma 3.2, it follows

that 〈Ex
Hβ∩Gα

: α∗ ≤ α < κ〉 is an increasing sequence of finite subsets of G.

Hence there is an ordinal α∗ ≤ α∗∗ < κ and an e ∈ [G]<ℵ0 such that Ex
Hβ∩Gα

= e

for all α∗∗ ≤ α < κ. Since Hβ =
∪

α<κHβ ∩Gα, it follows that Ex
Hβ

= e.

a (Claim 3.6.2)
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By Lemma 3.3, it follows that col(G) ≤ ℵ0. (Theorem 3.6)

In Fleissner [4], the assertion of the following theorem was proved under

Axiom R:

Theorem 3.7. (FRP) For any graph G = 〈G, E〉, if

(3.12) col(G � I) ≤ ℵ0 holds for all I ∈ [G]≤ℵ1,

then col(G) ≤ ℵ0.

Proof. We prove by induction on λ that the following (3.13)λ holds for all

cardinals λ:

(3.13)λ For any graph G = 〈G, E〉 of cardinality λ, if (3.12) holds, then

col(G) ≤ ℵ0.

For λ ≤ ℵ1, (3.13)λ trivially holds.

Suppose that λ > ℵ1 and we have proved (3.13)λ′ for all λ′ < λ.

If λ is singular, and G is as in (3.13)λ, then we can conclude col(G) ≤ ℵ0

by the induction hypothesis and Theorem 3.6.

Suppose now that λ is regular and assume, toward a contradiction, that there

is a graph G of cardinality λ which satisfies (3.12) but col(G) > ℵ0. Without

loss of generality, we may assume that (the underlying set of) G is λ. Note that

col(G � α) ≤ ℵ0 for all α < λ by induction hypothesis. Hence

(3.14) E = {α ∈ λ : there is β ∈ λ \ α such that | Eβ
α | ≥ ℵ0}.

is stationary by Lemma 3.3. Let E∗ = E ∩ Eλ
ω.

Claim 3.7.1. E∗ is stationary in λ.

` Suppose otherwise. Then E∩Eλ
>ω must be stationary. For each α ∈ E∩Eλ

>ω,

let βα ∈ λ \ α be such that Eβα
α is infinite. Let cα ∈ [Eβα

α ]ℵ0 and ξα = sup(cα).

Then ξα < α since cf(ξα) ≤ ω. βα and cα witness that [ξα, α) ∩ Eλ
ω ⊆ E∗. By

Fodor’s Lemma, there are ξ∗ ∈ Eλ
ω and stationary E† ⊆ E ∩ Eλ

>ω such that

ξα = ξ∗ for all α ∈ E†. We have Eλ
ω \ ξ∗ =

∪
α∈E† [ξ∗, α) ∩Eλ

ω ⊆ E∗. Thus E∗ is

stationary. This is a contradiction to the assumption. a (Claim 3.7.1)

For α ∈ E∗, let βα ∈ λ \ α be such that | Eβα
α | ≥ ℵ0 and cα ∈ [Eβα

α ]ℵ0 . Let

g : E∗ → [λ]ℵ0 be defined by g(α) = cα ∪ {βα} for all α ∈ E∗.

By (the original version of) FRP(λ) and Lemma 2.1, there is I ∈ [λ]ℵ1 such

that cf(I) = ω1, I is closed with respect to g and Z as in Lemma 2.1, (c) (with

E there replaced by E∗) is stationary in [I]ℵ0 .
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Now, we have col(G � I) ≤ ℵ0 by the assumption (3.12). Hence there is a

witness f : I → [I]<ℵ0 of this inequality in the sense of Lemma 3.4, (b). Let

C = {x ∈ [I]ℵ0 : x is closed with respect to f}. Since C is a club in [I]ℵ0 ,

there is an x ∈ Z ∩ C. By the definition of Z and g, | Eβ
x | ≥ ℵ0 for β = βsup(x).

But since x is closed with respect to f , this is a contradiction to Lemma 3.2.

(Theorem 3.7)

Now we obtain Theorem 3.1 combining the results above:

Proof of Theorem 3.1: “FRP(< λ) ⇒ (D)” is just the local but cumulative

version of Theorem 3.7. “(D) ⇒ FRP(< λ)” follows from Proposition 3.5.

(Theorem 3.1)

4 Collectionwise Hausdorff spaces

In this section, we always assume that topological spaces satisfy T1.

A topological space X is said to be collectionwise Hausdorff (cwH, for short)

if, for any closed and discrete D ⊆ X, there is a family U of pairwise disjoint

open sets such that, for all d ∈ D, there is U ∈ U with D ∩ U = {d}. For D

and U as above, we say that D is simultaneously separated by U . We also say

that D is simultaneously separated if it is simultaneously separated by some U .

X is ≤ λ-cwH if every subspaces Y of X of size ≤ λ are cwH.

A topological space X has local density ≤ κ, if for every p ∈ X, there is a

Y ∈ [X]≤κ such that p ∈ int(Y ).

The main theorem of this section is the further characterization of FRP(< λ)

now in terms of collectionwise Hausdorff spaces:

Theorem 4.1. For a cardinal λ ≥ ℵ2, FRP(< λ) is equivalent to the following

assertion:

(E) For every countably tight topological space X of local density ≤ ℵ1, if

X is ≤ ℵ1-cwH, then every closed discrete subsets of X of size < λ are

simultaneously separated.

The next corollary is an immediate consequence of Theorem 4.1:

Corollary 4.2. The following are equivalent:

(a) FRP;

(b) For every countably tight topological space X of local density ≤ ℵ1, if X is

≤ ℵ1-cwH, then X is cwH.
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Fleissner [4] proved the assertion (b) of Corollary 4.2 under Axiom R.

We need the following lemma for the beginning of the induction proof of

“FRP(< λ) ⇒ (E)” in Theorem 4.1.

Lemma 4.3. Suppose that X is a space having local density ≤ κ for an un-

countable cardinal κ. If X is ≤ κ-cwH, then every closed discrete subsets of X

of cardinality ≤ κ are simultaneously separated.

Proof. Suppose that X and κ are as above and D ∈ [X]≤κ is closed and

discrete. Let 〈pβ : β < µ〉 be an enumeration of D with µ = |D | ≤ κ and let

Yβ ∈ [X]≤κ, β < µ be such that pβ ∈ Uβ for Uβ = int(Yβ) for each β < µ.

Let Y = D ∪
∪

β<µ Yβ. Then |Y | ≤ κ. Since X is ≤ κ-cwH, the subspace

Y of X is cwH. Since D is closed and discrete in Y , there is a sequence 〈Oβ :

β < µ〉 of open sets in X such that pβ ∈ Oβ for all β < µ and

(4.1) Oβ ∩ Y , β < µ are pairwise disjoint.

Claim 4.3.1. Oβ ∩ Uβ, β < µ are pairwise disjoint.

` Suppose that (Oβ ∩ Uβ) ∩ (Oβ′ ∩ Uβ′) 6= ∅ for some β < β′ < µ. Since

Oβ ∩ Yβ is dense in Oβ ∩ Uβ, there is an x ∈ (Oβ ∩ Yβ) ∩ (Oβ′ ∩ Uβ′). But then

x ∈ (Oβ ∩ Y ) ∩ (Oβ′ ∩ Y ). This is a contradiction to (4.1). a (Claim 4.3.1)

Thus 〈Oβ ∩ Uβ : β < µ〉 simultaneously separates D in X. (Lemma 4.3)

The following “Singular Compactness Theorem” is also used as a part of

the proof of “FRP(λ) ⇒ (E)” of Theorem 4.1. For some other similar singular

compactness results on collectionwise Hausdorff spaces, see e.g. Watson [27].

Theorem 4.4. Let λ be a singular cardinal with µ = cf(λ) < λ. Suppose that

X is a topological space of local density ≤ κ for some κ < λ. If

(4.2) every closed discrete subsets of X of cardinality < λ are simultaneously

separated,

then every closed discrete subsets of X of cardinality ≤ λ are simultaneously

separated.

Proof. Suppose that λ, µ, X and κ are as above and D ∈ [X]λ is closed and

discrete in X. Let 〈Di : i < µ〉 be a filtration of D. Note that, since D is

closed and discrete, each Di is closed and discrete in X.

Since each Di is of cardinality λi < λ, Di is simultaneously separated by a

family Ui of pairwise disjoint open sets by (4.2).

Since X is of local density ≤ κ, we may assume that
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(4.3) each U ∈ Ui has a dense subset DU of size ≤ κ.

Let U =
∪

i<µ Ui and let ≈ be the transitive closure of the relation U ∼ V

⇔ U ∩ V 6= ∅.
By (4.3), we have | {V ∈ U : U ∼ V } | ≤ κ+µ < λ for all U ∈ U . It follows

that | {V ∈ U : U ≈ V } | ≤ κ+ µ < λ for all U ∈ U .

Let E be the set of all equivalence classes of ≈. For e ∈ E, let Oe =
∪
e and

D′
e = D ∩ Oe. Then Oe, e ∈ E are pairwise disjoint open sets,

∪
e∈ED

′
e = D

and |D′
e | ≤ κ+µ < λ for all e ∈ E. Since each D′

e for e ∈ E is a closed discrete

subset of X, D′
e is simultaneously separated by some family U ′

e of pairwise

disjoint open sets by (4.2). We may assume that
∪

U ′
e ⊆ Oe for all e ∈ E. But

then U ′ =
∪

e∈E U ′
e simultaneously separates D. (Theorem 4.4)

Proof of Theorem 4.1: “(E) ⇒ FRP(< λ)”: By Theorem 2.7, it is enough

to show the following. Note that ADS−(µ) for a regular uncountable cardinal

µ implies that µ ≥ ℵ2.

Claim 4.1.1. Suppose that ADS−(µ) holds for a regular uncountable cardinal

µ < λ. Then there exists a space X of cardinality µ such that X is locally

countable, first countable and < µ-cwH but not cwH.

` Let g : S → [µ]ℵ0 be an almost essentially disjoint ladder system on some

stationary S ⊆ Eµ
ω . We may assume that g(α) ∩ S = ∅ for all α ∈ S.

Let T =
∪
{g(α) : α ∈ S} and let X = S ∪ T be the topological space with

the topology defined by:

(4.4) Every β ∈ T are isolated;

(4.5) For α ∈ S, {{α} ∪ (g(α) \ β) : β < α} is a neighborhood base of α.

Then it is easy to see that this X is as desired. a (Claim 4.1.1)

“FRP(< λ) ⇒ (E)”: Suppose that X is a countably tight ≤ ℵ1-cwH space

of local density ≤ ℵ1. By induction on κ < λ, we show that

(∗)κ if D ∈ [X]≤κ is closed and discrete then D can be simultaneously sep-

arated.

For κ ≤ ℵ1, (∗)κ holds by Lemma 4.3.

Assume now that ℵ1 < κ < λ and that we have shown (∗)µ for all µ < κ.

Case I. κ is regular.

Suppose that D ∈ [X]κ is closed and discrete. We have to show that D is

simultaneously separated.
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For each p ∈ X, let Ep ∈ [X]≤ℵ1 be such that p ∈ int(Ep). Let Y ∈ [X]κ be

such that D ⊆ Y and Y is closed with respect to the mapping p 7→ Ep. That

is, Ep ⊆ Y holds for all p ∈ Y . Let 〈Yα : α < κ〉 be a filtration of Y such that,

for all α < κ,

(4.6) Yα is closed with respect to the mapping p 7→ Ep.

Without loss of generality, we may assume that Y = κ.

Claim 4.1.2. C = {α < κ : Yα ∩D = Yα ∩D} contains a club.

` Suppose, toward a contradiction, that κ\C is stationary. Since κ is regular,

{α < κ : Yα = α} is club. By the countable tightness of X, it follows that

S = {α ∈ Eκ
ω : Yα = α, D ∩ Yα 6= D ∩ Yα}

is stationary.

For α ∈ S, let pα ∈ (D ∩ Yα) \ Yα. Again by the countable tightness of X,

there is cα ∈ [Yα]ℵ0 such that pα ∈ cα for all α ∈ S.

Now let g : S → [κ]ℵ0 be such that g(α) = cα∪{βα} for α ∈ S where βα < κ

is such that pα ∈ Yβα . By FRP(κ), there is I ∈ [κ]ℵ1 such that cf(I) = ω1, I is

closed with respect to g and

(4.7) for every f : S ∩ I → κ with f(α) ∈ g(α) ∩ α for all α ∈ S ∩ I, there

exits ξ < κ such that {α ∈ S ∩ I : f(α) = ξ} is unbounded in sup(I).

Let E = {pα : α ∈ S ∩ I}. Since E ⊆ D, E is closed and discrete. Since

|E | ≤ ℵ1, E is simultaneously separated by a pairwise disjoint family U of

open sets by Lemma 4.3. For α ∈ S∩I, let Uα ∈ U be such that pα ∈ Uα. Since

pα ∈ cα, cα ∩ Uα 6= ∅. Let f(α) ∈ cα ∩ Uα for all α ∈ S ∩ I. By (4.7), there are

α, α′ ∈ S ∩ I such that

(4.8) α < βα < α′ and

(4.9) f(α) = f(α′).

By the definition of pα’s and (4.8), we have pα 6= pα′ and thus Uα 6= Uα′ and

Uα ∩ Uα′ = ∅ by the choice of U . On the other hand, we have f(α) ∈ Uα ∩ Uα′

by (4.9). This is a contradiction. a (Claim 4.1.2)

By moving to a subsequence of 〈Yα : α < κ〉 with the club subset of κ in

Claim 4.1.2 as the new index set, we may assume that

(4.10) D ∩ Yα = D ∩ Yα for all α < κ.
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Claim 4.1.3. D ∩ Yα = D ∩ int(Yα) for all α < κ

` “⊇” follows from (4.10). For “⊆”, if p ∈ D ∩ Yα, then Ep ⊆ Yα by (4.6),

and p ∈ int(Ep) ⊆ int(Yα). Thus p ∈ D ∩ int(Yα). a (Claim 4.1.3)

For α < κ, let Dα = (D ∩ Yα+1) \ Yα. Since |Dα | < κ, Dα is simultaneously

separated by a pairwise disjoint family Uα of open sets. By (4.10) and Claim

4.1.3, we may assume that U ⊆ int(Yα+1)\Yα for all U ∈ Uα. Then U =
∪

α<κ Uα

separates D simultaneously.

Case II. κ is singular.

In this case, if D ∈ [X]κ is closed and discrete, then it is simultaneously sepa-

rated by the induction hypothesis and Theorem 4.4. (Theorem 4.1)

By Theorem 4.1 and Claim 4.1.1, the following assertion is also equivalent

to FRP(< λ):

(E’) For every locally countable, first countable topological space X, if X

is ≤ ℵ1-cwH, then every closed discrete subsets of X of size < λ are

simultaneously separated.

5 Separation of FRP from RP

As it was already mentioned in the introduction, it is fairly easy to separate

FRP from RP: Any model of FRP + 2ℵ0 > ℵ2 does not satisfy WRP since

WRP([ω2]
ℵ0) implies 2ℵ0 ≤ ℵ2.

It is also relatively easy to obtain models of FRP + ¬WRP([ω2]
ℵ0) together

with 2ℵ0 ≤ ℵ2 : Suppose that κ is a strongly compact cardinal. Then the

collapsing Col(ω1, < κ) of κ to ω2 by countable conditions forces FRP (see

Proposition 5.1 below). Forcing further by the partial ordering C adding a

Cohen real over this model still preserve FRP by Theorem 3.4 in [9]. On the

other hand {x ∈ [ω2]
ℵ0 : x 6∈ V Col(ω1,<κ)} is a non-reflecting stationary set in

the generic extension by Col(ω1, < κ) ∗ C (see [12]). This construction gives

thus a model of FRP + ¬WRP([ω2]
ℵ0) + CH.

Likewise, the forcing by Col(ω1, < κ)∗Cℵ2 for a strongly compact κ produces

a model of FRP + ¬WRP([ω2]
ℵ0) + 2ℵ0 = ℵ2.

In the rest of this section, we give two constructions of models of FRP

+ ¬WRP([ω2]
ℵ0) + 2ℵ0 ≤ ℵ2 without adding reals. The first construction

(Theorem 5.2) relies on the model of set theory given in Section 5 of Sakai [19].

First let us check the following:
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Proposition 5.1. Suppose that κ ≤ λ, κ is λ-strongly compact and λ is regular.

Then ‖–P “ FRP(λ) ” holds for P = Col(ℵ1, < κ).

Proof. Let j : V 4 M be such that

(5.1) crit(j) = κ;

(5.2) Mκ ⊆M and

(5.3) ∀X ∈ [M ]≤λ ∃Y ∈ ([M ]<j(κ))M (X ⊆ Y )

(see e.g. Theorem 22.17 in [13]). Suppose that Ṡ is a P-name of a stationary

subset of Eλ
ω and ġ a P-name such that

(5.4) ‖–P “ ġ : S → [λ]ℵ0 and ġ is a ladder system on Ṡ ”.

Let P′ = Col(ℵ1, < j(κ)). Thus we have P′ = j(P) by (5.2). Let G′ be a

(V,P′)-generic set such that G ⊆ G′. j can be then extended to the elementary

embedding j′ : V [G] 4 M [G′] defined by j′(ȧG) = j(ȧ)G′
for each P-name ȧ.

In V [G], let

S̃ = {x ∈ [λ]ℵ0 : sup(x) ∈ ṠG and ġG(sup(x)) ⊆ x}.

Then S̃ is a stationary subset of [λ]ℵ0 . Note that here we need the regularity of

λ. Since P′ is σ-closed, S̃ remains stationary in V [G′]. It follows that

(5.5) j′ ′′S̃ is a stationary subset of [j ′′λ]ℵ0 in V [G′].

Let α∗ = sup(j ′′λ). Note that V [G′] |= cf(α∗) = ω1. Hence M [G′] |= cf(α∗) >

ω. By M [G′] |= α∗ ≤ j(λ) and (5.3), we have M [G′] |= cf(α∗ < j(κ) =

ω2). Hence M [G′] |= cf(α∗) = ω1. By (5.3), there is Y ∈ M such that Y ∈
([α∗]<j(κ))M and j ′′λ ⊆ Y . In M [G′], let Ỹ be the closure of Y with respect to

j′(ġG). Since M [G′] |= j(κ) = ω2, we have M [G′] |= Ỹ ∈ [α∗]ℵ1 .

In M [G′], let 〈Yα : α < ω1〉 be a filtration of Ỹ . Then 〈Y ′
α : α < ω1〉 for

Y ′
α = Yα ∩ j ′′λ is a filtration of j ′′λ (in V [G′]). By (5.5), the set

{α < ω1 : sup(Yα) = sup(Y ′
α) and j′(ġG)(sup(Yα)) ⊆ Y ′

α}

is stationary in V [G′]. It follows that {α < ω1 : j′(ġG)(sup(Yα)) ⊆ Yα} is

stationary in V [G′] and hence also in M [G′].

Thus, in M [G′], we have

M [G′] |= ∃I ∈ [j(λ)]ℵ1 ( cf(sup(I)) = ω1, I is closed with respect to

j′(ġG) and I has a filtration 〈Iα : α < ω1〉
such that {α < ω1 : j′(ġG)(sup(Iα)) ⊆ Iα}
is stationary ).
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By the elementarity of j′, it follows that

V [G] |= ∃I ∈ [λ]ℵ1 ( cf(sup(I)) = ω1, I is closed with respect to ġG

and I has a filtration 〈Iα : α < ω1〉 such that

{α < ω1 : ġG(sup(Iα)) ⊆ Iα} is stationary ).

Thus, by Theorem 2.2 and Lemma 2.1, we have V [G] |= FRP(λ).

(Proposition 5.1)

Theorem 5.2. Suppose that there is a supercompact cardinal κ. Then there is

a partial ordering P collapsing κ to ω2 without adding any new reals such that

(5.6) ‖–P “ FRP + ¬WRP([ω3]
ℵ0) + 2ℵ0 = ℵ1 ”.

Note that, since WRP enjoys downward transfer property, (5.6) implies

(5.7) ‖–P “¬WRP([λ]ℵ0) for all λ ≥ ω3 ”.

Proof of Theorem 5.2: By Theorem 5.3 in [19], there is a partial ordering

P0 such that P0 adds no new reals and

‖–P0 “κ is strongly compact ” and ‖–P0∗Col(ℵ1,< κ)P0 “¬WRP([ω3]
ℵ0) ”.

On the other hand, we have ‖–P0∗Col(ℵ1,< κ)P0 “ FRP ” by Proposition 5.1.

(Theorem 5.2)

Note that the model above also satisfies RC (the proof is similar to and

much simpler than that of Proposition 5.1). Thus we can conclude that RC

does not imply WRP. This solves the Question 7.9 in [25] negatively.

In Theorem 5.2, ℵ3 is the first cardinal κ where the consistence of FRP

together with ¬WRP([κ]ℵ0) is shown. T. Miyamoto [18] proved that the consis-

tency strength of FRP(ℵ2) is exactly that of the existence of a Mahlo cardinal.

His construction also gives a model of FRP(ω2) + ¬WRP([ω2]
ℵ0) + CH. In the

following, we construct of a model of FRP and ¬WRP([ℵ2]
ℵ0) by forcing with

a σ-Baire partial ordering over a model with a strongly compact cardinal.

Let us begin with a well-known fact (Fact 5.3) which plays the central role

in the following Theorem 5.4 as well as in Theorem 6.1 in the next section. For

completeness, we shall give a proof of it. The following proof is a variant of the

argument with a game considered in Veličković [26].

Fact 5.3. Let λ be an ordinal with cf(λ) > ω1. For any stationary E ⊆ Eλ
ω

and any mapping f : E → [λ]ℵ0 such that f(α) is a cofinal subset of α for all

α ∈ E, the set
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Tf = {x ∈ [λ]ℵ0 : f(sup(x)) 6⊆ x}

is stationary in [λ]ℵ0.

Proof. Suppose that C ⊆ [λ]ℵ0 is a club. We want to show that Tf ∩ C 6= ∅.
Let g : λ<ω → λ be a mapping such that Cg ⊆ C where Cg = {x ∈ [λ]ℵ0 :

x is closed with respect to g}. It is enough to show that Tf ∩ Cg 6= ∅.
Let a(g) be the following game of length ω for the players I and II: A match

M in a(g) looks like this:

M:
Player I α0 α1 · · · αn · · ·
Player II I0, ξ0 I1, ξ1 · · · In, ξn · · ·

(n < ω)

where each In is a closed interval [βn, γn] and

(5.8) αn < βn ≤ ξn < γn < αn+1

for all n ∈ ω.

Player II wins the match if cl g({ξn : n ∈ ω}) ⊆ γ0 ∪
∪

n∈ω\1 In. Here

cl g(s) for s ⊆ λ denotes the closure of the set s with respect to g. That is, the

⊆-minimal set s′ ⊆ λ such that s ⊆ s′ and g(u) ∈ s′ for all u ∈ s′<ω.

The proof of the following claim is an adaptation of the corresponding proof

in [26]:

Claim 5.3.1 (Veličković). II has a winning strategy in a(g).

We first show that the claim above implies the theorem. Without loss of

generality, we may assume that f is a ladder system on E. Let σ be a winning

strategy of II in a(g). Let θ be a sufficiently large regular cardinal and let

M ≺ 〈H(θ),∈〉 be such that

(5.9) M is countable;

(5.10) g, σ ∈M and

(5.11) δ = supλ ∩M ∈ E.

Let

M∗:
Player I α0 α1 · · · αn · · ·
Player II I0, ξ0 I1, ξ1 · · · In, ξn · · ·

be a match in a(g) such that

(5.12) II played according to σ in M∗;
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(5.13) each initial segment 〈α0, β0, ξ0, γ0, ...,αn, βn, ξn, γn〉 of M∗ is in M and

(5.14) the interval (γn, αn+1), contains an element δn of f(δ) for n ∈ ω.

Let x = cl g({ξn : n ∈ ω}). Then x ∈ Cg. sup(x) = δ by (5.13) and (5.14). By

(5.12) and (5.14) we have x ∩ {δn : n ∈ ω} = ∅. Since {δn : n ∈ ω} ⊆ f(δ)

by (5.14), it follows that f(sup(x)) 6⊆ x and hence x ∈ Tf . This shows that

Tf ∩ Cg 6= ∅ as desired.

` (Claim 5.3.1) Suppose otherwise. Since a(g) is an open game for the player I,

the player I then has a winning strategy σ by Gale-Stewart Theorem. Let

〈δn : n ∈ ω〉 be a strictly increasing sequence of ordinals below λ such that

(5.15) cf(δn) = ω1 and

(5.16) δn is closed with respect to g and σ for all n ∈ ω.

Note that we can take such sequence by cf(λ) > ω1.

Let δ = supn∈ω δn. Let x ∈ [δ]ℵ0 be such that

(5.17) sup(x) = δ;

(5.18) [δn, δn + ω] ⊆ x for all n ∈ ω and

(5.19) x is closed with respect to σ and g.

Let αn, βn, ξnγn ∈ δ for n ∈ ω be such that

(5.20) αn < βn = ξn < γn < αn+1;

(5.21) αn = σ(〈αk, βk, ξk, γk : k < n〉);
(5.22) βn = δn, ξn = δn and

(5.23) γn = sup(δn+1 ∩ x)

for all n ∈ ω.

By (5.15) and (5.23) we have γn < δn+1. If 〈αk, βk, ξk, γk : k < n〉 is a

sequence below δn satisfying (5.20) then, since δn is closed with respect to σ,

we have

(5.24) αn < δn.

Thus the construction according to (5.21), (5.22), (5.23) provides a sequence

satisfying (5.20).

Letting In = [βn, γn] for n ∈ ω, the sequence

α0, I0, ξ0, α1, I1, ξ1,..., αn, In, ξn,...
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is a match in a(g) in which the player I played according to the winning strategy

σ. However, by (5.19) and (5.23), we have

cl g({ξn : n ∈ ω}) ⊆ x ⊆ γ0 ∪
∪

n∈ω\1 In.

Thus Player II wins this match. This is a contradiction. a (Claim 5.3.1)

(Fact 5.3)

Theorem 5.4. Suppose that κ is a strongly compact cardinal. Then there exists

a κ-c.c. and σ-Baire forcing notion P which forces

(5.25) κ = ω2, CH and FRP but ¬WRP([ω2]
ℵ0).

Proof. The idea of the proof is that we introduce a partial ordering P such

that a (V,P)-generic set G collapses κ to ω2 without adding new countable set

and it introduces a mapping fG and gG such that fG maps each α ∈ Eκ
ω to a

cofinal countable subset of α while gG prevents TfG
defined as in Fact 5.3 from

becoming a reflecting stationary set. This destroys WRP([ω2]
ℵ0) in the generic

extension. At the same time, we design P nice enough to preserve stationarity

of certain type of sets so that a proof similar to but slightly more complicated

than that of Theorem 5.1 works for this P to show that P forces FRP.

Let P be the set of all pairs 〈f, g〉 of functions such that

(5.26) dom(f) ∈ [Eκ
ω]≤ℵ0 ,

(5.27) f(α) ∈ [α]ℵ0 and f(α) is cofinal in α for all α ∈ dom(f),

(5.28) dom(g) ∈ [Eκ
>ω]≤ℵ0 ,

(5.29) g(β) ∈ [[β]ℵ0 ]≤ℵ0 and, with respect to ⊆, g(β) is well-ordered, closed

(that is, the corresponding increasing sequence of countable sets is con-

tinuous) and with the maximal element,

(5.30) sup(x) ∈ dom(f) for every x ∈
∪
{g(β) : β ∈ dom(g)}, and

(5.31) f(sup(x)) ⊆ x for every x ∈
∪
{g(β) : β ∈ dom(g)}.

For 〈f, g〉, 〈f ′, g′〉 ∈ P, we define

(5.32) 〈f, g〉 ≤P 〈f ′, g′〉 ⇔ f ′ ⊆ f , dom(g′) ⊆ dom(g) and g(β) is

an end extension of g′(β) for all β ∈ dom(g′).

In the following, we show that this 〈P,≤P〉 is as desired.

Claim 5.4.1. For any x∗ ∈ [κ]ℵ0,
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(5.33) Dx∗ = {〈f, g〉 ∈ P : (a) x∗ ∩ Eκ
ω ⊆ dom(f),

(b) x∗ ∩ Eκ
>ω ⊆ dom(g),

(c) ∀β ∈ dom(g)∃y ∈ g(β) (x∗ ∩ β ⊆ y) }

is dense in P.

` Let θ be a sufficiently large regular cardinal. For an arbitrary 〈f ′, g′〉 ∈ P,

let N ≺ H(θ) be countable such that x∗, 〈f ′, g′〉 ∈ N .

Let 〈f, g〉 be the pair of the functions defined by

(5.34) dom(f) = (Eκ
ω ∩N) ∪ Lim(κ ∩N) and

f(α) =

{
f ′(α), if α ∈ dom(f ′),

α ∩N, if α ∈ dom(f) \ dom(f ′)

for α ∈ dom(f);

(5.35) dom(g) = Eκ
>ω ∩N and

g(β) =

{
g′(β) ∪ {β ∩N}, if β ∈ dom(g′),

{β ∩N}, if β ∈ dom(g) \ dom(g′)

for β ∈ dom(g).

〈f, g〉 satisfies (a), (b), (c) of (5.33). Since the pair 〈f, g〉 and 〈f ′, g′〉 also

satisfies the conditions in the definition (5.32) of ≤P, it is enough to show that

〈f, g〉 ∈ P. That 〈f, g〉 satisfies (5.26)∼ (5.29) is clear.

For (5.30) and (5.31), suppose that x ∈ g(β) for some β ∈ dom(g) ⊆ Eκ
>ω. If

β ∈ dom(g′) and x ∈ g′(β) then sup(x) ∈ dom(f ′) ⊆ dom(f) and f(sup(x)) =

f ′(sup(x)) ⊆ x. Otherwise x = β ∩N by (5.35). Then sup(x) ∈ Lim(β ∩N) ⊆
dom(f) and, by (5.34), f(sup(x)) = sup(x) ∩N = x. a (Claim 5.4.1)

Claim 5.4.2. P is σ-Baire.

` Suppose that Di, i ∈ ω are dense open sets in P and 〈f ′, g′〉 ∈ P. We show

that there is 〈f, g〉 ∈ P such that 〈f, g〉 ≤P 〈f ′, g′〉 and 〈f, g〉 ∈ Di for all i ∈ ω.

Let θ be a sufficiently large regular cardinal and N ≺ 〈H(θ),∈〉 be countable

such that P, 〈Di : i ∈ ω〉, 〈f ′, g′〉 ∈ N .

Let 〈xi : i ∈ ω〉 be an increasing sequence in [κ]ℵ0 ∩N such that

(5.36)
∪

i<ω xi = κ ∩N .

By Claim 5.4.1, by closedness of Di’s and by the elementarity of N , we can find

a decreasing sequence 〈fi, gi〉, i ∈ ω in P such that
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(5.37) 〈f0, g0〉 ≤P 〈f ′, g′〉;

for all i ∈ ω,

(5.38) 〈fi, gi〉 ∈ Di ∩N , and

(5.39) Eκ
ω ∩ xi ⊆ dom(fi), E

κ
>ω ∩ xi ⊆ dom(gi) and xi ∩ β ⊆

∪
gi(β) for all

β ∈ dom(gi).

By (5.36) and (5.39), we have

(5.40)
∪

i∈ω dom(fi) = Eκ
ω ∩N ,

∪
i∈ω dom(gi) = Eκ

>ω ∩N and

(5.41)
∪
{
∪
gi(β) : i < ω, β ∈ dom(gi)} = β ∩N

for all β ∈ Eκ
>ω ∩N .

Let 〈f, g〉 be the pair of functions f , g such that

(5.42) dom(f) = (Eκ
ω ∩N) ∪ Lim(κ ∩N), and

f(α) =

{
fi(α), if α ∈ dom(fi) for some i ∈ ω,

N ∩ α, otherwise,

for α ∈ dom(f),

(5.43) dom(g) = Eκ
>ω ∩N , and

g(β) =
∪
{gi(β) : i < ω, β ∈ dom(gi)} ∪ {β ∩N} for all β ∈ dom(g).

Then we have 〈f, g〉 ∈ P: It is clear that 〈f, g〉 satisfies (5.26)∼ (5.29). For

(5.30) and (5.31), suppose that x ∈
∪
{g(β) : β ∈ dom(g)}. If x ∈ gi(β) for

some i ∈ ω and β ∈ dom(gi), then sup(x) ∈ dom(fi) and fi(sup(x)) ⊆ x, since

〈fi, gi〉 ∈ P. It follows that sup(x) ∈ dom(f) and f(sup(x)) ⊆ x by (5.42).

Otherwise, x = β ∩ N for some β ∈ dom(g) and sup(x) ∈ Lim(κ ∩ N). Then

f(sup(x)) = sup(x) ∩N by (5.42) and we again have f(sup(x)) ⊆ x.

〈f, g〉 ≤P 〈f ′, g′〉 by (5.37) and 〈f, g〉 ∈ Dn for all n ∈ ω by (5.38).

a (Claim 5.4.2)

Claim 5.4.3. Suppose 〈f, g〉, 〈f ′, g′〉 ∈ P. Then

〈f, g〉 and 〈f ′, g′〉 are compatible ⇔

(5.44) f �
(
dom(f) ∩ dom(f ′)

)
= f ′ �

(
dom(f) ∩ dom(f ′)

)
, and

(5.45) for every β ∈ dom(g) ∩ dom(g′), one of g(β) and g′(β) is an initial

segment of the other.
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` “⇒ is clear by the definition of ≤P.

For “⇐”, suppose that 〈f, g〉, 〈f ′, g′〉 ∈ P satisfy (5.44) and (5.45). Let

〈f ∗, g∗〉 be defined by

(5.46) f ∗ = f ∪ f ′,

(5.47) dom(g∗) = dom(g) ∪ dom(g′), and

g∗(β) =


g(β), if β ∈ dom(g) \ dom(g′),

g′(β), if β ∈ dom(g′) \ dom(g),

g(β) ∪ g′(β), if β ∈ dom(g) ∩ dom(g′)

for β ∈ dom(g∗).

Then 〈f∗, g∗〉 ∈ P and 〈f∗, g∗〉 ≤P 〈f, g〉, 〈f ′, g′〉. a (Claim 5.4.3)

Claim 5.4.4. P satisfies the κ-Knaster property. In particular, P satisfies the

κ-c.c.

` Suppose A ∈ [P]κ. Then by ∆-System Lemma and Pigeon Hole Principle,

we can find r0, r1 ∈ [κ]ℵ0 and B ∈ [A]κ such that

(5.48) for any distinct 〈f, g〉 and 〈f ′, g′〉 ∈ B, we have dom(f)∩ dom(f ′) = r0

and f � r0 = f ′ � r0,
(5.49) for any distinct 〈f, g〉 and 〈f ′, g′〉 ∈ B, we have dom(g) ∩ dom(g′) = r1

and g � r1 = g′ � r1 .

By Claim 5.4.3, the elements of B are pairwise compatible. a (Claim 5.4.4)

For (V,P)-generic G, let

(5.50) fG =
∪
{f : 〈f, g〉 ∈ G for some g} and

(5.51) gG =
∪
{g : 〈f, g〉 ∈ G for some f}.

Claim 5.4.5. In V [G], we have the following:

(1) ω
V [G]
1 = ωV

1 .

(2) fG : Eκ
ω → [κ]ℵ0, fG(α) ∈ [α]ℵ0 and fG(α) is cofinal in α for all α ∈ Eκ

ω.

(3) dom(gG) = Eκ
>ω, gG(β) is a continuously increasing cofinal sequence in

[β]ℵ0 of length ω1 with
∪
g(β) = β for all β ∈ Eκ

ω and

(5.52) fG(sup(x)) ⊆ x for x ∈ gG(β).

(4) κ = ω2 and 2ℵ0 = ℵ1.

(5) S = {x ∈ [κ]ℵ0 : fG(sup(x)) 6⊆ x} (which is a stationary set in [κ]ℵ0 by

Fact 5.3) is non-reflecting stationary. That is, for every limit ordinal α < κ, S∩
[α]ℵ0 is non-stationary in [α]ℵ0. In particular, V [G] is a model of ¬WRP([ω2]

ℵ0).
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` (1): By Claim 5.4.2.

(2) and (3) follow from the definition of 〈P,≤P〉 and Claim 5.4.1. In partic-

ular, (5.52) follows from (5.31).

(4) follows from (3) and (1).

(5): For α ∈ Eκ
ω, it is clear that S ∩ [α]ℵ0 is non-stationary. For α ∈ Eκ

>ω,

gG(α) is a closed unbounded subset of [α]ℵ0 by (3) and gG(α) is disjoint from

S ∩ [α]ℵ0 by (5.52). a (Claim 5.4.5)

In the rest of the proof, we show that FRP holds in V [G].

Let λ ≥ κ be a regular cardinal and j : V →M be a λ-compact elementary

embedding satisfying (5.1), (5.2) and (5.3). By (5.2), we have P ∈ M and, by

(5.1), j(p) = p for all p ∈ P. By elementarity, we have

(5.53) M |= j(P) = {〈f, g〉 : 〈f, g〉 |= (5.26)’∼ (5.31)’} and

(5.54) M |= j(≤P)

= {〈〈f, g〉, 〈f ′, g′〉〉 ∈ (j(P))2 : 〈〈f, g〉, 〈f ′, g′〉〉 |= (5.32)’}

where (5.26)’∼ (5.31)’, (5.32)’ are conditions obtained from (5.26)∼ (5.31),

(5.32) by replacing κ appearing there by j(κ). Hence by (5.2), it follows that

(5.55) j(P) = {〈f, g〉 : 〈f, g〉 |= (5.26)’∼ (5.31)’} and

j(≤P) = {〈〈f, g〉, 〈f ′, g′〉〉 ∈ (j(P))2 : 〈〈f, g〉, 〈f ′, g′〉〉 |= (5.32)’}.

In particular, the proof of Claim 5.4.2 also applies to 〈j(P), j(≤P)〉 and we can

conclude that j(P) = 〈j(P), j(≤P)〉 is also σ-Baire. In the following we shall

denote j(≤P) also by ≤j(P).

Claim 5.4.6. j � P : P → j(P); p 7→ p is a complete embedding.

` Suppose that A ⊆ P is maximal pairwise incompatible. By Claim 5.4.4, we

have |A | < κ. Hence

(5.56) j(A) = j ′′A = A.

By the elementarity, we have

(5.57) M |= “j(A) is maximal pairwise incompatible in j(P)”.

So, by (5.56), it follows that j ′′A = A is maximal pairwise incompatible in j(P)

(in V ). a (Claim 5.4.6)

For 〈f, g〉 ∈ j(P), let
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(5.58) 〈f, g〉 � P = 〈f � κ, g � κ〉.

Note that 〈f, g〉 � P ∈ V and hence 〈f, g〉 � P ∈ P and 〈f, g〉 � P ≤j(P) 〈f, g〉.
Let Q = j(P)/G. By Claim 5.4.3, we have

(5.59) Q = {p ∈ j(P) : p is compatible with all j(r) = r ∈ G}
= {〈f, g〉 ∈ j(P) : 〈f, g〉 � P ∈ G}.

Working in V [G], let E ⊆ Eλ
ω be stationary and g : E → [λ]ℵ0 be a ladder

system. We are going to show that there is α∗ ∈ Eλ
ω1

witnessing (2.17)λ for

these E and g.

Let

(5.60) S = {x ∈ [λ]ℵ0 : sup(x) ∈ E, fG(sup(x ∩ κ)) ∪ g(sup(x)) ⊆ x}.

Then S is a stationary subset of [λ]ℵ0 .

Claim 5.4.7. Q preserves the stationarity of S.

` Suppose that 〈f †, g†〉 ∈ Q and ḣ is a Q-name such that ‖–Q “ ḣ : λ<ω → λ ”.

It is enough to show that there is 〈f∗, g∗〉 ≤Q 〈f †, g†〉 and x∗ ∈ S such that

〈f ∗, g∗〉 ‖–Q “x∗ is closed with respect to ḣ ”.

Let θ be a sufficiently large regular cardinal and let N ≺ H(θ) be countable

such that κ, j(κ),Q, 〈f †, g†〉, λ, g, ḣ ∈ N and

(5.61) λ ∩N ∈ S.

For ~ξ ∈ (λ ∩N)<ω, let

(5.62) D̄~ξ = {q ∈ Q : q decides ḣ(~ξ)}.

Note that D̄~ξ is a dense open subset of Q.

Let Dn, n ∈ ω be an enumeration of {D̄~ξ : ~ξ ∈ (λ ∩ N)<ω} and let xi ∈
[j(κ)]ℵ0 ∩N , i ∈ ω be such that

∪
i∈ω xi = j(κ) ∩N .

Let 〈〈fi, gi〉 : i ∈ ω〉 be a descending sequence in Q ∩N such that

(5.63) 〈f0, g0〉 ≤Q 〈f †, g†〉,

and, for all i ∈ ω,

(5.64) 〈fi, gi〉 ∈ Di,

(5.65) E
j(κ)
ω ∩ xi ⊆ dom(fi),

(5.66) E
j(κ)
>ω ∩ xi ⊆ dom(gi),

(5.67) xi ∩ β ⊆
∪
gi(β) for all β ∈ dom(gi).
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Subclaim 5.4.7.1. 〈〈fi, gi〉 : i ∈ ω〉 has a lower bound 〈f ∗, g∗〉 in Q. In

particular, 〈f ∗, g∗〉 ≤Q 〈f †, g†〉 by (5.63).

` Let 〈f ∗, g∗〉 be defined by the following:

(5.68) dom(f∗) = (E
j(κ)
ω ∩N) ∪ Lim(j(κ) ∩N) and

f ∗(α) =


fi(α), if α ∈ dom(fi) for some i ∈ ω (a)

α ∩N, if α 6∈
∪

i∈ω dom(fi) = E
j(κ)
ω ∩N and α > κ (b)

fG(α), otherwise (c)

for α ∈ dom(f ∗);

(5.69) dom(g∗) = E
j(κ)
>ω ∩N and

g∗(β) =
∪
{gi(β) : β ∈ dom(g∗), i ∈ ω, β ∈ dom(gi)} ∪ {β ∩N}

for β ∈ dom(g∗).

We check first that 〈f ∗, g∗〉 ∈ j(P). It is clear that 〈f ∗, g∗〉 satisfies (5.26)∼
(5.29) (with κ there replaced by j(κ)): For (5.27), note that

∪
i∈ω dom(fi) =

E
j(κ)
ω ∩N by fi ∈ N for i ∈ ω and (5.65), and fG(α) is cofinal in α for all α ∈ Eκ

ω.

For (5.29), note that
∪∪

{gi(β) : β ∈ dom(g∗), i ∈ ω, β ∈ dom(gi)} = β ∩ N
by gi ∈ N for i ∈ ω, (5.66) and (5.67).

To see that 〈f ∗, g∗〉 satisfies (5.30) and (5.31) (also with κ replaced by j(κ)),

let x ∈ g∗(β) for some β ∈ dom(g∗).

If x ∈ gi(β) for some i ∈ ω, then it is clear that this x satisfies the conditions

in (5.30) and (5.31) for 〈f ∗, g∗〉 since 〈fi, gi〉 ∈ Q.

So assume that x 6∈
∪

i∈ω gi(β). Then, by (5.69), x = β ∩ N and sup(x) ∈
Lim(j(κ) ∩N) \ (E

j(κ)
ω ) ∩N).

If β > κ, then sup(x) > κ and f∗(sup(x)) = β ∩N = x, by (5.68), (b).

If β = κ, then x = κ ∩N and since λ ∩N ∈ S, f ∗(sup(x)) = fG(sup(x)) =

fG(sup(κ∩N)) ⊆ x by (5.68), (c) and (5.60) (note that x = κ∩N = (λ∩N)∩κ).
If β < κ, there is a 〈f ′, g′〉 ∈ G such that

(5.70) sup(x) ∈ dom(f ′), β ∈ dom(g′) and

(5.71) x ⊆
∪
g′(β)

by Claim 5.4.1. For each i ∈ ω such that β ∈ dom(gi), we have
∪
gi(β) ∈ g′(β)

since 〈fi, gi〉 � P ∈ G and 〈fi, gi〉 ∈ N , and by (5.71).

Thus x = β ∩ N =
∪
{
∪
gi(β) : i ∈ ω, β ∈ dom(gi)} ∈ g′(β) by the

closedness of g′(β) (see (5.29)). It follows that f ∗(sup(x)) = fG(sup(x)) =

f ′(sup(x)) ⊆ x.
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By the argument above, it also follows that 〈f∗, g∗〉 � P ∈ G and hence

〈f ∗, g∗〉 ∈ Q.

By the definition of 〈f ∗, g∗〉 it is clear that 〈f ∗, g∗〉 ≤Q 〈fi, gi〉 for i ∈ ω.

a (Subclaim 5.4.7.1)

By (5.64), 〈f∗, g∗〉 decides ḣ � λ<ω ∩ N to be a mapping from λ<ω ∩ N to

λ∩N . Thus, letting x∗ = λ∩N , we have x∗ ∈ S by the choice of N (see (5.61))

and 〈f ∗, g∗〉 ‖–Q “x∗ is closed with respect to ḣ ”. a (Claim 5.4.7)

Now, let H be a (V [G],Q)-generic filter. Then V [G][H] = V [H] and the λ-

compact elementary embedding j : V → H can be extended to the elementary

embedding j̃ : V [G] →M [H] by j̃(ȧG) = (j(ȧ))H for all P-name ȧ.

Let α∗ = sup(j ′′λ). Note that α∗ < j(λ) since M |= cf(α∗) < j(κ) < j(λ)

by (5.3) while M |= j(λ) is a regular cardinal. Since M |= cf(α∗) ≥ ω1, we have

M [H] |= cf(α∗) = ω1.

By Claim 5.4.7, S is stationary in [λ]ℵ0 . Since j � λ : λ→ α∗ sends λ cofinal

in α and preserves limits of increasing sequences of length ω,

S∗ = {x ∈ [α∗]ℵ0 : j̃(g)(sup(x)) ⊆ x}
⊇ {x ∈ [α∗]ℵ0 : x ⊇ z and sup(x) = sup(z) for some z ∈ j̃ ′′S}

is stationary in V [H]. Note that S∗ ∈ M [H]. Hence S∗ is also stationary in

M [H]. Thus we have

M [H] |= j̃(g) satisfies (2.17)j(λ).

By elementarity, it follows that

V [G] |= g satisfies (2.17)λ.

By Proposition 2.4, this shows that V [G] |= FRP. (Theorem 5.4)

6 Separation of ORP from FRP

In this section, we prove the following theorem:

Theorem 6.1. Suppose that MA+(σ-closed) holds. Then, for every regular

κ ≥ ω2, there is a κ-strategically closed partial ordering P∗ such that

(1) ‖–P∗ “ ORP(κ) + ¬FRP(κ) ”.

Furthermore, we have
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(2) for all regular cardinals λ > 2<κ as well as for all regular cardinals

ω1 < λ < κ, we have ‖–P∗ “ FRP(λ) ”.

By κ-strategically closedness and since P∗ can be chosen such that it collapses

all cardinals in the interval (κ, 2<κ], it follows that

(3) P∗ forces that κ is the unique regular cardinal ≥ ℵ2 where Fodor-type

Reflection Principle does not hold. In particular, we have ‖–P∗ “ ORP ”.

Here, a partial ordering P is said to be α-strategically closed for an ordinal

α if the Player II has a winning strategy in the following infinite game aα(P):

In a match of aα(P), Player I and II play elements of P forming a decreasing

sequence in P:

Player I p0 p1 · · · pξ · · ·
Player II q0 q1 · · · qξ · · ·

(ξ < α)

where

p0 ≥P q0 ≥P p1 ≥P q1 ≥P · · · ≥P pξ ≥P qξ ≥P pξ+1 ≥P · · ·

and such that, in each of the η’th innings for limit η < α, only Player II may

play (to simplify the notation we assume pξ = qξ but this move is chosen by

Player II for all limit ordinal ξ < α).

Player II wins the match in aα(P) if the game can be played in all of the

ξ’th innings for ξ < α.

If P is α-strategically closed and λ < α is a cardinal, it is easy to see that P
does not add any new set of ordinals of size ≤ λ.

A partial ordering P is said to be strongly α-strategically closed if Player

II has a winning strategy in a+
α (P) which is defined just as aα(P) except that

Player I may begin each of the η’th innings for limit η < α.

A typical example of strongly κ-strategically closed partial orderings for a

cardinal κ is a partial ordering P with a κ-closed dense subset D. Such a partial

ordering P is indeed strongly κ-strategically closed since taking moves always

from D is a winning strategy for Player II in a+
κ (P).

In [16], α-strategical closedness and strong α-strategical closedness are called

α-game closedness and strong α-game closedness respectively.

Let κ be a regular cardinal ≥ ω2. In the proof of Theorem 6.1 below,

we show that the following partial ordering P∗ has the desired property under

MA+(σ-closed).

Let P∗ consist of all functions p such that
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(6.1) dom(p) ⊆ Eκ
ω and | p | < κ;

(6.2) p is a ladder system on dom(p);

(6.3) for all β ∈ Eκ
ω1

∩ sup(dom(p)) + 1, there is a club C ⊆ β and a 1-1

choice function on {p(α) : α ∈ dom(p) ∩ C}.

For p0, p1 ∈ P∗, we define p1 ≤P∗ p0 if p0 ⊆ p1, dom(p1) is an end extension

of dom(p0) and

(6.4) | dom(p1) \ dom(p0) | > ℵ0 if p0 6= p1.

The following lemma can be proved still without using MA+(σ-closed).

Lemma 6.2. (1) For each ξ < κ, the set

Dξ = {p ∈ P∗ : sup(dom(p)) > ξ, dom(p) has the maximal element}

is dense in P∗.

(2) P∗ is σ-closed.

(3) P∗ is κ-strategically closed.

(4) Let ṠG be a P∗-name of

(6.5) SG =
∪
{dom(p) : p ∈ G}

for (V,P∗)-generic filter G. Then we have ‖–P∗ “ ṠG ⊆ Eκ
ω ”, ‖–P∗ “ ṠG is stationary ”

and ‖–P∗ “Eκ
ω \ ṠG is stationary ”.

(5) ‖–P∗ “¬FRP(κ) ”.

(6) P∗ collapses all cardinals in the interval (κ, 2<κ].

Proof. (1): Suppose ξ < κ and p ∈ P∗. Let η = max{ξ, sup(dom(p))}. Let q

be any ladder system extending p with

(6.6) dom(q) = dom(p) ∪ {α ∈ Eκ
ω : η < α ≤ η + (ω1 + ω)

α = γ + ω for some γ < α}.

Then q ∈ P∗ and thus q ≤P∗ p, and q ∈ Dξ: To see that q satisfies the

condition (6.3) for β = η+ω1, let C = {α ∈ Eβ
ω : η < α and α 6= γ +ω for any

γ ∈ α}. C is then a club below β disjoint from dom(q).

(2): If qn, n ∈ ω is a descending sequence in P∗ then
∪

n∈ω qn is the lower

bound of the sequence.

For (3), Let σ be any strategy of Player II in aκ(P∗) such that σ satisfies

the following at the ξ’th inning for ξ < κ.
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Case I. ξ is a successor ordinal. Suppose that pξ is the ξ’th move of Player

I. Then, let qξ, the ξ’th move of Player II to be taken according to σ, be any

q ∈ P∗ such that q ≤P∗ pξ and q 6= pξ. Note that we can always take such qξ by

(1).

Case II. ξ is a limit ordinal. If the set of the previous moves {pη, qη : η < ξ}
has a lower bound, then

q =
∪

η<ξ qη ∪ {〈β, b〉}

is also a lower bound of this set where β = sup(
∪

η<ξ dom(qη)))+ω and b ∈ [β]ℵ0

is a cofinal subset of β of order type ω. Let ξ’th move qξ of the player II to be

taken according to σ be such q.

We show that σ as above is a winning strategy for Player II. Since we

already saw that Player II can take his move at successor steps according to

σ, it is enough to show that, for any limit ξ < κ and any (partial) match

〈pη, qη : η < ξ〉 in aκ(P∗) where Player II has played according to σ, there is a

lower bound of {pη, qη : η < ξ}. If cf(ξ) = ω then this holds by (2). So suppose

that cf(ξ) 6= ω. Then the set C of all limit points of {sup(dom(qη)) : η < ξ} is

a club in β = sup(
∪

η<ξ dom(qη)) and C ∩ (
∪

η<ξ dom(qη)) = ∅ by the definition

of qη’s at limit ordinals η < ξ taken according to σ. It follows that q =
∪

η<ξ qη

satisfies (6.3). Thus q ∈ P∗ and q is a lower bound of {qη : η < ξ}.
(4): ‖–P∗ “ ṠG ⊆ Eκ

ω ” follows from (6.1). To show ‖–P∗ “ ṠG is stationary ”,

let Ċ be a P∗-name of a club subset of κ. We have to show that ‖–P∗ “ ṠG∩ Ċ 6=
∅ ”. For any p ∈ P∗, let 〈pn : n ∈ ω〉 be a decreasing sequence in P∗ and

〈αn : n ∈ ω〉 an increasing sequence of ordinals below κ such that

(6.7) p0 ≤P∗ p;

(6.8) pn ‖–P∗ “αn ∈ Ċ ”; and

(6.9) sup(dom(pn+1)) > αn.

Let α = supn∈ω αn. We have α = sup(
∪

n∈ω pn) by (6.9). Let

(6.10) q =
∪

n<ω pn ∪ {〈α, {αn : n ∈ ω}〉}.

Then q ∈ P∗, q ≤P∗ pn for all n ∈ ω, and hence q ≤P∗ p by (6.7), and q ‖–P∗ “α ∈
ṠG ∩ Ċ ” by (6.10) and (6.8). This shows that ‖–P∗ “ ṠG ∩ Ċ 6= ∅ ”. It follows

that ‖–P∗ “ ṠG is stationary ”.

‖–P∗ “Eκ
ω \ ṠG is stationary ” can be proved similarly.

(5): Let G be a (V,P∗)-generic filter. In V [G], SG of (6.5) is stationary by

(4). SG ⊆ Eκ
ω by (6.1). gG =

∪
G is a ladder system on SG by (6.2) and this

ladder system is a counter example to FRP(κ) by (6.3).
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(6): It is enough to show that P∗ adds a surjection from a subset of κ to
κ>2.

We work in V [G]. For α ∈ SG, let s(α) be the element of ξ2 where ξ is such

that the element of SG next to α is α+(ξ+ω) and, for η < ξ, s(α)(η) = 0 if and

only if the first element of gG(β) is even where β is the η’th element from below

of SG \ (α+ (ξ + ω + 1)). By the genericity of SG and by a slight modification

of the proofs of (1) and (3), it is easy to see that s : SG → κ>2 is a surjection.

(Lemma 6.2)

We need the following Fact 6.3 for the proof of Theorem 6.1.

Fact 6.3. (B. König and Y. Yoshinobu [16]) MA+(σ-closed) is preserved by

strongly ω1 + 1-strategically closed forcing.

For the proof of Fact 6.3 the reader may refer to [16].

Let G be a (V,P∗)-generic filter. Working in V [G], let SG be defined as in

(6.5). gG =
∪
G is a ladder system on SG.

Let Q0 be the following partial ordering: Elements of Q0 are pairs 〈q, f〉
such that

(6.11) q is a strictly increasing continuous mapping from a successor ordinal

< ω1 to κ;

(6.12) rng(q) ⊆ SG;

(6.13) dom(f) = rng(q); and

(6.14) f is an injective choice function on {gG(α) : α ∈ rng(q)}.

For 〈q0, f0〉, 〈q1, f1〉 ∈ Q0,

(6.15) 〈q1, f1〉 ≤Q0 〈q0, f0〉 if q0 ⊆ q1 and f0 ⊆ f1.

Lemma 6.4. (1) For α < ω1 and β < κ, the set

{〈q, f〉 ∈ Q0 : dom(q) ≥ α and max(rng(q)) ≥ β}

is dense in Q0.

(2) Q0 adds the canonical strictly and continuously increasing mapping π from

ω1 to SG whose image is cofinal in κ, as well as the canonical injective choice

function ϕ on {gG(α) : α ∈ rng(π)}.
(3) For any stationary S ⊆ SG, Q0 forces that S ∩ π ′′ω1 for π as in (the proof

of) (2) is stationary.
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Proof. (1) is clear and (2) follows immediately from (1) and the definition of

Q0. More specifically,

(6.16) π =
∪
{q : 〈q, f〉 ∈ H for some f} and

ϕ =
∪
{f : 〈q, f〉 ∈ H for some q}

for a (Q0, V [G])-generic filter H are the canonical objects.

(3): Suppose that 〈q, f〉 ∈ Q0 and Ċ is a Q0-name of a club subset of κ.

Let θ be a sufficiently large regular cardinal. By Fact 5.3, there is a countable

elementary submodel M of H(θ) such that

(6.17) S, gG, 〈q, f〉, Ċ, · · · ∈M ;

(6.18) sup(κ ∩M) ∈ S; and

(6.19) gG(sup(κ ∩M)) 6⊆ κ ∩M .

Let 〈γn : n ∈ ω〉 be an increasing sequence of countable ordinals cofinal in

ω1 ∩M and 〈δn : n ∈ ω〉 be an increasing sequence of ordinals ∈ κ∩M cofinal

in κ ∩M . Let 〈qn, fn〉 ∈ Q0 ∩M , n ∈ ω be a decreasing sequence such that

(6.20) 〈q0, f0〉 ≤Q0 〈q, f〉;
(6.21) 〈qn, fn〉 ‖–Q0 “αn ∈ Ċ ” for some αn ∈ (κ ∩M) \ δn for all n ∈ ω; and

(6.22) sup(dom(qn)) ≥ γn and sup(rng(qn)) ≥ δn for all n ∈ ω.

By (6.19), there is some

(6.23) α∗ ∈ gG(sup(κ ∩M)) \M .

Let

(6.24) q∗ =
∪

n∈ω qn ∪ {〈sup(ω1 ∩M), sup(κ ∩M)〉} and

(6.25) f ∗ =
∪

n∈ω fn ∪ {〈sup(κ ∩M), α∗〉}.

Note that sup(κ ∩M) ∈ SG by (6.18) and S ⊆ SG. Hence rng(q∗) ⊆ SG.

Since 〈qn, fn〉 ∈M , we have qn ∈M for each n ∈ ω and

(6.26) fn(β) ∈M for all n ∈ ω and β ∈ rng(qn).

By (6.22), it follows that

(6.27) sup(
∪

n∈ω dom(qn)) = sup(ω1 ∩M) and

sup(
∪

n∈ω rng(qn)) = sup(κ ∩M).
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By (6.23) and (6.26), f ∗ is an injective choice function of {g(β) : β ∈ rng(q∗)}.
Thus we have 〈q∗, f ∗〉 ∈ Q0 and 〈q∗, f ∗〉 ≤Q0 〈qn, fn〉 for n ∈ ω. By (6.20),

〈q∗, f ∗〉 ≤Q0 〈q, f〉. By (6.27), (6.21), and since Ċ is a Q0-name of a club

set ⊆ κ, we have 〈q∗, f ∗〉 ‖–Q0 “ sup(κ ∩ M) ∈ Ċ ”. By (6.18) and (6.24),

〈q∗, f ∗〉 ‖–Q0 “ sup(κ∩M) ∈ S∩ π̇ ′′ω1 ”. Thus, 〈q∗, f ∗〉 ‖–Q0 “S∩ π̇ ′′ω1∩ Ċ 6= ∅ ”

where π̇ for a Q0-name of π in (6.16). (Lemma 6.4)

Stepping back to V , let Q̇0 be a P∗-name of Q0. By Lemma 6.4, we have

‖–P∗∗Q̇0
“ Ṡ ∩ π̇ ′′ω1 is stationary ” for all P∗-name Ṡ of stationary subset of ṠG.

Let

(6.28) D0 = {〈p, 〈q̇, ḟ〉〉 ∈ P∗ ∗ Q̇0 : p decides q̇ and ḟ to be some q and f

in V and sup(dom(p)) = sup(rng(q))}.

By the definition of D0, each element 〈p, 〈q̇, ḟ〉〉 of D0 corresponds uniquely to

〈p, 〈q, f〉〉 (with q, f ∈ V ) where p ‖–P∗ “ q = q̇ and f = ḟ ”, and hence

(6.29) q is a strictly and continuously increasing mapping in V with dom(q) ∈
ω1 \ Lim(ω1);

(6.30) rng(q) ⊆ dom(p) and sup(rng(q)) = sup(dom(p));

(6.31) dom(f) = rng(q); and

(6.32) f is an injective choice function on {p(α) : α ∈ rng(q)}.

Let D∗
0 be the collection of all such 〈p, 〈q, f〉〉. Then the partial ordering ≤D∗

0

on D∗
0 corresponding to ≤P∗∗Q̇0

� D0 is

(6.33) 〈p1, 〈q1, f1〉〉 ≤D∗
0
〈p0, 〈q0, f0〉〉 ⇔ p1 ≤P∗ p0, q1 ⊇ q0 and f1 ⊇ f0.

Lemma 6.5. (1) D0 is dense in P∗ ∗ Q̇0.

(2) D0 is σ-closed (with respect to ≤P∗∗Q̇0
� D0).

Proof. (1) follows from the κ-strategical closedness of P∗.

For (2), it is enough to show that 〈D∗
0,≤D∗

0
〉 is σ-closed.

Suppose that S = 〈〈pn, 〈qn, fn〉〉 : n < ω〉 is a strictly decreasing chain in

〈D∗
0,≤D∗

0
〉. We have to show that S has a lower bound inD∗

0 with respect to ≤D∗
0
.

Let p∗ =
∪

n<ω pn, q∗ =
∪

n<ω qn and f ∗ =
∪

n<ω fn. Let γ∗ = sup(dom(q∗))

and δ∗ = sup(dom(p∗)). We have δ∗ = sup(rng(q∗)) = sup(dom(f∗)). By (6.4)

and by the definition of ≤D∗
0
, δ∗ \ rng(f∗) is cofinal in δ∗ and cf(δ∗) = ω. So

we can take a subset c∗ of δ∗ \ rng(f ∗) of order type ω which is cofinal in δ∗.

Pick an element δ0 of c∗ and, let p† = p∗ ∪ {〈δ∗, c∗〉}, q† = q∗ ∪ {〈γ∗, δ∗〉} and

f † = f∗∪{〈δ∗, δ0〉}. Then we have 〈p†, 〈q†, f †〉〉 ∈ D∗
0 and 〈p†, 〈q†, f †〉〉 is a lower

bound of S. (Lemma 6.5)
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Lemma 6.6 (MA+(σ-closed)). P∗ forces that every stationary subsets of SG

reflect.

Proof. Let Ṡ be a P∗-name of a stationary subset of SG and p0 ∈ P∗. We show

that there are p1 ≤P∗ p0, δ
∗ ∈ Eκ

ω1
and S∗ ⊆ δ∗ (in V ) stationary in δ∗ such that

p∗ ‖–P∗ “S∗ ⊆ Ṡ ”.

Let us denote by p0 and Ṡ also the element of P∗ ∗ Q̇0 and the P∗ ∗ Q̇0-name

corresponding to them. Let π̇ be a P∗ ∗ Q̇0-name of the canonical mapping π

from ω1 to SG and ϕ̇ a P∗ ∗ Q̇0-name of the canonical injective choice function

ϕ for gG added generically by Q̇0 as in Lemma 6.4, (2).

Let Ṫ be the P∗ ∗ Q̇0-name of π̇−1 ′′Ṡ. By Lemma 6.4, (3), and since π̇ is

forced to be continuous with π̇ ′′ω1 cofinal in SG, we have

(6.34) ‖–P∗∗Q̇0
“ Ṫ is a stationary subset of ω1 ”.

By MA+(σ-closed) and by Lemma 6.5, there is a filter F on P∗ ∗ Q̇0 such that

(6.35) F is generated from F ∩D0;

(6.36) 〈p0, 〈∅̌, ∅̌〉〉 ∈ F ;

(6.37) Ṫ F is a stationary subset of ω1; and

(6.38) π̇F is a strictly and continuously increasing function from ω1 to κ.

Let

(6.39) p∗ =
∪
{p : 〈p, 〈q, f〉〉 ∈ F ∩D0 for some q and f},

q∗ =
∪
{q : 〈p, 〈q, f〉〉 ∈ F ∩D0 for some p and f} and

f ∗ =
∪
{f : 〈p, 〈q, f〉〉 ∈ F ∩D0 for some p and q}.

By (6.37) and (6.38), S∗ = π̇F ′′Ṫ F is stationary subset of δ∗ = sup(rng(q∗)).

By (6.38), cf(δ∗) = ω1. Since F is a filter, p∗ is a ladder system on dom(p∗) ⊆ Eκ
ω

and sup(dom(p∗)) = δ∗. f ∗ witnesses that p∗ satisfies (6.3) for β = sup(dom(p)) =

δ∗ and hence we have p∗ ∈ P∗. Clearly p∗ ≤P∗ p0 and p∗ ‖–P∗ “S∗ ⊆ Ṡ ”.

(Lemma 6.6)

Now we are going to prove that every stationary subsets of Eκ
ω \ SG reflect

in V [G]. Working in V [G] again for some (V,P∗)-generic filter G, let SG and gG

be as before. Let Q1 be the following partial ordering: The elements of Q1 are

mappings q such that

(6.40) q is a strictly and continuously increasing mapping from a successor

ordinal < ω1 to κ; and
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(6.41) q ′′Lim(dom(q)) ⊆ Eκ
ω \ SG.

Note that Eκ
ω \ SG is stationary by Lemma 6.2, (4).

The following lemma can be proved similarly to Lemma 6.4.

Lemma 6.7. (1) For α < ω1 and β < κ, the set

{q ∈ Q1 : dom(q) ≥ α and max(rng(q)) ≥ β}

is dense in Q1.

(2) Q1 adds the canonical strictly and continuously increasing mapping π1 =∪
H for a (V [G],Q1)-generic filter H. π1 : ω1 → κ, π1

′′ω1 is cofinal in κ and

π1
′′Lim(ω1) ⊆ Eκ

ω \ SG.

(3) For any stationary S ⊆ Eκ
ω \ SG, Q1 forces that S ∩ π1

′′ω1 for π1 as in (2)

is stationary.

Stepping back to V , let Q̇1 be a P∗-name of Q1. By Lemma 6.7, we have

‖–P∗∗Q̇1
“ Ṡ∩ π̇1

′′ω1 is stationary ” for all P∗-name Ṡ of stationary subset of Eκ
ω \

ṠG and P1-name π̇1 of π1.

Let

(6.42) D1 = {〈p, q̇〉 ∈ P∗ ∗ Q̇1 : p decides q̇ to be some q in V

and sup(dom(p)) = sup(rng(q))}.

By the definition of D1, each element 〈p, q̇〉 of D1 corresponds uniquely to 〈p, q〉
(with q ∈ V and p ‖–P∗ “ q̇ = q ”) where

(6.43) q is a continuous strictly increasing mapping in V with dom(q) being a

successor ordinal in ω1;

(6.44) q ′′Lim(dom(q)) ⊆ sup(dom(p)) \ dom(p); and

(6.45) sup(rng(q)) = sup(dom(p)).

Let D∗
1 be the collection of all such 〈p, q〉. Then the partial ordering ≤D∗

1
on D∗

1

corresponding to ≤P∗∗Q̇1
� D1 is

(6.46) 〈p1, q1〉 ≤D∗
1
〈p1, q1〉 ⇔ p1 ≤P∗ p0 and q1 ⊇ q0.

Lemma 6.8. (1) D1 is dense in P∗ ∗ Q̇1.

(2) D1 is σ-closed (with respect to ≤P∗∗Q̇1
� D1).
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Proof. We only prove (2) since (1) follows immediately form the κ-strategical

closedness of P∗.

It is enough to show that 〈D∗
1,≤D∗

1
〉 is σ-closed. Suppose that S = 〈〈pn, qn〉 :

n < ω〉 is a strictly decreasing chain in 〈D∗
1,≤D∗

1
〉. We have to show that S has

a lower bound in D∗
1 with respect to ≤D∗

1
. Let p∗ =

∪
n<ω pn and q∗ =

∪
n<ω qn.

Let γ∗ = sup(dom(q∗)) and δ∗ = sup(dom(p∗)). Let c∗ = {δ∗ + n : n ∈ ω},
p† = p∗ ∪ {〈δ∗ + ω, c∗〉} and q† = q∗ ∪ {〈γ∗, δ∗〉, 〈γ∗ + 1, δ∗ + ω〉}. Then we have

〈p†, q†〉 ∈ D∗
1 and 〈p†, q†〉 is a lower bound of S. (Lemma 6.8)

By an argument parallel to the proof of Lemma 6.6 we can now prove the

following:

Lemma 6.9 (MA+(σ-closed)). P∗ forces that every stationary subsets of Eκ
ω\SG

reflect.

Now we show that P∗ forces FRP(λ) for all regular cardinals > 2<κ. We

consider again a two step iteration over P∗.

Working again in V [G] for a (V,P∗)-generic filter G, let Q2 be the standard

forcing for shooting a club through κ \ SG by conditions of size < κ: The

elements q of Q2 are closed bounded subsets of κ such that Lim(q) ⊆ κ \ SG

(with the maximal element) and, for q0, q1 ∈ Q2, q1 ≤Q2 q0 if q1 is an end

extension of q0.

In V , let Q̇2 be a P∗-name of Q2 and let

(6.47) D2 = {〈p, q̇〉 ∈ P∗ ∗ Q̇2 : p decides q̇ to be some q in V

and sup(dom(p)) = sup(rng(q))} and

D∗
2 = {〈p, q〉 : there is a 〈p, q̇〉 ∈ D2 such that

p decides q̇ to be q}

D∗
2 with the ordering defined by

(6.48) 〈p1, q1〉 ≤D∗
2
〈p0, q0〉 if p1 ≤P∗ p0 and q1 is an end extension of q0

for 〈p0, q0〉, 〈p1, q1〉 ∈ D∗
2 is isomorphic to 〈D2,≤P∗∗Q̇2

� D2〉 modulo possible

multitude of P∗-names for q in 〈p, q〉 ∈ D∗
2.

We can prove the following similarly to the corresponding lemmas for Q̇0

and Q̇1:

Lemma 6.10. (1) D2 is dense in P∗ ∗ Q̇2.

(2) D2 is κ-closed.

Lemma 6.11 (MA+(σ-closed)). P∗ forces FRP(λ) for all regular λ > 2<κ.
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Proof. By |D∗
2 | = 2<κ and by Lemma 6.10, (1), P∗ ∗ Q̇2 has the (2<κ)+-c.c.

Hence all (regular) cardinals > 2<κ are preserved.

By Lemma 6.10, (1) and (2), P∗ ∗ Q̇2 is strongly < κ-strategically closed.

Hence, by Fact 6.3, we have ‖–P∗∗Q̇2
“ MA+(σ-closed) ”. In particular, we have

‖–P∗∗Q̇2
“ FRP(λ) ”.

Suppose that p0 ∈ P∗, Ṡ is a P∗-name of a stationary subset of Eλ
ω and ġ

a P∗-name for a ladder system on Ṡ. Since ‖–P∗ “ | Q̇2 | = 2<κ ”, Ṡ seen as a

P∗ ∗ Q̇2-name is forced to be a stationary subset of Eλ
ω. By FRP(λ) in V P∗∗Q̇2 ,

there is a P∗ ∗ Q̇2-name 〈İα : α < ω1〉 of a filtration of a subset İ of λ of

cardinality ℵ1 such that P∗ ∗ Q̇2 forces

(6.49) cf(İ) = ω1;

(6.50) İ is closed with respect to ġ; and

(6.51) {α ∈ ω1 : sup(İα) ∈ Ṡ and ġ(sup(İα)) ⊆ Iα} is stationary.

By Lemma 6.10, we have ‖–P∗ “ Q̇2 is < κ-Baire ”. Hence 〈Iα : α < ω1〉 ∈ V P∗

and this sequence witnesses FRP(λ) for S and g in V P∗ . (Lemma 6.11)

We can now prove Theorem 6.1 just by recapitulating all the results we

obtained so far.

Proof of Theorem 6.1: We show that the partial ordering P∗ defined in

(6.1) ∼ (6.4) has the desired property (1) ∼ (3).

(1): We have ‖–P∗ “¬FRP(κ) ” by Lemma 6.2, (5). To show ‖–P∗ “ ORP(κ) ”,

suppose that p ∈ P∗ and Ṡ is a P∗-name of a stationary subset of Eκ
ω. Then

there is p′ ≤P∗ p, such that either p′ ‖–P∗ “ Ṡ ∩ ṠG is stationary ” or p′ ‖–P∗ “ Ṡ \
ṠG is stationary ” holds in either case we can conclude that p′ forces that Ṡ

reflects by Lemma 6.6 or Lemma 6.9.

(2): Since P∗ is κ-strategically closed by Lemma 6.2, (3), FRP(λ) is preserved

for all regular λ with ℵ1 < λ < κ. For regular λ > 2<κ, we have ‖–P∗ “ FRP(λ) ”

by Lemma 6.11.

(3): For regular ℵ2 ≤ λ < κ, we have ‖–P∗ “ FRP(λ) ” by MA+(σ-closed)

and κ strategically closedness of P∗. For λ > κ forced to be a regular cardinal

by P∗, Lemma 6.2, (6) and (2) above imply ‖–P∗ “ FRP(λ) ” and this together

with (1) implies ‖–P∗ “ ORP ”. (Theorem 6.1)
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