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Abstract

The Recurrence Axiom for a class P of posets and a set A of parameters

is an axiom scheme in the language of ZFC asserting that if a statement

with parameters from A is forced by a poset in P, then there is a ground

containing the parameters and satisfying the statement.

The tightly super-C(∞)-P-Laver generic hyperhuge continuum implies

the Recurrence Axiom for P and H(2ℵ0). The consistency strength of this

assumption can be decided thanks to our main theorems asserting that the

minimal ground (bedrock) exists under a tightly P-generic hyperhuge cardi-

nal κ, and that κ in the bedrock is genuinely hyperhuge, or even super C(∞)

hyperhuge if κ is a tightly super-C(∞)-P-Laver generic hyperhuge definable

cardinal.

The Laver Generic Maximum (LGM), one of the strongest combinations

of axioms in our context, integrates practically all known set-theoretic prin-

ciples and axioms in itself, either as its consequences or as theorems holding

in (many) grounds of the universe. For instance, double plus version of

Martin’s Maximum is a consequence of LGM while Cichoń’s Maximum is a

phenomenon in many grounds of the universe under LGM.
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1 Introduction

theintroThe Recurrence Axiom for a class P of posets and a set A of parameters is an axiom

scheme in the language of ZFC asserting that if a statement φ(a) with parameters

a in A is forced by a poset P ∈ P , then there is a ground (i.e. an inner model from

which the universe V is attainable via set forcing) containing the parameters and

satisfying the statement φ(a).

Recurrence Axioms can be interpreted as statements about the (eternal?) recur-

rence in the set generic multiverse in terms of the time-flow along with set forcing

extension: everything that can happen in the near future (in form of forcing exten-

sion) actually happened already in the past (in a ground). Here, the nearness of the

future is measured in terms of extent of the class P of posets we may consider. The

extent of the set of parameters which we may use in the descriptions of ”events”

in the future also differentiates the strength of the axiom.

Recurrence Axioms are actually variations of known axioms and principles: they

are weakenings of Maximality Principles with corresponding parameters (Proposi-

tion 2.2) while they can be characterized as the set-generic versions of Sy Friedman’s

Inner Ground Hypothesis (Proposition 2.3). See the end of Section 2 for discussions

about why we want to keep these axioms in spite of this almost identity with other

known principles.
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In Section 3 we show that the tight Laver-generic ultrahugeness implies Σ2-

fragment of Recurrence Axioms (Theorem 3.1), and Σ1-fragments of Recurrence

Axioms with strong enough combination of P and A decide the size of the contin-

uum: in case of P being the class of all posets with A = H(2ℵ0) the Continuum

Hypothesis (CH) holds while the Recurrence Axiom for stationary preserving P
with A = H(κrefl ) implies 2ℵ0 = ℵ2 (Theorem 3.3).

In Section 4 we introduce the notion of tightly super C(∞)-P-Laver generic

hyperhuge cardinal κ and show that Recurrence Axiom for P and H(κ) follows

from the existence of this generic large cardinal (Theorem 4.10). The consistency

of the existence of this cardinal is strictly between that of hyperhuge cardinal and

a 2-huge cardinal (actually the lower bound can be still raised, see Corollary 5.11).

This follows from the main theorems (Theorem 5.2, Theorem 5.3) in Section 5,

asserting that the minimal ground (bedrock) under a tightly P-generic hyperhuge

cardinal κ exists and that κ in the bedrock is genuinely hyperhuge, or even super

C(∞) hyperhuge if κ is a tightly super-C(∞)-P-Laver generic hyperhuge definable

cardinal.

This result strengthen the theorem on the existence of bedrock by Usuba under

a hyperhuge cardinal in [42].

After examining some of the consequences of the main theorems in Section 6, we

discuss in Section 7 the Laver Generic Maximum (LGM), one of the strongest axiom

available in our context, which integrates practically all known set-theoretic princi-

ples and axioms in itself, either as its consequences or as theorems in (many of) the

grounds of the universe. So for example, double plus version of Martin’s Maximum

(MM++)is a consequence of LGM while Cichoń’s Maximum is a phenomenon in

many grounds of the universe under LGM.

We tried hard to make the present paper as accessible as possible for a wide

audience. The terminology and notations used here are either standard or explained

fully in the text. For some basic notions nevertheless left unexplained the reader

may consult [33], [36] and/or [34].

2 Recurrence Axioms

introIn the following, L∈ denotes the language of ZFC consisting of single binary relation

symbol ∈.
In the language of ZFC, we always identify a class P with the L∈-formula

which defines the class. Thus, if a class P is defined by an L∈-formula ψ(x), with

‖–P“ ∼x ∈ P . . . ” for a poset P, we simply mean ‖–P“ψ(∼x) · · · ”. We adopt model
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theoretic convention that (in connection with lower case letters) a letter with bar

denotes a tuple of objects. Thus, a means a0, ..., ak−1 for some natural number k

and write a ∈ X for a0,..., ak−1 ∈ X.

We call a class P of posets normal if it satisfies (2.1) : x-intro-0-0{1} ∈ P , and

(2.2) : x-intro-1P is closed with respect to forcing equivalence (i.e. if P ∈ P and P ∼ P′

then P′ ∈ P).

In the following we assume that all classes P of posets we consider are normal.

In particular when we say that P is a class of posets we assume that P 6= ∅ and it

contains the trivial poset.

Some natural classes of posets are not closed under forcing equivalence — no-

tably the class of σ-closed posets. For such classes we simply take the closure of

the class with respect to forcing equivalence and replace the class with the closure

without mentioning it.

A (normal) class of posets is iterable if it also satisfies (2.3) : x-intro-2closed with

respect to restriction (i.e. if P ∈ P then P ↾ p ∈ P for any p ∈ P), and (2.4) :

x-intro-3for any P ∈ P and P-name
∼
Q, ‖–P“

∼
Q ∈ P ” implies P ∗

∼
Q ∈ P .

For a class P of posets and a set A (of parameters), P-Recurrence Axiom

with parameters from A ((P , A)-RcA, for short) is the following assertion formally

expressed as an axiom scheme in L∈:

(2.5) x-intro-4For any L∈-formula φ(x) and a ∈ A, if ‖–P“φ(a
✓) ”, then there is a

ground M of V such that a ∈M and M |= φ(a).

Here, an inner model W0 of a universe W is said to be a ground of W if there

are a poset P ∈ W0 and (W0,P)-generic G ∈ W such that W0[G] = W. W0 is a

P-ground of W if P as above can be taken such that W0 |=“P ∈ P”.

All such grounds are definable. More precisely, the following theorem holds:

Theorem 2.1 p-intro-1(Reitz [38], Fuchs-Hamkins-Reitz [28]) There is an L∈-formula

Φ(x, r) such that the following is provable in ZFC:

(2.6) x-intro-10for all r, Φ(·, r) := {x : Φ(s, r)} is a ground in V, and

(2.7) x-intro-11for any ground M (in V), there is r such that M = Φ(·, r).

In the following we use this fact often without explicitly mentioning it. As a

corollary to Theorem 2.1, we immediately see that being a P-ground for a class P
of posets is a definable property.

The Strong P-Recurrence Axiom with parameters from A ((P , A)-RcA+, for

short) holds, if (2.5) holds with M which is a P-ground of V.
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Actually the Strong Recurrence Axiom is equivalent to an already known axiom:

In the following Proposition 2.2, we show that, for any (normal) P , (P , A)-RcA+ is

equivalent to the Maximality Principle MP(P , A) in the notation of [17] (see below

for definition — the characterization of MP(P , A) corresponding to this proposition
as well as the statements corresponding to Proposition 2.3 and Proposition 2.4 were

also observed by Barton, Caicedo, Fuchs, Hamkins, Reitz, and Schindler [2]).

For an iterable class P of posets, an L∈-formula φ(a) with parameters a (∈ V)

is said to be a P-button if there is P ∈ P such that for any P-name
∼
Q of poset with

‖–P“
∼
Q ∈ P ”, we have ‖–P∗Q

∼
“φ(a✓) ”.

If φ(a) is a P-button then we call P as above a push of the P-button φ(a).

For a class P of posets and a set A (of parameters), the Maximality Principle

of P and A (MP(P , A), for short) is the following assertion which is formulated as

an axiom scheme in L∈:

MP(P , A): For any L∈-formula φ(x) and a ∈ A, if φ(a) is a P-button then φ(a)

holds.

Proposition 2.2 p-intro-0Suppose that P is a class of posets and A a set (of parameters).

( 1 ) (P , A)-RcA+ is equivalent to MP(P , A).
( 2 ) (P , A)-RcA is equivalent to the following assertion:

(2.8) x-intro-5-0For any L∈-formula φ(x) and a ∈ A, if φ(a) is a P-button then φ(a) holds

in a ground of V.

Proof. (1): Suppose first that (P , A)-RcA+ holds. We show that MP(P , A) holds.
Assume that P ∈ P is a push of the P-button φ(a). Let φ′(x) be the formula

expressing

(2.9) x-intro-6for any Q ∈ P , ‖–Q“φ(x
✓) ” holds.

Then we have ‖–P“φ
′(a✓) ”. By (P , A)-RcA+, there is a P-ground M of V such

that a ∈ M and M |= φ′(a) holds. By the definition (2.9) of φ′, it follows that

V |= φ(a) holds.

Now suppose that MP(P , A) holds and P ∈ P is such that ‖–P“φ(a
✓) ” for

a ∈ A.

Let φ′′ be a formula claiming that

(2.10) x-intro-7there is a P-ground N such that x ∈ N and N |= φ(x).

Then φ′′(a) is a P-button and P is its push.

By MP(P , A), φ′′(a) holds in V and hence there is a P-ground M of V such

that a ∈M and M |= φ(a). This shows that (P , A)-RcA+ holds.
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(2): can be proved similarly to (1). Suppose first that (P , A)-RcA holds. We

show that (2.8) holds. Assume that P ∈ P is a push of the P-button φ(a). Let

φ′(x) be the formula expressing

(2.11) x-intro-8for any Q ∈ P , ‖–Q“φ(x
✓) ” holds.

Then we have ‖–P“φ
′(a✓) ”. By (P , A)-RcA, there is a ground M of V such that

a ∈M and M |= φ′(a) holds. Since P 3 {1}, it follows that M |= φ(a).

Now suppose that (2.8) holds and P ∈ P is such that ‖–P“φ(a
✓) ” for a ∈ A.

Let φ′′ be a formula asserting that

(2.12) x-intro-9there is a P-ground N such that x ∈ N and N |= φ(x).

Then φ′′(a) is a P-button and P is its push. Thus, By (2.8), φ′′(a) holds in a

ground M of V with a ∈M . By the definition (2.12) of φ′′, there is a P-ground N

of M such that a ∈ N and N |= φ(a). Since N is also a ground of V, this shows

that (P , A)-RcA holds. (Proposition 2.2)

Recurrence Axioms are also related to the Inner Model Hypothesis introduced

by Sy Friedman in [6]. The Inner Model Hypothesis (IMH) is the following assertion

formulated in the language of second-order set theory (e.g. in the context of von

Neumann-Bernays-Gödel set theory):

IMH : For any statement φ without parameters, if φ holds in an inner model of

an inner extension of V then φ holds in an inner model of V.

Here we say a (not necessarily first-order definable) transitive class M an inner

model of V if M is a model of ZF and OnM = OnV. In the perspective from such

M , we call V an inner extension of M .

We shall call a set-forcing version of this principle Inner Ground Hypothesis

(IGH):

For a (definable normal) class P of posets and a set A (of parameters),

IGH(P , A) : For any L∈-formula φ = φ(x) and a ∈ A, if P ∈ P forces “there is a

ground M with a ∈ M satisfying φ(a)”, then there is a ground W of V

such that a ∈ W and W |= φ(a).

Proposition 2.3 p-intro-2For a class P of posets and a set A (of parameters), (P , A)-RcA
holds if and only if IGH(P , A) holds.

Proof. Suppose that (P , A)-RcA holds. Let φ = φ(x) be an L∈-formula, a ∈ A,

and P ∈ P be such that ‖–P“φ(a
✓) holds in a ground ”.
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Let φ′(x) be the L∈-formula asserting that φ(x) holds in a ground. Then

‖–P“φ
′(a✓) ”. By (P , A)-RcA, it follows that there is a ground W of V such that

W |= φ′(a✓). Since a ground of a ground is a ground, we conclude that there is

a ground W0 of V such that a ∈ M0 and W0 |= φ(a). This shows that IGH(P , A)
holds.

Suppose now that IGH(P , A) holds. Assume that ‖–P“φ(a
✓) ” for an L∈-

formula φ = φ(x), a ∈ A, and P ∈ P . Then ‖–P“φ(a
✓) holds in a P-ground

(of the universe) ” since ‖–P“ {1} ∈ P ”. Thus, by IGH(P , A), there is a ground W

of V such that W |= φ(a). (Proposition 2.3)

(P, A)-RcA+ (⇔ MP(P , A) by Proposition 2.2, (1)) can be also characterized in

terms of a strengthening of Inner Ground Hypothesis: For a (definable) class P of

posets and a set A (of parameters),

IGH+(P , A) : For any L∈-formula φ = φ(x) and a ∈ A if P ∈ P forces “there is a

P-ground M with a ∈M satisfying φ(a)”, then there is a P-ground W of

V such that a ∈ W and W |= φ(a).

The following proposition can be proved similarly to Proposition 2.3.

Proposition 2.4 p-intro-3For a class P of posets and a set A (of parameters), (P , A)-RcA+

holds if and only if IGH+(P , A) holds.

Proof. Suppose that (P , A)-RcA+ holds and assume that φ = φ(x) is an L∈-

formula, a ∈ A, and P ∈ P is such that

‖–P“φ(a
✓) holds in a P-ground M with a ∈M ”

Let φ′(a) be the formula expressing “φ(x) holds in a P-ground M with a ∈ M”.

Then P is a push of the P-button φ′(a). Thus, by Proposition 2.2, (1), φ′(a) holds in

V. By definition of φ′, there is a P-ground W of V such that a ∈ W and W |= φ(a).

This shows that IGH+(P , A) holds.
Suppose now that IGH+(P , A) holds, and assume that φ = φ(x) is an L∈-

formula, a ∈ A and ‖–P“φ(a
✓) ” then (since {1} ∈ P) ‖–P“φ(a

✓) holds in a

P-ground M with a ∈ M ”. By IGH+(P , A), it follows that there is P-ground

W of V such that a ∈ W and W |= φ(a). This shows that (P , A)-RcA+ holds.

(Proposition 2.4)

In spite of these alsmost identity with other known principles, we want to keep

the Recurrence Axioms as independent axioms. One of the reasons is that we

have the following monotonicity for these axioms which is not the case with the

Maximality Principles.
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Lemma 2.5 (Monotonicity of Recurrence Axioms) p-5For classes of posets P, P ′ and

sets A, A′ of parameters, if P ⊆ P ′ and A ⊆ A′, then we have

(P ′, A′)-RcA ⇒ (P , A)-RcA.

If we decide that the Recurrence Axioms provide desirable extensions of the

axioms of ZFC, then we should try to take the maximal instance of these axioms.

(i.e. the one with maximal strength among the instances consistent with ZFC) By

Lemma 2.5, this means we should try to take the instance of Recurrence Axioms

with the maximal P and A (with respect to inclusion) among the consistent ones.

Lemma 3.3 in the next section suggests that the following (2.13) and (2.14)

are candidates of such maximal instances.

Let κrefl denote the cardinal number max{2ℵ0 ,ℵ2}. κrefl appears often as the

reflection point of a strong structural reflection principle (see [17]).

(2.13) x-intro-12ZFC + (P ,H(κrefl ))-RcA for the class P of all stationary preserving posets.

(2.14) x-intro-13ZFC + (Q,H(2ℵ0))-RcA for the class Q of all posets.

The consistency of (2.14) follows from the consistency of ZFC + “there are

stationarily many inaccessible cardinals” ([29]). The consistency of (2.13) follows

from Lemma 4.5, Theorem 4.7, (B′), and Theorem 4.10.

The maximality of (2.13) and (2.14) follows from Lemma 3.3, (2’) and (5’) re-

spectively.

By Lemma 3.3, (4) and (5), (2.13) implies 2ℵ0 = ℵ2, and (2.14) implies CH. In

particular, these two extensions of ZFC are not compatible. However, as we are

going to discuss in Section 7, we can combine the plus version of (2.13) with the

following weakening of (2.14):

(2.15) x-intro-14ZFC + (P ,H(κrefl ))-RcA
+ + (Q,H(ω1)

W)-RcA+ where P is the class of all

semi-proper posets, Q the class of all posets, and W the bedrock1) which is

also assumed here to exist.

Note that 2ℵ0 = ℵ2 follows from (2.15). In Section 7, we give an axiom in terms

of existence of strong variants of Laver generic large cardinals from which (2.15)

follows.

1)For the definition of the bedrock see Section 5.
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3 Recurrence Axioms in restricted forms and the

Continuum Problem

Lg-RcAWe consider the following restricted forms of Recurrence Axiom: For an iterable

class P of posets, a set A (of parameters), and a set Γ of L∈- formulas, P-Recurrence

Axiom for formulas in Γ with parameters from A ((P , A)Γ-RcA, for short) is the

following assertion expressed as an axiom scheme in L∈:

(3.1) x-Lg-RcA-a-0For any φ(x) ∈ Γ and a ∈ A, if ‖–P“φ(a
✓) ”, then there is a ground W of

V such that a ∈ W and W |= φ(a).

(P , A)Γ-RcA+ corresponding to (P , A)-RcA+ is defined similarly.

Recall that a cardinal κ is ultrahuge ultrahugeif for any λ > κ, there are j, M ⊆ V such

that j : V
≺→κ M , j(κ) > λ, j(κ)M ⊆M and Vj(λ) ⊆M .

For an iterable class P of posets, a cardinal κ is said to be (tightly) P-Laver-

generically ultrahuge ((tightly) P-Laver-gen. ultrahuge, for short), if, for any λ > κ

and P ∈ P there is a P-name
∼
Q with ‖–P“

∼
Q ∈ P ”, such that for (V,P ∗

∼
Q)-generic

H, there are j,M ⊆ V[H] such that j : V
≺→κ M , j(κ) > λ, P,H, (Vj(λ))V[H] ∈ M

(and P ∗
∼
Q is forcing equivalent to a poset of size ≤ j(κ)).2)

The following theorem stands in contrast to Theorem 6.5 in [17].

Theorem 3.1 p-Lg-RcA-0Suppose that κ is tightly P-Laver-gen. ultrahuge for an iterable class

P of posets. Then (P ,H(κ))Σ2-RcA
+ holds.

For the proof of Theorem 3.1, we use the following lemma which should be

a well-known fact. Nevertheless, we prove the lemma since we could not find a

suitable reference.

Lemma 3.2 p-Lg-RcA-0-0If α is a limit ordinal and Vα satisfies a sufficiently large finite frag-

ment of ZFC, then for any P ∈ Vα and (V,P)-generic G, we have Vα[G] = Vα
V[G].

Proof. “⊆”: This inclusion holds without the condition on the fragment of ZFC.

Also the condition “P ∈ Vα” is irrelevant for this inclusion.

We show by induction on α ∈ On that Vα[G] ⊆ Vα
V[G] holds for all α ∈ On.

The induction steps for α = 0 and limit ordinals α are trivial. So we assume

that Vα[G] ⊆ Vα
V[G] holds and show that the same inclusion holds for α+1. Suppose

a ∈ Vα+1[G]. Then a = ∼a
G for a P-name ∼a ∈ Vα+1. Since ∼a ⊆ Vα, each 〈∼b,p〉 ∈ ∼a is

2)
fn-0In the following, we shall denote this condition simply by “|P ∗

∼
Q | ≤ λ”. More generally,

we shall always write “|P | ≤ λ” for a poset P to mean that “P is forcing equivalent to a poset of
size ≤ λ”.
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an element of Vα. By induction hypothesis, it follows that ∼b
G ∈ Vα

V[G]. It follows

that ∼a
G ⊆ Vα

V[G]. Thus a = ∼a
G ∈ Vα+1

V[G].

“⊇”: Suppose that a ∈ Vα
V[G]. Note that we can choose the “sufficiently large

finite fragment of ZFC” which should be satisfied in Vα such that (∗) VαV[G] still
satisfies a large enough fragment of ZFC, although the fragment may be different

from the one Vα satisfies. In particular we find a cardinal λ > |P | in VαV[G] (and
hence also in V[G]) such that a ∈ H(λ)V

V[G]
α ⊆ H(λ)V[G] ⊆ Vα

V[G]. [ Note that

H(λ)Vα
V[G]

= {a : | trcl(a) | < λ}Vα
V[G] ⊆ {a : | trcl(a) | < λ}V[G] = H(λ)V[G]. ]

Let a∗ ∈ H(λ)V[G] be a transitive set such that a ∈ a∗. Then a∗ can be coded

by a subset of λ. We can find the subset of λ in V[G] and this subset has a nice

P-name which is an element of Vα
V since P ∈ Vα. This shows that a

∗ ∈ Vα[G] and

hence also a ∈ Vα[G]. (Lemma 3.2)

Proof of Theorem 3.1: Assume that κ is tightly P-Laver gen. ultrahuge for an

iterable class P of posets.

Suppose that φ = φ(x) is Σ2 formula (in L∈), a ∈ H(κ), and P ∈ P is such

that

(3.2) x-Lg-RcA-aV |= ‖–P“φ(a
✓) ”.

Let λ > κ be such that P ∈ Vλ and

(3.3) x-Lg-RcA-0Vλ ≺Σn
V for a sufficiently large n.

In particular, we may assume that we have chosen the n above so that a sufficiently

large fragment of ZFC holds in Vλ (“sufficiently large” means here in terms of

Lemma 3.2).

Let
∼
Q be a P-name such that ‖–P“

∼
Q ∈ P ”, and for (V,P ∗

∼
Q)-generic H, there

are j, M ⊆ V[H] with

(3.4) x-Lg-RcA-1j : V
≺→κ M ,

(3.5) x-Lg-RcA-1-0j(κ) > λ,

(3.6) x-Lg-RcA-1-1P ∗
∼
Q, P, H, Vj(λ)

V[H] ∈M , and

(3.7) x-Lg-RcA-1-2|P ∗
∼
Q | ≤ j(κ).

By (3.7), we may assume that the underlying set of P∗
∼
Q is j(κ) and P∗

∼
Q ∈ Vj(λ)

V.

Let G := H ∩ P. Note that G ∈M by (3.6) and we have

(3.8) x-Lg-RcA-2Vj(λ)
M =︸︷︷︸
by (3.6)

Vj(λ)
V[H]

Since Vj(λ)
M (= V

V[H]
j(λ) ) satisfies a sufficiently large fragment of ZFC

by elementarity of j, and hence the equality follows by Lemma 3.2︷︸︸︷
= Vj(λ)

V[H].
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Thus, by (3.6) and by the definability of grounds, we have Vj(λ)
V ∈ M and

Vj(λ)
V[G] ∈M .

Claim 3.1.1 cl-Lg-RcA-0Vj(λ)
V[G] |= φ(a).

` By Lemma 3.2, Vλ
V[G] = Vλ

V[G], and Vj(λ)
V[G] = Vj(λ)

V[G] by (3.8). By (3.3),

both Vλ
V[G] and V V

j(λ)[G] satisfy large enough fragment of ZFC. Thus

(3.9) x-Lg-RcA-2-0Vλ
V[G] ≺Σ1 Vj(λ)

V[G].

By (3.2) and (3.3), we have Vλ
V[G] |= φ(a). By (3.9) and since φ is Σ2, it follows

that Vj(λ)
V[G] |= φ(a). a (Claim 3.1.1)

Thus we have

(3.10) x-Lg-RcA-3M |=“ there is a P-ground N of Vj(λ) with N |= φ(a)”.

By the elementarity (3.4), it follows that

(3.11) x-Lg-RcA-4V |=“ there is a P-ground N of Vλ with N |= φ(a)”.

Now by (3.3), it follows that there is a P-ground W of V such that W |= φ(a).

(Theorem 3.1)

Some instances of weak forms of Recurrence Axioms decide the size of the

continuum.

Theorem 3.3 p-Lg-RcA-1Assume that P is an iterable class of posets. ( 1 ) If P contains a

poset which adds a real (over the universe), then (P ,H(κrefl ))Σ1-RcA implies ¬CH.
( 2 ) Suppose that P contains a poset which forces ℵ2

V to be equinumerous with

ℵ1
V. Then (P ,H(2ℵ0))Σ1-RcA implies 2ℵ0 ≤ ℵ2.

(2’) If P contains a posets which forces ℵ2
V to be equinumerous with ℵ1

V, then

(P ,H((ℵ2)
+))Σ1-RcA does not hold.

( 3 ) If (P ,H(κrefl ))Σ1-RcA holds then all P ∈ P preserve ℵ1 and they are also

stationary preserving.

( 4 ) If P contains a poset which adds a real as well as a poset which collapses ℵ2
V,

then (P ,H(κrefl ))Σ1-RcA implies 2ℵ0 = ℵ2.

( 5 ) If P contains a poset which collapses ℵ1
V, then (P ,H(2ℵ0))Σ1-RcA implies

CH.

(5’) If P contains a poset which collapses ℵ1
V then (P ,H((2ℵ0)+))Σ1-RcA does not

hold.
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Proof. (1): Assume that P is an iterable class of posets containing a poset P

adding a real and (P ,H(κrefl ))Σ1-RcA holds. If CH holds, then P(ω)V ∈ H(κrefl ).

Hence “∃x (x ⊆ ω ∧ x 6∈ P(ω)V)” is a Σ1-formula with parameters from H(κrefl )

and P forces (the formula in forcing language corresponding to) this formula.

By (P ,H(κrefl ))Σ1-RcA, the formula must hold in a ground. This is a contra-

diction.

(2): Assume that (P ,H(2ℵ0)Σ1)-RcA holds and P ∈ P forces ℵ2
V to be equinu-

merous with ℵ1
V. If 2ℵ0 > ℵ2 then ℵ1

V, ℵ2
V ∈ H(2ℵ0). Letting ψ(x, y) a Σ1-formula

saying “∃f (f is a surjection from x to y)”, we have ‖–P“ψ((ℵ1
V)✓, (ℵ2

V)✓) ”.

By (P ,H(2ℵ0))Σ1-RcA, the formula ψ(ℵ1
V,ℵ2

V) must hold in a ground. This is

a contradiction.

(2’): Assume that P ∈ P is such that ‖–P“ | ℵ2
V | = | ℵ1

V | ”, and (P ,H(ℵ2
+))Σ1-

RcA holds. Then, since ℵ1, ℵ2 ∈ H(ℵ2
+) and “| x | = | y |” is Σ1, there is a ground

W of V such that W |= | ℵ2
V | = | ℵ1

V |. This is a contradiction.

(3): Suppose that P ∈ P is such that ‖–P“ℵ1
V is countable ”. Note that ω,ℵ1 ∈

H(κrefl ). By (P ,H(κrefl ))Σ1-RcA, it follows that there is a ground W of V such that

W |=“ℵ1
V is countable”. This is a contradiction.

Suppose now that S ⊆ ω1 is stationary and P ∈ P destroys the stationarity of

S. Note that ω1, S ∈ H(ℵ2). Let φ = φ(y, z) be the Σ1-formula

∃x (x is a club subset of the ordinal y and z ∩ x = ∅).

Then we have ‖–P“φ(ω1, S) ”. By (P ,H(κrefl ))Σ1-RcA, it follows that there is a

ground W ⊆ V such that S ∈ W and W |= φ(ω1, S). This is a contradiction to the

stationarity of S.

(4): follows from (1), (2) and (3).

(5): If ℵ1 < 2ℵ0 , then ℵ1
V ∈ H(2ℵ0).

Let P ∈ P be a poset collapsing ℵ1
V. That is, ‖–P“ℵ1

V is countable ”. Since

“· · · is countable” is Σ1, there is a ground M such that M |=“ℵ1
V is countable”

by (P ,H(2ℵ0))Σ1-RcA. This is a contradiction.

(5’): Assume that P ∈ P is such that ‖–P“ℵ1
V is countable ”, and (P ,H((2ℵ0)+))-

RcA holds. Since ℵ1 ∈ H((2ℵ0)+), it follows that there is a ground W of V such

that W |= ℵ1
V is countable. This is a contradiction. (Theorem 3.3)

In contrast to Theorem 3.3, (ccc,H(κrefl ))-RcA(or even (ccc,H(κrefl ))-RcA
+ ⇔

MP(ccc,H(κrefl ))) does not decide the size of the continuum (see Theorem 4.7 and

Theorem 4.10).
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Recurrence Axioms can be considered as natural requirements claiming that

a reflection holds from the set-generic multiverse down to the set-generic archae-

ology. If we want the maximal amount of the Recurrence, we arrive at either

(all posets,H(2ℵ0))-RcA or

(semi-proper posets,H(κrefl ))-RcAaccording to Theorem 3.3, and these axioms im-

ply CH or 2ℵ0 = ℵ2, respectively. So in particular they are not compatible to each

other.

In Section 7, we shall examine an axiom(scheme) which implies the full (semi-

proper posets,H(κrefl ))-RcA
+ and also a large fragment of (all posets,H(ℵ1)-RcA

+

as well as MM++.

4 Tightly super-C(∞)-Laver generic ultrahuge car-

dinal

c-inftyIn [17], it is shown that the existence of a (tightly) P-Laver-gen. large cardinal

does not imply Maximality Principle even without parameters. The proof in [17]

can be modified to prove the non-implication of (P , ∅)Π3-RcA from generic large

cardinals of various sorts, and this also shows that “(P , ∅)Σ2-RcA
+” in Theorem 3.1

is optimal.

In this section we show that the existence of a strong variant of P-Laver generic

large cardinal κ we are going to introduce below does imply MP(P ,H(κ)) (see

Theorem 4.10). It is essential that the variant of Laver genericity (called “the

tightly super C(∞)-Laver gen. large cardinal” below) is formulated not in a single

formula but rather in an axiom scheme.

For a natural number n, we call a cardinal κ super-C(n)-hyperhuge if for any

λ0 > κ there are λ ≥ λ0 with Vλ ≺Σn V, and j, M ⊆ V such that j : V
≺→κ M ,

j(κ) > λ, j(λ)M ⊆M and Vj(λ) ≺Σn V.

κ is super-C(n)-ultrahuge if the condition above holds with “ j(λ)M ⊆ M” re-

placed by “ j(κ)M ⊆M and Vj(λ) ⊆M”.

If κ is super-C(n)-hyperhuge then it is super-C(n)-ultrahuge. This can be shown

similarly to Lemma 5.1 in Section 5.

We shall also say that κ is super-C(∞)-hyperhuge (super C(∞)-ultrahuge, resp.)

if it is super-C(n)-hyperhuge (super C(n)-ultrahuge, resp.) for all natural number

n.

A similar kind of strengthening of the notions of large cardinals which we call

here “super-C(n)” appears also in Boney [3]. It is called in [3] “C(n)+” and the

notion is considered there in connection with extendibility.
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For a natural number n and an iterable class P of posets, a cardinal κ is super-

C(n)-P-Laver-generically ultrahuge (super C(n)-P-Laver-gen. ultrahuge, for short)

if, for any λ0 > κ and for any P ∈ P , there are a λ ≥ λ0 with Vλ ≺Σn V, a P-name

∼
Q with ‖–P“

∼
Q ∈ P ” such that for (V,P∗

∼
Q)-generic H, there are j, M ⊆ V[H] with

j : V
≺→κ M , j(κ) > λ, P, H, Vj(λ)

V[H] ∈M and Vj(λ)
V[H] ≺Σn V[H].

A super-C(n)-P-Laver-generically ultrahuge cardinal κ is tightly super-C(n)-P-

Laver-generically ultrahuge (tightly super-C(n)-P-Laver-gen. ultrahuge, for short),

if |P ∗
∼
Q | ≤ j(κ) (see Footnote 2) ).

super-C(∞)- P-Laver-gen. ultrahugeness and tightly super-C(∞)- P-Laver gen.

ultrahugeness are defined similarly to super-C(∞)-ultrahugeness.

Note that, in general, super-C(∞)-hyperhugeness and super-C(∞)-ultrahugeness

are notions unformalizable in the language of ZFC without introducing a new con-

stant symbol for κ since we need infinitely many L∈-formulas to formulate them.

Exceptions are when we are talking about a cardinal in a set model being with one

of these properties like in Lemma 4.5 below (and in such a case “natural number

n” actually refers to “n ∈ ω”), or when we are talking about a cardinal definable in

V having these properties in an inner model like in Theorem 5.8 or Corollary 5.9.

In the latter case, the situation is formalizable with infinitely may L∈-sentences.

In contrast, the super-C(∞)-P-Laver gen. ultrahugeness of κ is expressible in

infinitely many L∈-sentences. This is because a P-Laver gen. large cardinal κ for

relevant classes P of posets is uniquely determined as κrefl or 2
ℵ0 (see e.g. [21] or

[17]).

Lemma 4.1 p-Lg-RcA-1-aSuppose that κ is super-C(n)-ultrahuge cardinal. Then we have

Vκ ≺Σn+1 V. In particular, in a context in which we can express that κ is super-

C(∞)-ultrahuge cardinal in a (set or class) model W, we have Vκ
W ≺ W.

Proof. We check that Vκ passes Vaught’s test. Let φ(x, y) be a Πn-formula.

Suppose that b ∈ Vκ and a ∈ V are such that V |= φ(a, b). We want to show that

there is a′ ∈ Vκ such that V |= φ(a′, b).

Let λ be such that

(4.1) x-Lg-RcA-4-a-0a ∈ Vλ,

(4.2) x-Lg-RcA-4-a-1Vλ ≺Σn V,

(4.3) x-Lg-RcA-4-a-2there are j,M ⊆ V such that

(4.3a) {x-Lg-RcA-4-a-2}{a}j : V
≺→κ M , (4.3b) j(κ) > λ, (4.3c) j(κ)M ⊆M ,

(4.3d) {x-Lg-RcA-4-a-2}{d}Vj(λ) ⊆M , and (4.3e) Vj(λ) ≺Σn V.

By (4.3e), we have Vj(λ) |= φ(a, b). By (4.3d), it follows thatM |=“Vj(λ) |= φ(a, b)”.

Noting that b = j(b), it follows that
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M |=“ there is x ∈ Vj(κ) such that Vj(λ) |= φ(x, j(b))”.

By the elementarity (4.3a), it follows

V |=“ there is x ∈ Vκ such that Vλ |= φ(x, b)”.

Let a′ ∈ Vκ be a witness of this. Then by (4.2) we have V |= φ(a′, b). (Lemma 4.1)

Corollary 4.2 p-Lg-RcA-1-a-0Suppose that κ is a super-C(∞)-ultrahuge (-hyperhuge, resp.) cardi-

nal in a (set or class) model W. Then for each n ∈ N, W |=“ there are stationarily

many super-C(n)-ultrahuge (-hyperhuge, resp.) cardinals”.

Proof. Suppose that κ is a super-C(∞)-ultrahuge cardinal inW. By Lemma 4.1, we

have Vκ
W ≺ W. Suppose that φ = φ(x, y) is an L∈-formula and a ∈ Vκ

W such that

Vκ
W |=“φ(·, b) is a club ⊆ On”. Then, by elementarity, W |=“φ(·, b) is a club ⊆

On” and W |= φ(κ, b). Thus W |= “ there is a super-C(n)-ultrahuge cardinal µ

such that φ(µ, b)”. By elementarity, it follows that Vκ
W |=“ there is a super-C(n)-

ultrahuge cardinal µ such that φ(µ, b)”.

Since b was arbitrary, it follows that Vκ
W |=“∀y (if φ(·, y) is a club in On, then

there is a super-C(n)-ultrahuge cardinal µ such that φ(µ, y))”. By elementarity, the

same statement also holds in W. (Corollary 4.2)

An ultrafilter U ⊆ P(P(λ∗)) is said to be normal if

(4.4) x-Lg-RcA-4-0{x ∈ P(λ∗) : α ∈ x} ∈ U for all α ∈ λ∗, and

(4.5) x-Lg-RcA-4-1for any 〈Xα : α < λ∗〉 ∈ λ∗
U , 4α<λ∗Xα ∈ U .

Under (4.4), the condition (4.5) is equivalent to

(4.6) x-Lg-RcA-4-2For any X ∈ U and any regressive3) f : X → λ∗, there is X ′ ∈ U such

that X ′ ⊆ X and f is constant on X ′.

Lemma 4.3 p-Lg-RcA-1-0For κ < λ < κ∗ < λ∗, the following (A) and (B) are equivalent.

(A) there are j, M ⊆ V such that j : V
≺→κ M , j(κ) = κ∗, j(λ) = λ∗, j(λ)M ⊆M .

(B) there is a κ-complete normal ultrafilter U ⊆ P(P(λ∗)) such that

(4.7) x-Lg-RcA-4-3X∗ := {x ∈ P(λ∗) : x ∩ κ ∈ κ, otp(x ∩ κ∗) = κ, otp(x) = λ} ∈ U .

A Sketch of the Proof: (A) ⇒ (B): For j as in (A), the ultrafilter U defined by

(4.8) x-Lg-RcA-4-3-0U := {X ∈ P(P(λ∗)) : j ′′λ∗ ∈ j(X)}

3) f : X → λ∗ is regressive if f(x) ∈ x for all x ∈ X.
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satisfies (B).

(B) ⇒ (A): For U as in (B), the elementary embedding jU defined by

(4.9) x-Lg-RcA-4-4jU : V
≺→κ N := mcol(P(λ∗)V/U); x 7→ [cx]

satisfies the conditions in (A).

Here, mcol denotes the Mostowski collapse, [f ] the element of N which corre-

sponds to the equivalence class of f ∈ P(λ∗)V and cx the function on P(λ∗) whose

value is constantly x. (Lemma 4.3)

Similarly to the case of measurable cardinals or supercompact cardinals we can

define another function kj associated with j by:

(4.10) x-Lg-RcA-4-5kj : N →M ; [f ] 7→ j(f)(j ′′λ∗).

.

LemmaA4.1 p-Lg-RcA-1-0-0Suppose that κ < λ < κ∗ < λ∗ and j : V
≺→κ M ⊆ V are as in

Lemma 4.3, (A). Let U be defined by (4.8). Then U satisfies the condition (4.8) in

Lemma 4.3, (B).

Let jU and kj be defined as above. Then

( 1 ) kj is well-defined.

( 2 ) kj is an elementary embedding.

( 3 ) kj ◦ jU = j.

( 4 ) kj ↾ H((λ∗)+) = idH((λ∗)+).

( 5 ) j ↾ H(λ+) = jU ↾ H(λ+).

In the following we shall use a (local) notation “(κ, λ)(κ
∗,λ∗)” to denote the

condition (B) in Lemma 4.3. Clearly we have

Lemma 4.4 p-Lg-RcA-1-1For a cardinal κ and a natural number n, κ is a super-C(n)-hyperhuge

cardinal ⇔ for any λ0 > κ there are λ∗ > κ∗ > λ ≥ λ0 such that

(C) Vλ ≺Σn V, Vλ∗ ≺Σn V, and (κ, λ)(κ
∗,λ∗).

We shall denote the condition (C) by [κ, λ][κ
∗,λ∗,n]. This is also merely a local

notation.

Lemma 4.5 p-Lg-RcA-2If κ is 2-huge with the 2-huge elementary embedding j, that is, there

is M ⊆ V such that j : V
≺→κ M ⊆ V, and

(4.11) x-Lg-RcA-5
j2(κ)M ⊆M ,
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then Vj(κ) |=“κ is super-C(∞)-hyperhuge cardinal”, and for each n ∈ ω,

Vj(κ) |=“ there are stationarily many super-C(n)-hyperhuge cardinals”.

Proof. Suppose that j is as above and n ∈ ω.

By elementarity of j and since κ = crit(j), we have Vκ ≺ Vj(κ)
M . By (4.11), it

follows that

(4.12) x-Lg-RcA-6Vκ ≺ Vj(κ).

By elementarity of j, this implies M |=“Vj(κ) ≺ Vj(j(κ))”. By the closedness (4.11)

of M (and since j(j(κ)) is inaccessible), it follows that

(4.13) x-Lg-RcA-6-aVj(κ) ≺ Vj(j(κ)).

For a λ0 with κ < λ0 < j(κ), let λ0 ≤ λ < j(κ) be such that

(4.14) x-Lg-RcA-6-0Vλ ≺Σn Vj(κ).

By (4.13), it follows that

(4.15) x-Lg-RcA-6-1Vλ ≺Σn Vj(j(κ)).

We also have M |=“Vj(λ) ≺Σn Vj(j(κ))” by (4.14) and by elementarity of j. By

the closedness (4.11) (and since j(j(κ)) is inaccessible), it follows that

(4.16) x-Lg-RcA-6-0-0Vj(λ) ≺Σn Vj(j(κ)).

Let

(4.17) x-Lg-RcA-7U := {X ⊆ P(j(λ)) : j ′′j(λ) ∈ j(X)}.

The following is easy to check:

Claim 4.5.1 In Vj(j(κ)), U witnesses (κ, λ)(j(κ),j(λ)). Hence we have

Vj(j(κ)) |=“ [κ, λ][j(κ),j(λ),n]” for all n ∈ ω.

` Clearly U is a ultrafilter.

U is κ-complete: Suppose that 〈Xξ : ξ < µ〉 ∈ µU for some µ < κ. Then

j(〈Xξ : ξ < µ〉) = 〈j(Xξ) : ξ < µ〉 by the elementarity of j and µ < crit(j). Since

Xξ ∈ U , we have j ′′λ ∈ j(Xξ) for all ξ by the definition (4.17) of U . It follows that

j ′′j(λ) ∈
⋂

ξ<µ j(Xξ) = j(
⋂

ξ<µXξ). Thus
⋃

ξ<µXξ ∈ U .

U |=(4.4): For α < j(λ), j({x ∈ P(j(λ)) : α ∈ x}) = {x ∈ P(j(j(λ))) : j(α) ∈
x} 3 j ′′j(λ). Hence {x ∈ P(j(λ)) : α ∈ x} ∈ U .

U |=(4.5): Suppose that X⃗ := 〈Xα : α < j(λ)〉 ∈ j(λ)U . Then, by elementarity

of j, j(4α<j(λ)Xα) = {x ∈ P(j(j(λ))) : ∀α ∈ x (x ∈ (j(X⃗))α)}. For α ∈ j ′′j(λ),

j ′′j(λ) ∈ j(Xα) = (j(X⃗))α by the definition (4.17) of U . It follows that j ′′j(λ) ∈
j(4α<j(λ)Xα). This means 4α<j(λ)Xα ∈ U by the definition (4.17) of U .

X∗ ∈ U : Note that
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j(X∗) = {x ∈ P(j(j(λ))) : x ∩ j(κ) ∈ j(κ), otp(x ∩ j(j(κ))) = j(κ),

otp(x) = j(λ)}

by elementarity of j. Hence j ′′j(λ) ∈ j(X∗) and thus X∗ ∈ U .

This shows Vj(j(κ)) |= “ (κ, λ)(j(κ),j(λ))”. By (4.15) and (4.16), it follows that

Vj(j(κ)) |=“ [κ, λ][j(κ),j(λ),n]” a (Claim 4.5.1)

By Claim 4.5.1, Vj(j(κ)) |= ∃x∃y ([κ, λ][x,y,n]) for all n. By (4.13), it follows that

Vj(κ) |= ∃x∃y ([κ, λ][x,y,n]). Since n ∈ ω and κ < λ0 < j(κ) were arbitrary, it follows

that Vj(κ) |=“κ is super-C(∞)-hyperhuge”.

For a fixed n and club C ⊆ j(κ), we have Vj(j(κ)) |=“κ ∈ j(C) and κ is super-

C(n)-hyperhuge”. Thus Vj(j(κ)) |=“∃x (x ∈ j(C) and x is super-C(n)-hyperhuge)”.

It follows that Vj(κ) |= “∃x (x ∈ C and x is super-C(n)-hyperhuge)”. This shows

that Vj(κ) |=“ there are stationarily many super-C(n)-hyperhuge cardinals”. (Lemma 4.5)

Theorem 4.6 (Laver function for a super-C(n)-hyperhuge cardinal) p-Lg-RcA-3Suppose that

µ is an inaccessible cardinal and κ is super-C(∞)-hyperhuge in Vµ. Then there is

f : κ → Vκ such that for any n ∈ ω, a ∈ Vµ, and λ0 ≥ κ, there are λ0 < λ < κ∗ <

λ∗ < µ such that κ < λ, | trcl(a) | ≤ λ∗,

(4.18) x-Lg-RcA-7-aVµ |= [κ, λ][κ
∗,λ∗,n],

and there is a ultrafilter U ⊆ P(P(λ∗)) witnessing (4.18) such that jU(f)(κ) = a

where jU is given by (4.9).4)

Proof. The proof is just an adaptation of the proof of Theorem 20.21 in [33].

Suppose toward a contradiction, that the Theorem does not hold. Then for

each f : κ→ Vκ, there are af , nf ∈ ω and κ < λf < κ∗f < λ∗f < µ such that

(4.19) x-Lg-RcA-7-a-0| trcl(af ) | ≤ λ∗f (⇔ af ∈ H((λ∗f )
+));

(4.20) x-Lg-RcA-7-a-1Vµ |= [κ, λf ]
[κ∗

f ,λ
∗
f ,nf ]; but

(4.21) x-Lg-RcA-7-a-2there is no witness U of (4.20) with jU(f)(κ) = af .

We assume that, for each f : κ → Vκ, 〈λf , κ∗f , λ∗f , nf〉 is chosen to be the minimal

possible (with respect to the lexicographical ordering) among those which satisfy

(4.19) ∼ (4.21) together with f and some af .

For a α ∈ On, and g : α → Vα, let (∗)α,g be the assertion

(4.22) x-Lg-RcA-7-a-3α is a cardinal and there are α < δ < α∗ < δ∗ < µ, n ∈ ω and a such that

4) In particular, we have jU (κ) = κ∗, jU (λ) = λ∗, Vλ ≺Σn V and Vλ∗ (= Vj(λ)) ≺Σn V.
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(4.22a) {x-Lg-RcA-7-a-3}{a}Vµ |= [α, δ][α
∗,δ∗,n], a ∈ H((δ∗)+)

but there is no witness U of (4.22a) such that jU(g)(α) = a.

Let f † : κ → Vκ be defined recursively such that for α < κ, if (∗)α,f†↾α holds,

then f †(α) witnesses (∗)α,f†↾α as a in (4.22) together with 〈δ, α∗, δ∗, n〉 which is cho-

sen to be minimal possible (with respect to the lexicographic ordering). Otherwise,

we let f(α) = ∅.
Let

(4.23) x-Lg-RcA-7-a-4a† := jU
f†
(f †)(κ)

where Uf† is a witness of [κ, λf† ]
[κ∗

f†
,λ∗

f†
,n

f† ]. By definition of f †, elementarity and

the assumption of this indirect proof, a† together with κ∗
f† , λ

∗
f† , nf† is a witness of

(∗)α,jU
f†

(f†)↾κ︸ ︷︷ ︸
= f†

. But the existence of the ultrafilter Uf† in (4.23) is a contradiction to

this. (Theorem 4.6)

In [21] and further in [22], [23], [25], we studied in connection with Laver gener-

icity, only classes P of posets which are all stationary preserving. This is because

the existence of a Laver-gen. large cardinal for one of such classes of posets natu-

rally extends the known reflection properties down to <κrefl , and strong versions

of forcing axioms.

However, we can also consider the class of all posets in connection with Laver

genericity. (5) in the following Theorem 4.7 is such an instance of Laver genericity.

We shall go more into this scenario in Section 6.

Theorem 4.7 p-Lg-RcA-4( 1 ) Suppose that µ is inaccessible and κ < µ is super-C(∞)-

ultrahuge in Vµ. Let P = Col(ℵ1, κ). Then, in Vµ[G], for any Vµ,P-generic G,

ℵVµ[G]
2 (= κ) is tightly super-C(∞)-σ-closed-Laver-gen. ultrahuge and CH holds.

( 2 ) Suppose that µ is inaccessible and κ < µ is super-C(∞)-ultrahuge with a Laver

function f : κ → Vκ for super-C(∞)-ultrahugeness in Vµ. If P is the CS-iteration

of length κ for forcing PFA along with f , then, in Vµ[G] for any (Vµ,P)-generic G,

ℵVµ[G]
2 (= κ) is tightly super-C(∞)-proper-Laver-gen. ultrahuge and 2ℵ0 = ℵ2 holds.

( 2′ ) Suppose that µ is inaccessible and κ < µ is super-C(∞)-ultrahuge with a Laver

function f : κ → Vκ for super-C(∞)-ultrahugeness in Vµ. If P is the RCS-iteration

of length κ for forcing MM along with f , then, in Vµ[G] for any (Vµ,P)-generic G,

ℵVµ[G]
2 (= κ) is tightly super-C(∞)-semi-proper-Laver-gen. ultrahuge and 2ℵ0 = ℵ2

holds.

( 3 ) Suppose that µ is inaccessible and κ is super-C(∞)-ultrahuge with a Laver
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function f : κ → Vκ for super-C(∞)-ultrahugeness in Vµ. If P is a FS-iteration

of length κ for forcing MA along with f , then, in Vµ[G] for any (Vµ,P)-generic G,

2ℵ0 (= κ) is tightly super-C(∞)-c.c.c.-Laver-gen. ultrahuge, and 2ℵ0 is very large in

Vµ[G].

( 4 ) Suppose that µ is inaccessible and κ is super-C(∞)-ultrahuge with a Laver

function f : κ → Vκ for super-C(∞)-ultrahugeness in Vµ. If P is a FS-iteration

of length κ along with f enumerating “all” posets, then, in Vµ[G] for any (Vµ,P)-

generic G, 2ℵ0 (= ℵ1) is tightly super-C(∞)-all posets-Laver-gen. ultrahuge, and CH

holds.5)

Proof. The proof can be done similarly to that of Theorem 5.2 in [21] using

Lemma 4.8 below. In the following we shall only check the case (4).

Suppose that f : κ→ Vκ is a super-C(∞)-hyperhuge Laver function as in Theo-

rem 4.6.

Let 〈Pα,
∼
Qβ : α ≤ κ, β < κ〉 be a FS-iteration defined by

(4.24) p-Lg-RcA-4-a-0
∼
Qβ =

{
f(α), if f(α) is a Pβ-name of a poset;

{1}, otherwise

for β < κ.

Let G be a (Vµ,Pκ)-generic filter. Clearly Vµ[G] |=“2ℵ0 = κ = ℵ1”. We show

that κ is tightly super-C(∞)-all posets-Laver-gen. ultrahuge in Vµ[G].

Suppose that P is a poset in Vµ[G], κ < λ0 and n ∈ ω. Let n′ > n be sufficiently

large and let ∼P be a Pκ-name of P.

Working in Vµ, we can find

(4.25) x-Lg-RcA-6-1-a|P | < λ < κ∗ < λ∗ and j, M ⊆ V

such that

(4.26) x-Lg-RcA-6-1-0j : V
≺→κ M ,

(4.27) x-Lg-RcA-6-1-1j(κ) = κ∗, j(λ) = λ∗,

(4.28) x-Lg-RcA-6-1-2
λ∗
M ⊆M ,

(4.29) x-Lg-RcA-6-1-3Vλ ≺Σn′ V, Vλ∗ ≺Σn′ V, and

(4.30) x-Lg-RcA-6-1-4j(f)(κ) = ∼P

by definition of f .

By elementarity (and by the definition (4.24) of Pκ),

5)Actually we can obtain a model with the desired property simply by Levy collapsing κ to ω1.
We just chose this narrative to emphasize the parallelism to the cases (2), (2’) and (3).
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(4.31) x-Lg-RcA-6-2j(Pκ) ∼Pκ (Pκ ∗ ∼P) ∗ ∼R

for a (Pκ ∗ ∼P)-name ∼R of a poset. Note that (Pκ ∗ ∼P ∗ ∼R)/G corresponds to a poset

of the form P ∗
∼
Q.

Let H∗ be (V, (Pκ ∗ ∼P) ∗ ∼R)-generic filter with G ⊆ H∗. H∗ corresponds to a

(V, j(Pκ))-generic filter H ⊇ G via the equivalence (4.31).

Let j̃ be defined by

(4.32) x-Lg-RcA-6-3j̃ : V[G] →M [H]; ∼a
G 7→ j(∼a)

H

for all Pκ-names ∼a.

A standard proof shows that f is well-defined, and j : V[G]
≺→κ M [H]. By (4.27)

and (4.28), we have j̃ ′′j̃(λ) = j ′′j(λ) ∈ M [H]. Since H ∈ M [H], the (V[G],P ∗
∼
Q)-

generic filter corresponding to H is also in M [H].

By (4.25), (4.29), by the choice of n′, and by Lemma 4.8, (1), we have

Vλ
V[G] ≺Σn V[G] and Vj̃(λ)

V[H] = Vλ∗
V[H] ≺Σn V[H].

Since P and n were arbitrary, this shows that κ is tightly super-C(∞)-all posets-

Laver-gen. ultrahuge in Vµ[G]. (Theorem 4.7)

Lemma 4.8 p-Lg-RcA-4-0( 1 ) For a natural number n, if n′ > n is sufficiently large and

(4.33) : x-Lg-RcA-7-0Vλ ≺Σn′ V,

then we have Vλ[G] ≺Σn V[G] for any poset P ∈ Vλ and (V,P)-generic G.

( 2 ) For a natural number n, if n′ > n is sufficiently large and

(4.34) : x-Lg-RcA-7-1Vλ[G] ≺Σn′ V[G] for some poset P ∈ Vλ and (V,P)-generic G,

then we have Vλ ≺Σn V.

Proof. (1): Suppose that a ∈ Vλ[G] and φ = φ(x) is a Σn-formula. There are

P-names ∼a ∈ Vλ such that a = ∼a[G].

If Vλ[G] |= φ(a), there is p ∈ G such that Vλ |= p ‖–P“φ(∼a) ”. By (4.33) it

follows that V |= p ‖–P“φ(∼a) ”. Thus V[G] |= φ(a).

The same argument also applies to ¬φ.
(2): We use the L∈-formula Φ(x, y) of Theorem 2.1. By (4.34), there is r ∈ Vλ[G]

such that

Vλ = Φ(·, r)Vλ[G] = Φ(·, r)V[G] ∩ Vλ[G] ⊆ Φ(·, r)V[G].

For any Σn-formula φ(x) and a ∈ Φ(·, r)Vλ[G]. Since φΦ(·,r) is a Σn′-formula (by the

choice of n′), we have

Vλ |= φ(a) ⇔ Vλ[G] |= φΦ(·,r)(a)

by (4.34)︷︸︸︷
⇔ V[G] |= φΦ(·,r)(a) ⇔ V |= φ(a).
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This shows that Vλ ≺Σn V. (Lemma 4.8)

In Theorem 4.7, (4), the model constructed in the proof satisfies CH. The next

lemma suggests that this does not depend on the specific construction of the model

given there.

In the following, we consider a strengthening of tightness of Laver genericity:

we say a cardinal κ is tightly+ P-Laver-gen. hyperhuge/ultrahuge if the definition

of the tightly P-Laver gen. hyperhugeness/ultrahugeness of κ holds with the clause

“|P∗
∼
Q | ≤ j(κ)” replaced by “there is a complete Boolean algebra B of size j(κ) such

that P ∗
∼
Q ∼ B+”. Note that this condition is equivalent to 2<κ = κ, |P ∗

∼
Q | ≤ κ

and P ∗
∼
Q has the j(κ)-cc. Note also that all models constructed in the proof of

Theorem 4.7 actually satisfy this stronger notion of tightness of the (super-C(n))

P-Laver-gen. hyperhugeness or ultrahugeness of κ. Later with much more work we

show in Corollary 6.3 that this stronger version of tightness can be dropped from

the following Lemma.

Lemma 4.9 p-Lg-RcA-4-1If P is the class of all posets and κ is tightly+ P-Laver-gen. hyperhuge

cardinal then κ = 2ℵ0 = ℵ1.

Proof. κ ≤ 2ℵ0 holds even without tightness: see e.g. Lemma 3.7 in [17].

To show 2ℵ0 ≤ κ, let λ and Q be such that

(4.35) x-Lg-RcA-8-a-0λ > 2ℵ0 , κ and λ is large enough such that SCH holds above some µ < λ

(this is possible by Corollary 5.4 , (2) in Section 5, and we need here the

Laver gen. hyperhugeness of κ),

(4.36) x-Lg-RcA-8-a-1Q is positive elements of a complete Boolean algebra, and,

(4.37) x-Lg-RcA-8-a-2for (V,Q)-generic H, there are j, M ⊆ V[H] such that ( 1 ) j : V
≺→κ M ,

( 2 ) j(κ) > λ, ( 3 ) |Q | ≤ j(κ), and ( 4 ) Vj(λ)
V[H] ⊆M .

By (4.36), each Q-name ∼r of a real corresponds to a mapping f : ω → Q. By

(4.35) and by (4.37), (3), there are at most j(κ) many such mappings. Thus we

have V[H] |= “2ℵ0 ≤ j(κ)”, By (4.37), (4), it follows M |= “2ℵ0 ≤ j(κ)”. By

elementarity, it follows that V |=“2ℵ0 ≤ κ”.

κ = ℵ1: Otherwise ℵ1 < κ. In V, let P be the standard poset collapsing ℵ1 to

be countable. Let
∼
Q be a P-name such that for (V,P ∗

∼
Q)-generic H there are j,

M ⊆ V[H] such that j : V
≺→κ M , and P, H ∈M .

By H ∩ P ∈ M , we have M |=“ℵ1
V = j(ℵ1

V) is countable”. This is a contra-

diction to the elementarity of j. (Lemma 4.9)

Recall that, for an iterable P , (P ,H(κ))-RcA+ holds if and only if MP(P ,H(κ))

holds (Proposition 2.2, (1)).
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Theorem 4.10 p-Lg-RcA-5Suppose that P is an iterable class of posets and κ is super-C(∞)-

P-Laver-gen. ultrahuge. Then (P ,H(κ))-RcA+ holds.

Proof. A modification of the proof of Theorem 3.1 works.

Suppose that κ is super-C(∞)-P-Laver-gen. ultrahuge, P ∈ P , and ‖–P“φ(a
✓) ”

for an L∈-formula φ and a ∈ H(κ). We want to show that φ(a) holds in some P-

ground of V.

Let n be a sufficiently large natural number such that the following arguments

go through. In particular, we assume that Vα
V ≺Σn V implies that “φ(x)” and

“ ‖– · “φ(x
✓) ” are absolute between Vα

V and V, and Vα
V ≺Σn V also implies that a

sufficiently large fragment of ZFC holds in Vα.

Let
∼
Q be a P-name such that ‖–P“

∼
Q ∈ P ” and, for (V,P ∗

∼
Q)-generic H, there

are a λ > κ with

(4.38) x-Lg-RcA-9Vλ ≺Σn V,

and j, M ⊆ V[H] such that j : V
≺→κ M , j(κ) > λ, P, H, Vj(λ)

V[H] ∈ M and

Vj(λ)
V[H] ≺Σn V[H].

By the choice of n, we have Vλ |= ‖–P“φ(a
✓) ”. j(Vλ

V) = Vj(λ)
M ≺Σn M by

elementarity of j, and Vj(λ)
M = Vj(λ)

V[H] by the closedness of M . Since Vλ ≺Σn V,

we have Vλ[H] ≺Σn0
V[H] for a still large enough n0 ≤ n by Lemma 4.8, (1). Since

Vj(λ)
V[H] ≺Σn V[H], it follows that Vλ

V[H] ≺Σn0
Vj(λ)

V[H]. Thus

(4.39) x-Lg-RcA-10Vλ
V ≺Σn1

Vj(λ)
V

for a still large enough n1 ≤ n0 by Lemma 4.8, (2).

In particular, we have Vj(λ)
V |= ‖–P“φ(a

✓) ”, and hence Vj(λ)[G] |= φ(a) where

G is the P-part of H. Note that by (4.38) and (4.39), Vj(λ) satisfies a sufficiently

large fragment of ZFC.

Thus we have Vj(λ)[H] |=“ there is a P-ground satisfying φ(a)”, and hence

Vj(λ)
V[H] |=“ there is a P-ground satisfying φ(a)”

by Lemma 3.2. By elementarity, it follows that

Vλ |=“ there is a P-ground satisfying φ(a)”.

Finally, this implies V |=“ there is a P-ground satisfying φ(a)” by (4.38).

(Theorem 4.10)
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5 Bedrock of a tightly generic hyperhuge cardi-

nal

bedrockRecall that a cardinal κ is hyperhuge, if for every λ > κ, there is j : V
≺→κ M ⊆ V

such that λ < j(κ) and j(λ)M ⊆ M . By Lemma 4.3, a hyperhuge cardinal κ can

be characterized in terms of existence of κ-complete normal ultrafilters with the

property (4.7).

For a class P of posets, a cardinal κ is tightly P-generic hyperhuge (tightly

P-gen. hyperhuge, for short) if for any λ > κ, there is Q ∈ P such that for a (V,Q)-

generic H, there are j, M ⊆ V[H] such that j : V
≺→κ M , λ < j(κ), |Q | ≤ j(κ),

and j ′′j(λ),H ∈M .

For a class P of posets, a cardinal κ is tightly P-Laver-generically hyperhuge

(tightly P-Laver-gen. hyperhuge, for short) if for any λ > κ, and P ∈ P there is

a P-name
∼
Q with ‖–P“

∼
Q ∈ P ” such that for a (V,P ∗

∼
Q)-generic H, there are j,

M ⊆ V[H] such that j : V
≺→κ M , λ < j(κ), |P ∗

∼
Q | ≤ j(κ), and j ′′j(λ),H ∈M .

The following Lemma is easy to prove.

Lemma 5.1 p-bedrock-0( 1 ) κ is hyperhuge if and only if the following holds:

(5.1) x-bedrock-0for every λ > κ, there is j : V
≺→κ M ⊆ V such that λ < j(κ),

Vj(λ) ∈M , and j(λ)M ⊆M .

( 2 ) If κ is hyperhuge then it is ultrahuge.

( 3 ) Suppose that P is a class of posets such that the trivial poset {1} is in P. If

κ is hyperhuge then κ is tightly P-gen. hyperhuge.

( 4 ) For a class P of posets, κ is tightly P-gen. hyperhuge if and only if the

following holds:

(5.2) x-bedrock-1for any λ > κ, there is Q ∈ P such that for a (V,Q)-generic H, there are

j, M ⊆ V[H] such that j : V
≺→κ M , λ < j(κ), |Q | ≤ j(κ), and Vj(λ)

V[H],

j ′′j(λ),H ∈M .

( 5 ) For a class P of posets, κ is tightly P-Laver-gen. hyperhuge if and only if the

following holds:

(5.3) x-bedrock-1-0for any λ > κ and P ∈ P, there is a P-name
∼
Q with ‖–P“

∼
Q ∈ P ” such that

for a (V,P ∗
∼
Q)-generic H, there are j, M ⊆ V[H] such that j : V

≺→κ M ,

λ < j(κ), |Q | ≤ j(κ), and Vj(λ)
V[H], j ′′j(λ),H ∈M .

( 6 ) For an iterable class P of posets, a tightly P-Laver generically hyperhuge

cardinal is tightly P-gen. hyperhuge.
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( 7 ) For a class P of posets, if κ is (tightly resp.) P-Laver-gen. hyperhuge, then

it is (tightly resp.) P-Laver-gen. ultrahuge.

Proof. (1): It is clear that (5.1) implies that κ is hyperhuge.

Suppose that κ is hyperhuge. We show that (5.1) holds. For λ > κ, let λ∗ :=

|Vλ |+ and j : V
≺→κ M be such that j(κ) > λ∗ and

(5.4) x-bedrock-2
j(λ∗)M ⊆M .

By elementarity, we have

(5.5) x-bedrock-3M |= j(λ∗) = |Vj(λ)M |+.

Claim 5.1.1 cl-bedrock-0M 3 Vj(λ)
M = Vj(λ).

` We prove Vα
M = Vα for all ω ≤ α ≤ j(λ).

For α = ω, this clearly holds.

Suppose that Vα
M = Vα for ω ≤ α < j(λ). Then j(λ∗) > |VαM | = |Vα | by

(5.5). By (5.4), we have Vα+1 = P(Vα) ∈M : P(Vα) ⊆M by (5.4). SinceM |= ZFC

by elementarity of j, it follows that P(Vα) = P(Vα)
M ∈M .

If α ≤ j(λ) is a limit and the Claim holds for β < α, then 〈Vβ : β < α〉 ∈
αM ⊆M . Thus Vα =

⋃
β<α Vβ ∈M . a (Claim 5.1.1)

j(λ)M ⊆M by j(λ) < j(λ∗) and (5.4). Thus j witnesses (5.1) for λ.

(2): follows from (1). (3): is trivial.

(4): If κ satisfies (5.2) then κ is clearly tightly P-gen. hyperhuge.

Suppose that κ is tightly P-gen. hyperhuge. For λ > κ, let λ∗ be such that

(5.6) x-bedrock-4λ∗ ≥ |Vλ |+ and

(5.7) x-bedrock-5Vλ∗ ≺Σn V for a sufficiently large natural number n.

By (5.2), there is Q ∈ P such that for (V,Q)-generic H there are j, M ⊆ V[H] such

that

(5.8) x-bedrock-5-0j : V
≺→κ M ,

(5.9) x-bedrock-6λ∗ < j(κ),

(5.10) x-bedrock-7|Q | ≤ j(κ), and

(5.11) x-bedrock-8j ′′j(λ∗), H ∈M .

By (5.11), and Lemma 2.5, (5) in [21], we have Vj(λ∗)
V ∈M . Hence Vj(λ∗)

V[H] ∈M

by (5.11). By (5.7) and (5.11), Vj(λ∗)
V[H] = Vj(λ∗)

V[H], and thus Vj(λ)
V[H] ∈M .

This shows that our j and M witnesses (5.2) for λ.
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(5): Similarly to (4).

(6): Since P is iterable, the poset P∗
∼
Q in the definition of P-Laver-gen. hyper-

hugeness is an element of P .

(7): By (5). (Lemma 5.1)

For a cardinal κ, a ground W of the universe V is called a ≤κ-ground if there

is a poset P ∈ W of cardinality ≤κ (in the sense of V) and (W,P)-generic filter

G such that V = W[G]. Note that this definition of ≤κ-ground diverges from the

convention of “P-ground” in that “of cardinality ≤κ” is meant here not in the

sense of W but rather of V. In Proposition 6.1 we will show that in our context,

this actually implies “≤κ-ground” in line with the definition of P-ground.

Let

(5.12) x-bedrock-9W :=
⋂
{W : W is a ≤κ-ground}.

Since there are only set many ≤κ-grounds, W contains a ground by Theorem 1.3

in [42]. We shall call W the ≤κ-mantle of V.

By Lemma 5.1, (3), the following theorem generalizes Theorem 1.6 in [42].

Theorem 5.2 p-bedrock-1Suppose that P is a class of posets. If κ is a tightly P-gen. hyperhuge

cardinal, then the ≤κ-mantle is the smallest ground of V (i.e. it is the bedrock of

V) and it is also a ≤κ-ground.

Proof. Suppose that κ is tightly P-gen. hyperhuge and let W be the ≤κ-mantle

for this κ.

By Theorem 1.3 in [42] mentioned above, it is enough to show that, for any

ground W ⊆ W is actually a ≤κ-ground and hence W = W holds.

Let W ⊆ W be a ground. Let µ be the cardinality (in the sense of V) of a poset

S ∈ W such that there is a (W,S)-generic F such that V = W[F]. Without loss of

generality, µ ≥ κ.

By Theorem 2.1, there is r ∈ V such that W = Φ(·, r)V.
Let θ ≥ µ be such that r ∈ Vθ, and for a sufficiently large natural number n,

we have

(5.13) x-bedrock-9-1Vθ
V ≺Σn V.

By the choice of θ, we have

(5.14) x-bedrock-9-2Φ(·, r)Vθ
V
= Φ(·, r)V ∩ VθV = W ∩ VθV = Vθ

W.

There is a Q ∈ P such that for (V,Q)-generic H, there are j, M ⊆ V[H] with
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(5.15) x-bedrock-10j : V
≺→κ M , θ < j(κ),

(5.16) x-bedrock-11|Q | ≤ j(κ),

(5.17) x-bedrock-12Vj(θ)
V[H] ⊆M , and

(5.18) x-bedrock-13H, j ′′j(θ) ∈M

by Lemma 5.1, (4).

Since Vθ
V ≡ Vj(θ)

M by elementarity, (5.13) implies that Vj(θ)
M (= Vj(θ)

V[H])

satisfies a sufficiently large fragment of ZFC. Thus it follows that

(5.19) x-bedrock-16Vj(θ)
V satisfies a sufficiently large fragment of ZFC and also Vj(θ)

W satisfies

still a sufficiently large fragment of ZFC.

Thus we have

(5.20) x-bedrock-14Vj(θ)
M =︸︷︷︸
by (5.17)

Vj(θ)
V[H]

by Lemma 3.2 and the remark above︷︸︸︷
= Vj(θ)

V[H] =︸︷︷︸
by Lemma 3.2 and the remark above

Vj(θ)
W[F][H].

Since

(5.21) x-bedrock-16-0Vj(θ)
M ≺Σn M

by elementarity and V is a ground of M by Grigorieff’s Theorem, it follows from

Lemma 4.8, (2) that

(5.22) x-bedrock-15Vj(θ)
V ≺Σn0

V for a still large enough n0 ≤ n.

Claim 5.2.1 cl-bedrock-1( 1 ) Vj(θ)
V is a generic extension of Vj(θ)

W by a poset of size ≤ j(κ).

( 2 ) V [H] is a generic extension of W by a poset of size ≤ j(κ).

( 3 ) Vj(θ)
M is a generic extension of Vj(θ)

W by a poset of size ≤ j(κ).

( 4 ) M is a generic extension of j(W ) := Φ(·, j(r))M by a poset of size ≤ j(µ).

` (1): V is a generic extension of W by a poset of size µ < λ < j(κ). Thus the

assertion follows from (5.22).

(2): We have V[H] = W[F][H] and |S ∗ Q | ≤ j(κ) by |S | ≤ µ < λ < j(κ) and

by (5.16).

(3): By (5.20) and (1).

(4): By definition of µ and elementarity of j. a (Claim 5.2.1)

Claim 5.2.2 cl-bedrock-1-0Vj(θ)
j(W) = j(Vθ

W) ⊆ j(Vθ
W) ⊆ Vj(θ)

W ⊆ Vj(θ)
V.

` By (5.17), we have Vj(θ)
M = Vj(θ)

V[H]. By Claim 5.2.1, (3), it follows that
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(5.23) x-bedrock-16-1Vj(θ)
W is a ≤ j(κ)-ground of Vj(θ)

M .

By elementarity of j and (5.21),

(5.24) x-bedrock-18j(Vθ
W) is a ≤ j(κ)-mantle of V M

j(θ).

Thus we have

Vj(θ)
j(W) = j(Vθ

W) ⊆ j(Vθ
W)

by (5.23), (5.24) and by the definition of ≤ j(κ)-mantle︷︸︸︷
⊆ Vj(θ)

W ⊆ Vj(θ)
V. a (Claim 5.2.2)

Claim 5.2.3 cl-bedrock-2j ′′λ ∈ j(W) for every λ < j(θ).

` Since θ is a limit cardinal, it is enough to show the claim for all regular λ < j(θ)

with λ > j(µ). Let λ be one of such cardinals, and let 〈Sα : α < λ〉 be a partition

of (Eλ
ω)

W into stationary sets in W. Since |S | ≤ µ < λ each Sα is stationary

subset of λ in V. Since V[H] is a generic extension of V by Q of size ≤ j(κ), and

λ > j(µ) ≥ j(κ), each Sα, α < λ is a stationary subset of λ in V[H]. Let

(5.25) x-bedrock-17〈S ′
α : α < j(λ)〉 := j(〈Sα : α < λ〉) ∈ j(W).

Subclaim 5.2.3.1 sub-bedrock-a

j ′′λ = {β < sup(j ′′λ) : S ′
β ∩ sup(j ′′λ) is stationary subset of sup(j ′′λ) in M}.

` Suppose α ∈ λ. To show that S ′
j(α)∩sup(j ′′λ) = j(Sα)∩sup(j ′′λ) is a stationary

subset of sup(j ′′λ) in M , suppose C ⊆ sup(j ′′λ) is a club subset of sup(j ′′λ) in M .

We have to show that C intersects with j(Sα).

Since |Q | ≤ j(κ) ≤ j(µ) < λ by the choice of λ, and M ⊆ V[H], there is an

unbounded D ⊆ λ, D ∈ W such that for any ξ0, ξ1 ∈ D with ξ0 < ξ1, [j(ξ0), j(ξ1)]∩
C 6= ∅. Since Sα is stationary, there is η ∈ Sα ∩ lim(D). Since cf(η) = ω,

j(Sα) 3 j(η) = sup(j ′′η) the right-most side of this is an element of C by definition

of D. This shows that j(Sα) ∩ C 6= ∅.
Suppose now that S ′

β ∩ sup(j ′′λ) is stationary subset of sup(j ′′λ) inM for some

β < sup(j ′′λ). We want to show that β = j(α) for some α < λ.

Since j ′′λ = j ′′j(θ) ∩ sup(j ′′λ) ∈ M by (5.18), and thus, also {〈α, j(α)〉 : α <

λ} ∈M , we have M |= cf(j ′′λ) = λ, and hence also V[H] |= cf(j ′′λ) = λ.

By (5.17), P(λ)M = P(λ)V[H]. Hence stationarity of a subset of sup(j ′′λ) is

absolute between M and V [H]. Thus, our assumption implies that S ′
β ∩ sup(j ′′λ)

is stationary subset of sup(j ′′λ) in V[H].

By (5.13) and elementarity of j, j(Vθ
W) is a ≤ j(κ)-mantle of Vj(θ)

M (= Vj(θ)
V [H]

by (5.17)).

Subsubclaim 5.2.3.1.1 subsub-bedrock-0For every η < λ, if cf j(W)(η) = ω then cfV(η) = ω.

28



` By Claim 5.2.2. a (Subsubclaim 5.2.3.1.1)

Subsubclaim 5.2.3.1.2 subsub-bedrock-1There is an unbounded E ⊆ λ such that j ↾ E ∈ j(W).

` By Claim 5.2.1, (4) and j(µ) < λ by choice of λ, M is a generic extension of

j(W) by the λ-c.c. poset j(S).6) Since j ′′λ ∈M , there is a j(S)-name
∼
j for j ↾ λ.

Working in j(W), suppose that γ < λ. By the λ-c.c. of j(S), we can find an

increasing sequences 〈αn : n < ω〉, 〈βn : n ∈ ω〉 ∈ j(W) such that γ < α0, αn < λ

for all n ∈ ω and ‖– j(S) “
∼
j(αn) < βn <

∼
j(αn+1) ” for all n ∈ ω.

Let α := supn∈ω αn and β := supn∈ω βn. Then cf j(W)(α) = ω and hence

cfV(α) = ω by Subsubclaim 5.2.3.1.1. Thus ‖– j(S) “
∼
j(α) = supn∈ω∼

j(αn) = supn∈ω βn =

β ”.

This shows that

E = {α < λ : there is β such that ‖– j(S) “
∼
j(α̌) = β̌ ”} ∈ j(W)

is a cofinal subset of λ and j ↾ E ∈ j(W). a (Subsubclaim 5.2.3.1.2)

Now returning to the proof of the second-half of the Subclaim 5.2.3.1, since S ′
β∩

sup(j ′′λ) is stationary and lim(j ′′E) is club in sup(j ′′λ), there is η ∈ S ′
β∩lim(j ′′E).

Then cf j(W)(η) = ω = cfV(η) (the last equality by Subsubclaim 5.2.3.1.1). Let

ζ < λ be minimal with η ≤ j(ζ).

We have sup(j ′′ζ) = sup(j ′′(ζ ∩ E)) = η ≤ j(ζ). Since the cofinality of η is ω

and j ↾ (η∩E) is increasing and η∩E is cofinal in η, we have j(ζ) = sup(j ′′ζ) = η,

and hence j(ζ) ∈ S ′
β. By elementarity, it follows that ζ ∈ Sα for some α < λ. Then

j(ζ) ∈ S ′
j(α) ∩ S ′

β. Since S ′
ξ’s are pairwise disjoint, it follows that j(α) = β. Thus

β ∈ j ′′λ as desired. a (Subclaim 5.2.3.1)

By Subclaim 5.2.3.1 we have

j ′′λ = {β < sup(j ′′λ) : S ′
β ∩ sup(j ′′λ) is stationary subset of sup(j ′′λ)

in M}.

By Claim 5.2.1, (4), and since j(µ) < λ, it follows that

j ′′λ = {β < sup(j ′′λ) : S ′
β ∩ sup(j ′′λ) is stationary subset of sup(j ′′λ)

in j(W)}.

Apparently the right side of the equality is a definition of an element of j(W).

a (Claim 5.2.3)

6) Since | j(S) | ≤ j(µ) < λ in M , j(S) has the λ-c.c. in M and hence it has the λ-c.c. also in
j(W) ⊆ M .
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Claim 5.2.4 cl-bedrock-3Vj(θ)
W = Vj(θ)

j(W).

` “⊇”: By Claim 5.2.2.

“⊆”: For λ < j(θ), if X ∈ P(λ) ∩W, then j(X) ∈ j(W), and j ′′λ ∈ j(W) by

Claim 5.2.3. Thus j ′′X = j(X) ∩ j ′′λ ∈ j(W). Since we also have j ↾ λ ∈ j(W), it

follows that X ∈ j(W).

Thus, by induction on α ≤ j(θ), we can prove that Vα
W ⊆ j(W). a (Claim 5.2.4)

Now, we have

j(Vθ
W) ⊆︸︷︷︸

by Vθ
W ⊆ Vθ

W and by elementarity of j

j(Vθ
W)

by (5.24) and Claim 5.2.1, (3)︷︸︸︷
⊆ Vj(θ)

W =︸︷︷︸
by Claim 5.2.4

Vj(θ)
j(W) = j(Vθ

W).

It follows j(Vθ
W) = Vj(θ)

W. Since j(Vθ
V) = Vj(θ)

M is a generic extension of

Vj(θ) = j(Vθ
W) by a poset of size ≤ j(κ) (by Claim 5.2.1, (3)). Thus, by elementarity

of j, Vθ
V is a generic extension of Vθ

W by a poset of size ≤κ.

By definition of W and by (5.13), it follows that Vθ
W ⊆ Vθ

W. Since θ was

arbitrary, this implies that W ⊆ W and hence W = W as desired. (Theorem 5.2)

As already noticed Theorem 5.2 is a generalization of Theorem 1.6 in [42] saying

that there is the bedrock (of the universe V) if there is a hyperhuge cardinal.

In Theorem 1.3 in [43] the assumption of hyperhuge cardinal in this theorem is

weakened to the existence of an extendible cardinal.

Though all of three theorems are proved by the same global strategy, the proof

of Theorem 5.2 relies on the details, notably that of Claim 5.2.3 in which the tight

generic hyperhugeness seems to play an essential role. Thus, at the moment we do

not know if the condition of tightly gen. hyperhuge cardinal in Theorem 5.2 can be

replaced by some notion of generic large cardinal corresponding to a large cardinal

of lower consistency strength.

Theorem 5.3 p-bedrock-2Suppose that P is a class of posets. If κ is a tightly P-gen. hyperhuge

cardinal, then κ is a hyperhuge cardinal in the bedrock W of V.

Proof. In V, let λ > κ be arbitrary. Let θ > λ be sufficiently large such that it

satisfies Vθ
V ≺Σn V for sufficiently large natural number n (this is just the condition

(5.13) in the proof of Theorem 5.2). Let Q ∈ P be such that for a (V,Q)-generic

H, there are j, M ⊆ V[H] such that j : V
≺→κ M , θ < j(κ), j ′′j(θ) ∈ M , and

Vj(θ)
V[H] = Vj(θ)

M . Note that W in the proof of Theorem 5.2 coincides with the

bedrock W of V.

Thus we have (5.26) : x-bedrock-19j ′′j(λ∗) ∈ j(W) for all λ∗ < j(θ) by Claim 5.2.3,

and (5.27) : x-bedrock-20j(Vθ
W) = Vj(θ)

W by Claim 5.2.4.
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Let 〈Xα : α < γ〉 be an enumeration of P(P(j(λ)))W in W. Note that γ < j(θ)

by the choice of θ.

By (5.27), we have 〈Xα : α < γ〉 ∈ j(W) and j ′′j(λ) ∈ j(W) by (5.26).

Also for any λ∗ < j(θ) and A ∈ H((λ∗)+) we have j ↾ A ∈ j(W) by (5.26) and

Lemma 2.5 in [21]. It follows that

(5.28) x-bedrock-21I := {α < λ : j ′′j(λ) ∈ j(Xα)} ∈ j(W).

Let U = {Xα : α ∈ I}. Then U ∈ j(W). Furthermore we have

(5.29) U ∈ Vj(θ)
j(W) = j(Vθ

W)

by (5.27)︷︸︸︷
= Vj(θ)

W ⊆ W.

It is a routine to check that U is a κ-complete normal ultrafilter over P(j(λ))W

and {x ∈ P(j(λ)) : x ∩ κ ∈ κ, otp(x ∩ j(κ)) = κ, otp(x) = λ} ∈ U holds.

Since λ was arbitrary, this implies that κ is hyperhuge in W by Lemma 4.3.

(Theorem 5.3)

Corollary 5.4 p-bedrock-3Suppose that P is an arbitrary class of posets and κ is a tightly

P-gen. hyperhuge cardinal. Then ( 1 ) there are cofinally many huge cardinals.

( 2 ) SCH holds above some cardinal.

Proof. Suppose that κ is a tightly P-gen. hyperhuge cardinal. By Theorem 5.2

there is the bedrock W and κ is hyperhuge cardinal in W.

(1): Since the existence of a hyperhuge cardinal implies the existence of cofinally

many huge cardinals (it is easy to show that the target j(κ) of hyperhuge embedding

for a sufficiently large inaccessible λ is a huge cardinal), there are cofinally many

huge cardinals in W. Since V is attained by a set forcing starting from W, a final

segment of these huge cardinals survive in V.

(2): By Theorem 20.8 in [33], SCH holds above κ in W. Since V is a set generic

extension of W. SCH should hold above some cardinal µ ≥ κ. (Corollary 5.4)

Compare Corollary 5.4, (1) with Corollary 4.2 and Corollary 6.7.

For iterable stationary preserving P containing all proper posets, Theorem 5.4, (2)

holds already under the P-Laver-gen. supercompactness of κ. The reason is that

in such case PFA holds (see Theorem 5.7 in [21]), and by Viale [44], SCH follows

from it.

In the following Corollary, we adopt the notation of Ikegami-Trang in [32] on

their version of Maximality Principle.
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Corollary 5.5 p-bedrock-4Suppose that P is the class of semi-proper posets. If κ is a tightly

P-Laver gen. hyperhuge cardinal, then MPΠ2(ω1, all posets) holds.

Proof. Theorem 1.8, (1) in [32] states that the conclusion of the present corollary

holds under MM++ and proper class many Woodin cardinals.

If κ is a P-Laver gen. supercompact cardinal, then κ = ℵ2 and MM++ holds

(see [21]). By Corollary 5.4, tightly P-Laver gen. hyperhugeness implies that there

are proper class many Woodin cardinals. (Corollary 5.5)

Corollary 5.6 p-bedrock-5Suppose that P is the class of all posets. Then the following theories

are equiconsistent:

( a ) ZFC + “there is a hyperhuge cardinal”.

( b ) ZFC + “there is a tightly P-Laver gen. hyperhuge cardinal”.

( c ) ZFC + “there is a tightly P-gen. hyperhuge cardinal”.

( d ) ZFC + “bedrock W exists and ω1 is a hyperhuge cardinal in W”.

Corollary 5.7 p-bedrock-6Suppose that P is one of the following classes of posets: all semi-

proper posets; all proper posets; all ccc posets; all σ-closed posets. Then the following

theories are equiconsistent:

( a ) ZFC + “there is a hyperhuge cardinal”.

( b ) ZFC + “there is a tightly P-Laver gen. hyperhuge cardinal”.

( c ) ZFC + “there is a tightly P-gen. hyperhuge cardinal”.

( d ) ZFC + “bedrock W exists and κrefl is a hyperhuge cardinal in W”.

The proof of Theorem 5.3 can be modified to obtain the following:

Theorem 5.8 p-bedrock-2-0Suppose that P is a class of posets. If a definable cardinal κ is a

tightly super-C(∞)-P-gen. hyperhuge cardinal, then κ is super-C(∞)-hyperhuge in the

bedrock W of V.

The definability of the cardinal κ (e.g. as ω1, 2
ℵ0 etc.) in Theorem 5.8 actually

is in needed so that the conclusion of the theorem is formalizable (in infinitely

many formulas).

Corollary 5.9 p-bedrock-8Suppose that P is one of the following classes of posets: all semi-

proper posets; all proper posets; all ccc posets; all σ-closed posets. Then the following

theories are equiconsistent:

( a ) ZFC + “c is a super-C(∞) hyperhuge cardinal” where c is a new constant

symbol but “... is super-C(∞) hyperhuge ...” is formulated in an infinite collection

of formulas in L∈.
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( b ) ZFC + “there is a tightly super-C(∞)-P-Laver gen. hyperhuge cardinal”.

( c ) ZFC + “bedrock W exists and κrefl
V is a super C(∞)-hyperhuge cardinal in

W”.

Theorem 5.10 p-bedrock-8-0Suppose that κ is tightly super-C(∞)-P-Laver gen. hyperhuge for an

iterable P. Then, for each n ∈ N, there are stationarily many super-C(n)-hyperhuge

cardinals.

Proof. Let n ∈ N. By a modification of Theorem 5.3, we can show that κ is super-

C(∞)-hyperhuge in the bedrock W. Thus there are stationarily many super-C(n)-

hyperhuge cardinals in W by Corollary 4.2. Since V is a set generic extension of W,

the stationarity of these classes is preserved by the generic extension. (Theorem 5.10)

Corollary 5.11 p-bedrock-8-1The consistency strength of the existence of a tightly super-C(∞)-

P-Laver gen. hyperhuge carcinal for one of the iterable P’s in Theorem 4.7 is strictly

between that of the existence of a super C(n)-hyperhuge cardinal, and that of the

existence of a 2-huge cardinal.

Proof. Suppose that Suppose that κ is tightly super-C(∞)-P-Laver gen. hyperhuge

for an iterable P . Then by Theorem 5.10, there is a super-C(n)-hyperhuge λ > κ

with Vλ ≺Σn′ for sufficiently large n′ > n. any super-C(n)-hyperhuge λ0 < λ is

super-C(n)-hyperhuge in Vλ by elementarity. Thus Vλ is a model of ZFC + “there

is a super- C(n)-hyperhuge cardinal”.

If κ is 2-huge then by Lemma 4.5 and Theorem 4.7, there is a set model with

a tightly super-C(∞)-P-Laver gen. hyperhuge carcinal. (Corollary 5.11)

6 Bedrock and Laver genericity

bedrock-LgProposition 6.1 p-bedrock-9Suppose that P is a class of posets and κ is tightly P-gen. ultra-

huge cardinal. By Theorem 5.2 there is the bedrock W of V.

We have (κ+)W = (κ+)V and V is a set generic extension W by some poset P ∈ W

such that W |= |P | ≤ κ.

Proof. Let P0 ∈ W be such that there is a (W,P0)-generic G0 such that V = W[G0].

By the proof of Theorem 5.2, P0 can be chosen such that (6.1) : x-bedrock-21-0V |= |P0 | ≤ κ.

Let (6.2) : x-bedrock-22θ > κ+ |P0 | (in V) be large enough, and such that it satisfies (5.13)

in the proof of Theorem 5.2 for sufficiently large natural number n. Let Q ∈ P
be such that for (V,Q)-generic H there are j, N ⊆ V[H] such that j : V

≺→κ M ,

j(κ) > θ, (6.3) : x-bedrock-22-0|Q | ≤ j(κ), H, j ′′j(θ) ∈M , and Vj(θ)
V[H] ⊆M .

Since |P0 | < θ < j(κ) we have
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(6.4) x-bedrock-22-1W |= |P0 | < j(κ).

Thus

(6.5) x-bedrock-23(j(κ)+)j(W) = (j(κ)+)Vj(θ)
j(W)

=︸︷︷︸
by Claim 5.2.4

(j(κ)+)Vj(θ)
W

by (6.4)︷︸︸︷
= (j(κ)+)Vj(θ)

V

by (6.3)︷︸︸︷
= (j(κ)+)Vj(θ)

V[H]

.

By elementarity it follows that (κ+)W = (κ+)V. By (6.1) this implies that

W |= |P0 | ≤ κ. (Proposition 6.1)

Proposition 6.2 p-bedrock-10Suppose that κ is tightly P-gen. hyperhuge for a class P of posets.

By Proposition 6.1, there is a poset P in the bedrock W with W |= |P | ≤ κ such that

V = W[G] for a (W,P)-generic G.

For any bounded b ⊆ κ in V, there is Pb ∈ W with W |= |Pb | < κ, Pb ⊆ P, such

that G ∩ Pb is (W,Pb)-generic and W[G ∩ Pb] 3 b.

Proof. Since W |=“ |P | ≤ κ” we may assume, without loss of generality, that the

underlying set of P is κ. Let θ > |P | be large enough and such that Vθ ≺Σn V for

a large enough n in accordance with Lemma 3.2.

Let Q ∈ P be such that for (V,Q)-generic H, there are j, M ⊆ V[H] such

that j : V
≺→κ M , θ < j(κ), |Q | ≤ j(κ), Vj(θ)

V[H] ⊆ M and j ′′j(θ) ∈ M (see

Lemma 5.1, (5)).

By Claim 5.2.4, we have (6.6) : x-bedrock-24j(Vθ
W) (= Vj(θ)

j(W)) = Vj(θ)
W. By the choice of

θ, we have (6.7) : x-bedrock-25Vj(θ)
V = Vj(θ)

W[G].

Since the underlying set of P is κ we have j(P) ∩ κ = P and j(G) ∩ κ = G. By

b = j(b) ∈ Vj(θ)
V

by (6.6) and (6.7)︷︸︸︷
= j(Vθ

W)[G] = j(Vθ
W)[j(G ∩ κ)], and since |P | < θ < j(κ), we

have

M |=“ there is P ∈ j(W) with P ⊆ j(P) and j(W) |=“ |P | < j(κ)”

such that j(W)[j(G) ∩ P ] 3 j(b)”.

By elementarity, it follows that

V |=“ there is P ∈ W and G ⊆ P with P ⊆ P and W |=“ |P | < κ”

such that G is (W, P )-generic filter and W[G ∩ P ] 3 j(b)”

as desired. (Proposition 6.2)

Corollary 6.3 p-bedrock-11Suppose κ is a tightly P-gen. hyperhuge cardinal for a class P of

posets. Then we have 2<κ = κ.
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Proof. κ is hyperhuge in the bedrockW of V by Theorem 5.3. Thus,W |= 2<κ = κ.

It follows that essentially there are at most κ many (nice) P-names of elements of

[κ]<κ for posets P of size <κ. Since all elements of ([κ]<κ)V are realizations of

names of this kind by Proposition 6.2, it follows that V |= 2<κ = κ. (Corollary 6.3)

Hamkins [29] proved that if P contains Col(ω, λ) for every λ, and (P ,H(ℵ1))-

RcA holds, then we have Lκ ≺ L for κ = ω1. Practically the same proof concludes

that the mantle W (the intersection of all grounds which is shown to be a model

of ZFC in [42]) also satisfies Vκ
W ≺ W for κ = ω1

V. Note that, since grounds are

downward directed, the mantle of the universe V is also the mantle of any ground

W of V.

Actually, we can say a little bit more.

Lemma 6.4 p-bedrock-12Let W∗ be the mantle of V. ( 1 ) Suppose that (P ,H(2ℵ0)V)-RcA

holds for a class P of posets such that either P contains posets collapsing λ to be

countable for cofinally many cardinals λ, or it contains posets forcing 2ℵ0 arbitrary

large adding reals without collapsing cardinals below the number of the reals added.

Then Vα
W∗

for all α < 2ℵ0 is of cardinality < 2ℵ0 in V.

( 2 ) Suppose that (P ,H(ω1)
V)-RcA holds for a class P of posets such that P

contains posets collapsing λ to be countable for cofinally many cardinals λ.

Then Vα
W∗

for all α < (ω1)
V is countable in V.

Proof. (1): For α < 2ℵ0 , “Vα
W ∗

is of cardinality < 2ℵ0 ” can be formulated as an

L∈-formula with the the parameter α ∈ H(2ℵ0), and it is forcable by a poset in

P . By (P ,H(2ℵ0)V)-RcA, there is a ground W of V (W∗ ⊆ W ⊆ V) such that the

statement above holds in W. Then W |=“Vα
W ∗

is of cardinality < 2ℵ0”, and hence

V |=“Vα
W ∗

is of cardinality < 2ℵ0”.

(2): A proof similar to that of (1) will do.

For α < ω1, “Vα
W ∗

is of cardinality <ℵ1” is a statement represented as an

L∈-formula with the parameter α ∈ H(ℵ1), and it is forcable by a poset in P .

By (P ,H(ω1)
V)-RcA, there is a ground W of V (W∗ ⊆ W ⊆ V) such that the

statement above holds in W. Then W |= “Vα
W ∗

is countable”. and hence V |=
“Vα

W ∗
is countable”. (Lemma 6.4)

Compare the following proposition with Lemma 4.1:

Proposition 6.5 p-bedrock-13Let W∗ be the mantle of V. ( 1 ) Suppose that (P ,H(2ℵ0)V)-

RcA holds for P as in Lemma 6.4,(1). That is, either P contains posets collapsing

λ to be countable for cofinally many cardinals λ, or it contains posets forcing 2ℵ0

arbitrary large adding reals without collapsing small cardinals.
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Then we have Vκ
W∗ ≺ W∗ for κ = (2ℵ0)V.

( 2 ) Suppose that (P ,H((ℵ1)
V))-RcA holds for a class P of posets such that P

contains posets collapsing λ to make it countable for cofinally many cardinals λ in

On.

Then we have Vκ
W∗ ≺ W∗ for κ = ω1

V.

Proof. (1): We show that (V(2ℵ0 )V)
W∗

in W∗ passes the Vaught’s test. Suppose

W∗ |= φ(a, b) where a ∈ (V(2ℵ0 )V)
W∗

and b ∈ W∗. We have a ∈ H(2ℵ0)V by

Lemma 6.4, (1). The statement

ψ := ∃y(y ∈ W∗ ∧ | trcl(y) | < 2ℵ0 ∧W∗ |= φ(a, y))

is an L∈-formula the parameters a ∈ H(2ℵ0)V and forcable by a poset in P (just

by collapsing a large enough cardinal to countable). By (P ,H(2ℵ0))-RcA, it follows

that there is a ground W of V (so W∗ ⊆ W ⊆ V) such that (6.8) : x-bedrock-26W |= ψ.

Let b′ ∈ W be a witness for (6.8). Then we have (6.9) : x-bedrock-27W |= | trcl(b′) | < 2ℵ0 ,

and W∗ |= φ(a, b′).

Since (2ℵ0)W ≤ (2ℵ0)V, it follows that W∗ |= | trcl(b′) | < (2ℵ0)V by (6.9), and

thus b′ ∈ (V(2ℵ0 )V)
W∗

.

(2): can be proved similarly to (1).

We show that (Vω1
V)W

∗
in W∗ passes the Vaught’s test. Suppose W∗ |= φ(a, b)

where a ∈ (Vω1
V)W

∗
and b ∈ W∗. We have a ∈ H(ℵ1)

V by Lemma 6.4, (2). The

statement

ψ := ∃y(y ∈ W∗ ∧ | trcl(y) | < ℵ1 ∧W∗ |= φ(a, y))

is L∈-formula with the parameters a ∈ H(ℵ1)
V and forcable by a poset in P . By

(P ,H(ℵ1)
V)-RcA, it follows that there is a ground W of V (so W∗ ⊆ W ⊆ V) such

that (ℵ6.1) : x-bedrock-26-0W |= ψ.

Let b′ ∈ W be a witness for (ℵ6.1). Then we have (ℵ6.2) : x-bedrock-27-0V |= | trcl(b′) | < ℵ1,

and W∗ |= φ(a, b′).

Since ω1
W ≤ ω1

V, it follows that W∗ |= | trcl(b′) | < (ℵ1)
V by (ℵ6.2), and thus

b′ ∈ (Vω1
V)W

∗
. (Proposition 6.5)

Theorem 6.6 p-bedrock-16Suppose that P is a class of posets and κ := (ω1)
V is tightly P-gen.

hyperhuge. Then the following are equivalent:

( a ) (all posets,H(κ))-RcA holds.

( b ) (all posets,H(κ))-RcA+ holds.

( c ) Vκ
W ≺ W where W is the bedrock of V.
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Proof. (a) ⇔ (b): is trivial. (a) ⇒ (c): By Proposition 6.5, (2).

(c) ⇒ (b): Assume (6.10) : x-bedrock-29Vκ
W ≺ W, and ‖–P“φ(a

✓) ”, for a poset P, an

L∈-formula φ = φ(x), and a ∈ H(κ)V.

By Proposition 6.2, there are poset Q ∈ W with W |= |Q | < κ, and (W,Q)-

generic G ∈ V such that a ∈ W [G]. Let ∼a be a Q-name of a.

By the choice of φ and a, we have

W |= ‖–Q“ there is a poset P which forces φ(∼a
✓) ”.

By the elementarity (6.10), it follows that Vκ
W |= ‖–Q“ there is a poset P which

forces φ(∼a
✓) ”. Thus, there is a Q-name ∼R ∈ Vκ

W such that ‖–Q∗R
∼
“φ((∼a

✓) ”.

We have Q ∗ ∼R,P(Q ∗ ∼R)
W ∈ Vκ

W = H(κ)W ⊆ H(κ)V, and κ is ω1 in V. Hence,

we can construct a (W[G], ∼R[G])-generic G′ ∈ V in ω steps in V. W[G][G′] is a ground

in V and W[G][G′] |= φ(a). (Theorem 6.6)

The following corollary is proved similarly to Corollary 4.2.

Corollary 6.7 p-bedrock-17Suppose that P is a class of posets and ω1 is tightly P-gen. hyper-

huge. If (all posets,H(ℵ1))-RcA holds then there are stationarily many hyperhuge

cardinals. More precisely, under this condition, for any club subclass C of On de-

fined with a parameter, there is a hyperhuge cardinal in C. In particular, there are

class may hyperhuge cardinals.

Proof. Since V is a set generic extension of the bedrock W, it is enough to show

that there are stationarily many hyperhuge cardinals in W (in the same sense as in

the statement of the corollary).

Suppose this is not the case. Then there is an L∈-formula Φ = Φ(x, y) such

that

W |=“∃y ( Φ(·, y) is a club in On

but Φ(·, y) does not contain any hyperhuge cardinal)”.

Since we have V(ω1)V
W ≺ W by Theorem 6.6, it follows that

(ℵ6.3) x-bedrock-30V(ω1)V
W |=“∃y ( Φ(·, y) is a club in On

but Φ(·, y) does not contain any hyperhuge cardinal)”.

Let b ∈ V(ω1)V
W be a witness of (ℵ6.3). Then we have (ω1)

V ∈ Φ(·, b) by the

closedness of Φ(·, b). But this is a contradiction since (ω1)
V is a hyperhuge cardinal

by Theorem 5.4. (Corollary 6.7)

The following proposition is a variation of Theorem 5.7 in [21].
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Proposition 6.8 p-bedrock-14Suppose that κ is tightly P-Laver gen. supercompact for an iter-

able class P of posets. Then we have MA(P , < κ).

Proof. Suppose that P ∈ P and D is a family of dense subsets of P with | D | < κ.

Let
∼
Q be a P-name of a poset such that, for (V,P ∗

∼
Q)-generic H, there are j,

M ⊆ V[H] such that j : V
≺→κ M , P , H ∈M , j ′′λ ∈M , and |P ∗ Q | ≤ j(κ).

Note that j(D) = {j(D) : D ∈ D}. Let G be the P part of H. We have G ∈M .

Thus

G∗ = {p ∈ j(P) : j(q) ≤j(P) p for some q ∈ G}

is an element in M . Since G∗ is j(D)-generic filter over j(P),

M |= ∃G (G is a j(D)-generic filter over j(P)).

By elementarity, it follows that

V |= ∃G (G is a D-generic filter over P). (Proposition 6.8)

Lemma 6.9 p-bedrock-15Suppose that κ is a tightly P-gen. hyperhuge cardinal for a class P of

posets, and a ∈ H(κ) is such that V |= ψ(a) for some L∈-formula ψ = ψ(x). Let W

be the bedrock of V.

Then there is P∗ ∈ Vκ
W with W |= |P∗ | < κ, and (W,P∗)-generic G∗ ∈ V such

that a ∈ W[G∗], W[G∗] |=“ψ(a)”, and W[G∗] is a P-ground of V.

Proof. Assume that V = W[G] where G is a (W,P)-generic filter over a P ∈ W

with W |=“ |P | ≤ κ” (Proposition 6.1). Without loss of generality, we shall assume

that the underlying set of P is κ.

Let λ > κ be such that (6.11) : x-bedrock-27-1Vλ ≺Σn V for a sufficiently large n.7)

Let Q ∈ P be such that, for (V,Q)-generic H, there are j,M ⊆ V[H] such that j :

V
≺→κ M , j(κ) > λ, (6.12) : x-bedrock-28Vj(λ)

V[H] ∈M , and |Q | = j(κ) (see Lemma 5.1, (5)).

Note that we have Vj(λ)
M ≺Σn M by elementarity. By Lemma 3.2, it follows

that M |= Vj(λ) = Vj(λ)
V[H]. Also, by Lemma 3.2 and (6.12), we have Vj(λ)

V[H] =

Vj(λ)
V[H] = Vj(λ)

M .

Thus, for δ < κ, noting j(δ) = δ, we have

M |=“Vj(λ) is a P-generic extension of a ground W which is a model of

ψ(j(a)), and W is a P -generic extension of Vj(λ)
W for some poset

P of size < j(κ).”

7)Here “sufficiently large n” refers, among other things, largeness in terms of Lemma 3.2, and
the absoluteness of “P ∈ P”.
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By elementarity, it follows that

V |=“Vλ is a P-generic extension of a ground W which is a model of

ψ(a), and W is a P -generic extension of Vλ
W for some poset

P of size < κ.”

Now by the choice (6.11) of λ, it follows that

V is a P-generic extension of a ground W which is a model of ψ(a), and

W is a P∗-generic extension of W for a poset P∗ of size < κ. (Lemma 6.9)

A poset P has pre-caliber κ if for any A ∈ [P]≥κ there is B ∈ [A]≥κ such that

B is centered (i.e. b has a lower bound in P for and b ∈ [B]<ℵ0).

LemmaA6.1 (Lemma III, 3.35, in [36]) p-bedrock-18MA(ℵ1) implies that all ccc poset P has

pre-caliber ℵ1.

Proof. Suppose pα ∈ P for α < ω1. It is enough to find a filter containing

uncountably many of pα’s.

For each α < ω1, let Dα = {q ∈ P : q ≤P pβ for some β ≥ α}.
If there is no s ∈ P such that uncountably many Dα’s are dense below posets,

we can construct an strictly increasing sequence 〈βα : α < ω1〉 in ω1 such that

pβα is incompatible with all pβγ , γ < α. But then t {pβα : α < ω1} is a pairwise

incompatible uncountable set which is a contradiction to the ccc of P.

Thus, there is s ∈ P such that there are uncountably many α’s such that Dα

is dense below s. Then since Dα, α < ω1 build a decreasing sequence, Dα is dense

below s for all α < ω1. Let D := {Dα : α < ω1} and let G be a D-generic filter

over P. Then pα ∈ G for all α ∈ I as desired. (LemmaA6.1)

CorollaryA6.2 p-bedrock-19MA(ℵ1) implies that, for all ccc posets P, Q, the product P × Q

has the ccc.

Proof. It is enough to show that P × Q has pre-caliber ℵ1 by LemmaA6.1.

Suppose that 〈pα,qα〉 ∈ P × Q for α < ω1. Since P has pre-caliber ℵ1, there is

I0 ∈ [ω1]
ℵ1 such that {pα : α ∈ I0} is centered in P. Since Q also has pre-caliber

ℵ1 by LemmaA6.1, there is I1 ⊆ [I0]
ℵ1 such that {qα : α ∈ I1} is centered in Q.

{〈pα,qα〉 : α ∈ I1} is centered inc P × Q. (CorollaryA 6.2)

The following Lemma is classical:

Lemma 6.10 p-bedrock-20( 1 ) Suppose that V |= “P × Q is ccc” and G is a (V,P)-generic

filter, then V[G] |=“Q is ccc”.

( 2 ) Suppose that V |= MA(ℵ1). If V |= “P and Q are ccc” and G is a (V,P)-

39



generic filter, then V[G] |=“Q is ccc”.

Proof. (1): Suppose otherwise and there is a f ∈ V[G] such that V [G] |= “ f :

ω1 → Q is such that, f(α), f(β) for distinct α, β < ω1 are pairwise incompatible”.

Let
∼
f be a P-name of f and let pα ∈ P, qα ∈ Q for α < ω1 are such that

pα ‖–P“
∼
f(α) = q̌0 ”. Then {〈pα,qα〉 : α < ω1} is pairwise incompatible in P× Q.

This is a contradiction to the assumption.

(2): By (1) and CorollaryA 6.2. (Lemma 6.10)

Theorem 6.11 p-bedrock-21Suppose that κ is tightly ccc-Laver-gen. hyperhuge. Then the fol-

lowing are equivalent:

( a ) (ccc,H(κ))-RcA holds.

( b ) (ccc,H(κ))-RcA+ holds.

( c ) Vκ
W ≺ W where W is the bedrock of V.

Proof. Note that κ = 2ℵ0 by Theorem 5.8 in [21]. Thus, by Proposition 6.8, MA

holds.

(b) ⇒ (a): is trivial. (a) ⇒ (c): By Proposition 6.5, (1).

(c) ⇒ (b): Suppose (in V) that (6.13) : x-bedrock-31‖–P“φ(a) ” for a ccc poset P, L∈-

formula φ = φ(x), and a ∈ H(κ).

By Lemma 6.9 there is P∗ ∈ W with W |= |P∗ | < κ and (W,P∗)-generic G∗ ∈ V

such that (6.14) : x-bedrock-32a ∈ W[G∗], (6.15) : x-bedrock-33W[G∗] |= MA, and (6.16) :

x-bedrock-34

W is a ccc-ground

of V.

By (6.13) and (6.16), we have

W[G∗] |=“ there is a ccc poset P such that ‖–P “φ(a) ””.

By the assumption (c), e have (6.17) : x-bedrock-35Vκ
W[G∗] ≺ W[G∗]. Hence

(6.18) x-bedrock-36Vκ
W[G∗] |=“ there is a ccc poset P such that ‖–P “φ(a) ””.

Let Q∗ be a witness of (6.18). Then W[G∗] |= |Q∗ | < κ and W[G∗] |=“Q∗ is ccc” by

(6.17). By (6.16) and Lemma 6.10, we have V |=“Q∗ is ccc”. Since P(Q∗)W[G∗] ∈
Vκ

W[G∗] and κ = 2ℵ0 in V, MA (in V) implies that there is a (W,Q∗)-generic H∗ ∈ V.

W[G∗][H∗] |= φ(a) since Q∗ is a witness of (6.18), and W[G∗][H∗] is a ccc-ground

of V by Lemma 6.10. (Theorem 6.11)

7 The Laver-Generic Maximum

LGM
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Suppose that κ0 < κ1 < κ∗ are regular cardinals such that Vκ∗ |= ZFC and κ0, κ1

are super-C(∞)-hyperhuge cardinals in Vκ∗ . Note that the existence of one 2-huge

cardinal imply the consistency of this constellation (see Lemma 4.5).

Consider the following construction:

first make κ0 a tightly super-C(∞)-all posets-Laver gen. hyperhuge by a

poset of size κ0 as in Theorem 4.7, (4). Then we force κ1 to be a tightly

super- C(∞)-semi-proper-Laver gen. hyperhuge by a poset of size κ1 as in

Theorem 4.7, (2’).

The resulting model satisfies:

(7.1) x-bedrock-37ZFC

+ “ω2 = 2ℵ0 is the tightly super-C(∞)-semi-proper-Laver gen. hyperhuge

cardinal”

+ “There is a semi-proper ground W of the universe V such that

(2ℵ0)W = ω1 = ω1
V is the tightly super-C(∞)-all-posets-Laver gen.

hyperhuge cardinal in W”.

We want to call (7.1) Laver Generic Maximum (LGM), of cause not because of

the maximality of possible consistency strength among similar assertions (this is not

true since we can also switch in some other notion of large cardinal stronger than

the hyperhugeness) but rather because this combination of the properties implies

that practically all set-theoretic assertions known to be consistent with ZFC are

realized either as consequences of (7.1) or as theorems in (many of) grounds of V

or some other inner models of V.

So we have under the LGM (7.1) that

– The bedrock W exists (Theorem 5.2).

– ω1
V and ω2

V are super-C(∞)-hyperhuge cardinals in W (Theorem 5.8).

– V(ω1)V
W ≺ W. (Theorem 4.1).

– V(ω2)V
W ≺ W. (Theorem 4.1).

– (semi-proper,H(2ℵ0))-RcA+ holds (Theorem 4.10).

– (all posets,H(ℵ1)
W)-RcA+ holds (Theorem 4.10, and since RcA+ for all

posets with the same parameters is preserved by generic extensions).

– For each natural number n there are stationarily many super-C(n)-hyperhuge

cardinals (this holds in W by Corollary 4.2, and since

the statement is preserved by set forcing, it also holds in V).
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– For any natural number n and any a ∈ H(2ℵ0), there is a semi-proper

ground W with a ∈ W such that W |=“2ℵ0 is the tightly super-C(n)-ccc-

Laver gen. hyperhuge cardinal”. (there is a super- C(n)-hyperhuge

cardinal

by the previous item and hence we can force the statement by a ccc

forcing (by a variation of Theorem 4.7, (3)). (semi-proper,H(2ℵ0))-

RcA+ now implies the existence of a semi-proper ground W with

a ∈ W satisfying the statement).

– Unbounded Resurrection Axiom of Tsaprounis in [40] for semi-proper

(see [17]).

– MM++ (by Theorem 5.7 in [21]).

– 2ℵ0 = ω2 (either by MM++ or by Theorem 3.3, (4)).

– For any known instance CM of Cichoń’s Maximum (even one of those in

which some mild large cardinals are involved) and any a ∈ H(ℵ2) there is

a semi-proper ground W with a ∈ W such that W |= CM

(by (semi-proper,H(2ℵ0))-RcA+).

– · · ·

If we can accept the tightly super-C(∞)-semi-proper-Laver gen. hyperhuge con-

tinuum as a natural and/or even desirable set-theoretic assumption, (7.1) may be

considered as the final solution to the continuum problem (and actually much more)

in terms of the properties listed above (for a discussion about an argument sup-

porting the naturalness of the tightly super-C(∞)-semi-proper-Laver gen. hyperhuge

continuum, see also section 2 of [18]).

On the other hand, it also seems that Theorem 6.6 and Theorem 6.11 suggest

the naturalness of each of the combinations:

(7.2) x-bedrock-37-0ZFC

+ “ω1 = 2ℵ0 is the tightly super-C(∞)-all posets-Laver gen. hyperhuge

cardinal”.

(7.3) x-bedrock-38ZFC

+ “2ℵ0 is the tightly super-C(∞)-ccc Laver gen. hyperhuge cardinal”

+ “There is a ccc-ground W of the universe V such that (2ℵ0)W = ω2
W

is the tightly semi-proper-Laver gen. hyperhuge cardinal in W”

+ “There is a semi-proper-ground W of the universe V such that

(2ℵ0)W = ω1 = ω1
V is the tightly super-C(∞)-all-posets-Laver gen.

hyperhuge cardinal in W”.
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The combinations axioms (7.2) and (7.3) will be also examined further in the sub-

sequent papers. Note that (7.3) implies that the continuum is extremely large

(weakly Mahlo and much more, see [21], [26]), and that the Fodor-type Reflec-

tion Principle (FRP) holds (FRP holds in the ccc-ground W with the tightly semi-

proper-Laver gen. hyperhuge continuum, since this implies MM++ in W (by Theo-

rem 5.7 in [21]). Since FRP is preserved by ccc generic extension, V also satisfies

it).
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