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Abstract We examine the Zermelo Fraenkel set theory with Choice (ZFC) enhanced
by one of the (structural) Reflection Principles down to a small cardinal and/or
Recurrence Axioms defined below. The strongest forms of Reflection Principles
spotlight the three scenarios in which the size of the continuum is either ¥X;, or
N,, or very large, while the maximal setting of Recurrence Axioms points to the
set-theoretic universe with the continuum of size N,.

Since both the Reflection Principles and Recurrence Axioms can be interpreted
as preferable candidates of the extension of ZFC in terms of the criteria of Godel’s
Program, the maximal possible (consistent) combination of these Principles and
Axioms, or even some natural strengthening of the combination (which we want to
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call “Laver-generic Maximum”) may be considered as the ultimate extension of ZFC
(of course “ultimate” only for now — because of the Incompleteness Theorems): it
will resolve the size of the continuum to be N and integrates practically all known
statements consistent with ZFC in itself either as its consequences (e.g. MM**) or
as theorems holding in many grounds of the universe (as it is the case with Cichoit’s
Maximum).
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1 Introduction

In the following, we examine the Zermelo Fraenkel set theory with the Axiom of
Choice (ZFC) enhanced by one of the (structural) Reflection Principles down to
a small cardinal and/or Recurrence Axioms defined below. The strongest forms
of Reflection Principles (existence of a/the $-Laver-generic large cardinal — see
Section 2 below) spotlight the three scenarios in which the size of the continuum
is either N;, or N, or very large (see Theorem 8), while the maximal setting of
Recurrence Axioms points to the set-theoretic universe with the continuum of size
N> (see the end of Section 3).

Since both the Reflection Principles and Recurrence Axioms can be interpreted
as preferable candidates of the extension of ZFC in terms of Godel’s Program ([23],
see also [1]), the maximal possible (consistent) combination of these Principles
and Axioms, or even some natural strengthening of the combination, that is, either
the principle LGMy proposed in Section 6 or some further extension of it in the
future (which we want to call “Laver-generic Maximum”) may be considered as
the ultimate extension of ZFC (of course “ultimate” only for now — because of
the Incompleteness Theorems): it resolves the size of the continuum to be 8, and
integrates practically all known statements consistent with ZFC in itself either as its
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consequences (e.g. MM*) or as theorems holding in many grounds of the universe
(as it is the case with Cichon’’s Maximum [25], [26]) — see the discussions at the
end of Sections 3, 6.

2 Reflection down to a small cardinal

The small cardinal mentioned in the title of this section may be considered as not very
small by non-set-theoretic mathematicians: It is known that many “mathematical”
reflection statements with reflection number < kpef; 1= max{Ns, 280} hold (in some
extension of ZFC). Some of them are even theorems in ZFC. For example,

Theorem 1 (1) (Dow [8]) If X is a countably compact Hausdor{f non-metrizable
space then there is a subspace Y of X of cardinality < N, such that Y is also non-
metrizable.

(2) Let L(Q) be a logic with new (first-order) quantifier such that “Qx ...” is
interpreted as “there are uncountably many x such that ...”. For any structure W of
countable signature, there is B <r gy U of size < N. O

From very early on, it was known that, starting from a very large cardinal, we
can construct models of set theory in which various strong statements on (structural)
reflection down to < kyefy 1= max{N,, 280} hold.

For example, Ben-David [5] in 1978 mentions a theorem by Shelah which states:

Theorem 2 (S. Shelah, [5]) Suppose that k is supercompact and P = Col(Ny, k).
Then, for (V,P)-generic G, we have

VIG] E for any structure W of countable signature, there is B <y, A
of cardinality < 8.

Here, Ly, denotes the stationary logic with monadic second-order variables
X which run over countable subsets of the underlying set of respective structures
and with the second-order quantifier stat X which is to be interpreted as "there are
stationarily many countable sets X".

The elementary submodel relation B <7 . A is defined by B = ¢(bo, ...)
o WA E ¢(by,...) for all Ly, -formula ¢ = ¢(x, ...) without free second-order
variables, and for all by - - - € |B|.

Today, we can understand Shelah’s theorem above as a special case of the following
theorem. For a class P of posets, a cardinal « is said to be - generically supercompact
if, for any A > «, there is a poset P € P such that, for (V,P)-generic G, there are
j.M C V[G] suchthat j : V5, M,and! j”1€ M.

Theorem 3 Suppose that K, is P-generically supercompact where P is the class of
all <N-closed posets. Then

L' With “j : V5, M” we denote the situation that M is transitive, j is an elementary embedding
of Vinto M, and « is the critical point of j.
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(*1)  for any structure W of countable signature, there is B <r_,.. A of cardinality
< Kg.

Proof. The condition “N; is P-generic supercompact for = the class of all < ;-
closed posets.” is equivalent to the Game Reflection Principle (GRP) (Theorem 8 in
Konig [30] — see [15] for a generalization of Konig’s theorem in [30] — note that
what we call GRP here and [15] is called “the global Game Reflection Principle” in
[30]). By Theorem 4.7 in [15], GRP implies (*1). O (Theorem 3)

The downward Lowenheim-Skolem Theorem (*1) for Ly, 4, is actually a strong
reflection property. For example the reflection of uncountable coloring number of
graphs down to < N, (the following (*2)) is a consequence of (*1):

(*2)  For any graph G of uncountable coloring number, there is a subgraph H of
G of size N with uncountable coloring number.

This implication can be proved directly but we can also see this using the terminology
introduced in [15] as follows: The downward Lowenheim-Skolem Theorem (*1) for
Lgtar is equivalent to the Diagonal Reflection Principle DRP(ICy,) down to an
internally club set (Corollary 3.6 in [15]). This implies the reflection principle
RP|UN0 down to an internally unbounded set of size < ;. This reflection principle
is equivalent to Axiom R of Fleissner (Lemma 2.6 in [20]). From Axiom R, the
Fodor-type Reflection Principle (FRP) follows (Corollary 2.6 in [13]). (*2) is a
consequence of (actually equivalent to FRP over ZFC ([19])).

As it is mentioned in the proof of Theorem 3, the condition (*1) is equivalent
to Game Reflection Principle (GRP). As the name suggests, GRP is actually a
reflection principle which claims the reflection of the non-existence of winning
strategy of certain games of length w; down to subgames of size < N;. A remarkable
feature of this principle is that it implies CH (Theorem 8 in [30]).

The notion of Laver-generic large cardinals was introduced in [16] in search for
reflection principles which generalizes GRP. The following definition of Laver-
generic large cardinals is a streamlined version adopted in later papers [14], [12] etc.
and slightly different from the one given in [16].

We call a non-empty class P of posets iterable if it satisfies:

@ {1yeP, @ Pisclosed with respect to forcing equivalence
(i.e.if P € Pand P ~ P’ then IP’ € P),

@  closed with respect to restriction
(l.e.if P e P thenP [ p € P forany p € P), and,

@ forany P € £ and P-name @, |Fp“Q € P implies P * Q € P.

For an iterable class # of posets, a cardinal « is said to be P-Laver-generically
supercompact if, forany 1 > k and P € P there is a P-name (Q with |Fp Q eP”,
such that for (V,IP = Q) -generic H, there are j, M C V[H] such that j : V S M,
jk)y> A, P,H,j"1e M.

k is tightly P-Laver-generically supercompact if it is P-Laver-generically su-
percompact and @), j and M for each IP € P in the definition of P-Laver-generic
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supercompactness additionally satisfy that IP * @ is forcing equivalent to a poset of

size < j(k).2

A cardinal « is (tightly) P-Laver-generically superhuge, if « satisfies the
conditions of (tightly) #-Laver-generically supercompactness, with the condition
Jj”A € M replaced by j” j(kx) € M. Clearly a (tightly) -Laver-generically super-
huge cardinal is (tightly) -Laver-generically supercompact.

The name “Laver-generic large cardinal” is chosen in connection with fact that
Laver-function plays central role in the construction of standard models with Laver-
generic large cardinals (see Theorem 9).

Laver-genericity corresponding to other notions of large cardinals can be defined
canonically: A cardinal « is P-Laver-generically ultrahuge, if it enjoys the definition
of P-Laver-generically supercompactness and that the condition “j””1 € M” in the
definition of supercompactness is replaced by the stronger “V ;( A)V[HJ eM”.

That is:
k is (tightly) P-Laver-generically ultrahuge, if for any 4 > k and IP € P there is a

P-name Q with |Fp “Q € P 7, such that for (V, P x ©)-generic H,

there are j, M C V[H] such that j : V 55, M, j(x) > A, P, H, Vj“)V[lH] eEM,

(and | IP = @ | < j(x)).

k is P-Laver-generically hyperhuge if k satisfies the definition obtained by re-
placing “j””A € M” in the definition of $-Laver-generically supercompactness by

&6j //j(/l) E M’7.
That is:

Kk is (tightly) P-Laver-generically hyperhuge, if for any 1 > x and IP € ? there is a
P-name Q with |Fp “@Q € P 7, such that for (V, P « QQ)-generic H,

there are j, M € V[H] such that j : V5, M, j(x) > A, P, H, j” j(1) € M,
(and | P = (INQ | < j(x)).

The following implications follow from the definitions:

k is (tightly) P-Laver-generically ultrahuge

U
k is (tightly) P-Laver-generically superhuge

U

K is (tightly) P-Laver-generically supercompact

The relationship between Laver-generic hyperhugeness and Laver-generic ultra-
hugeness is slightly more subtle:

2 In the following, we shall denote this condition simply by “| P * @ | < A”. More generally, we

shall simply write “| IP | < A” for a poset IP to say that “the poset IP is forcing equivalent to a poset
of size < A".
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Lemma 4. ([21]) For any class P of posets, if « is tightly P-Laver-generically
hyperhuge then « is tightly P-Laver-generically ultrahuge.

Proof. Suppose that « is tightly $-Laver-generically hyperhuge, and 1 > «. Without
loss of generality, we may assume that

V) <5, V for sufficiently large n. (*3)

Let 2* := (|Va|H)V. For P € P, let Q be a IP-name such that |-p“@Q € £ and,
for (V, P x Q)-generic H, there are j, M C V[H] such that

JiVSeM, jk) > A%, (*4)
j"j(2"), P, He M, and (*5)
[P+ Q < jx). (*6)

Claim 4.1. Fora < j(1), V" € M.

I By induction on @ < j(A4), we prove
Vol e Mand Vv,V c VM. 7)

For @ < w, this is clear. Suppose we have VO,V € M and V(,V C VoM. Then,
since M | |V,M | < j(1*) (by the choice of 1* and) by elementarity, PV,
PM (v, M) C M by (*5) and Lemma 2.5, (5) in [16]. Again by Lemma 2.5, (5) in
[16], it follows that ViV = PV (VoY) € M, and ViV = PV (V,Y) € PM (VM) =
Va+1M

If y < j(A)is alimit, and V, € M, M |= Vo,V C V, forall @ < y, then (V" :
a <) € M. Hence by Lemma 2.5, (5) in [16], it follows that (VQV Ta<y)yeM.
Thus V),V = U<y Vo' € Mand V,V = U,y VoV € Ugey Vo™ = VM. 4 cuiman

Now, it follows that

by (*3) and Lemma 13
—
M > Vi [H] = Vj(/l)v[]H].
——
by Claim 4.1 and (*5)

This shows that j and M taken here are as in the definition of #-Laver-generically
ultrahugeness. O wemma

At first glance, it is not immediately clear if the notion of Laver-generic large
cardinal is definable in the language L¢ of ZFC. In [18] an abstract generic version
of extender is introduced to show the definability of Laver-generic large cardinals.

Laver-generic supercompactness implies double plus versions of forcing axioms.
For a class # of posets and cardinals «, u, we denote with MA* (P, < k) and
MA*=H(P, < k) the following versions of Martin’s Axiom:
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MA™ (P, <k): Forany P € P, any family D of dense subsets of IP with | D | < «
and any family S of P-names such that [S| < u and |p“S is a stationary
subset of w; ” for all § € S, there is a D-generic filter & over IP such that S[(G]
is a stationary subset of w forall § € S.

MA*=H(P <k): For any P € P, any family D of dense subsets of IP
with |D| < « and any family & of P-names such that |S| < u and
[P S is a stationary subset of ;¢ (6s) ” for some w < pg < s < p with
ns regular, for all § € S, there is a D-generic filter G over IP such that S[G] is
stationary in #;, (6s) forall § € S.

Clearly MA*™ = “2(P, < k) is equivalent to MA*“! (P, < k).
MM** is MA*“! (stationary preserving posets, < N3).

Theorem 5 (Theorem 5.7 in [16], see also [12]) For an iterable class P of posets
such that

the elements of P preserve stationarity of subsets of P, (6) forall p < 6 < k, (*8)

if k > Ny is P-Laver-generically supercompact then MATY<F (P, < k) holds for all
H <K O

In contrast to usual generic large cardinals, a Laver-generic large cardinal if it
exists, is unique and it is the size of the continuum in many cases.

Lemma 6. ([12], [21], see also Proposition 4, in [11]) (1) If k is P-generically
measurable for an w| preserving iterable P, then w; < k.

(2) Ifkis P-Laver-generically supercompact for an w\-preserving iterable P with
Col(wy, {ws}) € P then k = w;.

(3) If « is P-Laver-generically supercompact for an iterable P which contains a
poset adding a new real, then k < 2™,

(4) If kis P-generically supercompact for an iterable P such that all posets in P
do not add any reals then 2™ < k.

(5) If kis P-Laver-generically supercompact for an iterable P which contains a
poset which collapses N then k = Nj.

Proof. We only prove (5) since it is not explicitly given in [21]. Suppose that « is
P-Laver-generically supercompact and IP € ? is such that |-p N1V is countable 7.
If k # Nj, then we have N; < k. Let Q be a IP-name of a poset such that, for
(V, P xQ)-generic H, there are j, M € V[H] such that j : V ScMandP,He M.
ByHNIP € M and since NV < crit(j), we have M |=“?’<1V = j(va) is countable”.
This is a contradiction to the elementarity of ;. O wemma6)

A cardinal « is called greatly weakly Mahlo if k is weakly inaccessible and there
exists a non-trivial < k-complete normal filter ¥ over « such that {u < x : pisa
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regular cardinal} € ¥, and F is closed with respect to the Mahlo operation M¢ 3
where

S +— M{(S) :={a €S : a has uncountable cofinality and
S N a is stationary in a} ([17D.

Note that the Mahlo operation given above is slightly different from the one in
[4].

If « is greatly weakly Mabhlo then it is hyper-weakly Mahlo (Proposition 3.4 in
[L7D).

The tightness of the Laver-genericity can be still strengthened as follows: a cardi-
nal « is tightly™ P-Laver-generically x-large, for a notion “x-large” of large cardinal
(e.g. “supercompact”, “superhuge” etc.) if it satisfies the definition of tightly -
Laver-generically x-large cardinal with the condition “|IP * Q| < j(x)” in the
definition being replaced by the condition “there is a complete Boolean algebra B
of size j(«) such that B* is forcing equivalent to IP x QQ”.

~

Theorem 7 (1) (Theorem 3.5 in [17]) If k is a {IP}-generically measurable for a
poset P with the u-cc for some u < k, then k is greatly weakly Mahlo.

(2) (Theorem 5.8 in [16]) If k is tightly P-Laver-generically superhuge for a class
P of cce posets such that at least one element of P adds a real, then k = 2™,

(3) ([21]) For an iterable class P of posets, if k is tightlyt P-Laver-generically
hyperhuge, then 2% < k. O

We give a sketch of the proof of Theorem 7, (3) after Corollary 38 .

Theorem 8 ([16], [21] for (A) and (A”)) (A) If P is the class of all <N-closed
posets, and k is P-Laver-generically supercompact, then k = N, and CH holds.

(B) If P is either the class of all proper posets or the class of all semi-proper
posets, and « is P-Laver-generically supercompact, then k = 28 = K,

(T") If P is the class of all ccc posets, and k is P-Laver-generically supercompact,
then k is very large and k < 280

(I'") If P is the class of all ccc posets, and « is tightly P-Laver-generically superhuge,
then k is very large and k = 280

(A) IfP is the class of all posets, and « is P-Laver-generically supercompact, then
K= N].

(A") If P is the class of all posets, and « is tightly* P-Laver-generically supercom-
pact, then k = Nj.

Proof. (A): By Lemma 6, (2),(4). (B): By Lemma 6, (2),(3) and Theorem 5.
(I'): By Lemma 6, (3), and Theorem 7, (1). (I"): By (I') and Theorem 7, (2).
(A): By Lemma 6, (5). (A’): By (A) and Theorem 7, (3). O (theorem's)

The consistency of the existence of a -Laver-generic large cardinal can be proved
under the existence of corresponding genuine large cardinal.

3 Closedness here means that for any S € 7, we have M€ (S) € F.
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Theorem 9 (Theorem 5.2, [16]) (A) Suppose that « is supercompact and P =
Col(N1, k), then, in V]G], for any (V,P)-generic G, N,VIG] (= k) is tightly P-
closed-Laver-generically supercompact for the class P of all o-closed posets (and
CH holds).

(B) Suppose that « is superhuge with a Laver function f : k — V, for superhuge-
ness. If P is the CS-iteration for forcing PFA along with f, then, in V[G] for any
(V,P)-generic G, N VG (= k) is tightly* IP-Laver-generically superhuge for the
class P of all proper posets (and 2% = X, holds).

(B’) Suppose that k is superhuge with a Laver function f : k — V, for superhuge-
ness. If IP is the RCS-iteration for forcing MM along with f, then, in V[ G] for any
(V,P)-generic G, N VI (= k) is tightlyt P-Laver-generically superhuge for the
class P of all semi-proper posets (and 28 = R, holds).

(T") Suppose that « is supercompact with a Laver function f : « — V, for
supercompactness. If P is a FS-iteration for forcing MA along with f, then, in V]G]
for any (V,P)-generic G, 2™ (= k) is tightly* P-Laver-generically supercompact
for the class P of all ccc posets(and k = 2™ while « still is very large).

(A) Suppose that « is supercompact with a Laver function f : « — V, for
supercompactness. If IP is a FS-iteration for forcing f where f is used to book-keep
through all posets in V,, then in ' [G] for any (V,P)-generic G, 2% (= k) is tightly*
P-Laver-generically supercompact for the class P of all posets (and CH holds). O

Theorem 9 above also holds for all other notions of large cardinal and correspond-
ing Laver-generic version of generic large cardinal except (B) and (B’) in which the
supercompactness does not seem to be strong enough to show that the resulting
generic extension in the proof satisfies the expected Laver-genericity.

In a sense, the cases treated in Theorem 11 are (almost) exhaustive. This can be
seen in the following:

Theorem 10 Suppose that P is an iterable class of posets such that all P € P are
wi-preserving and P contains a poset P* whose generic filter destroys a stationary
subset of wy.* Then there is no P-Laver-generically supercompact cardinal.

Proof. Suppose, toward a contradiction, that # is as above and there is $-Laver-
generically supercompact cardinal «.

Let S C w; be stationary such that there is a poset P* € ¥ shooting a club
in wy \ S. Let 4 > |IP*| be large enough. By assumption, there is a IP*-name @
of a poset such that |Fp-“Q € P and, for (V,P* « QQ)-generic H, there are j,
M C V[H] such that

JiVSeM, (*9)
j(k) > A, and (*10)

4 «“P* destroys a stationary subset of w;” means here that a P*-generic set codes a club subset of
wi \ S in some absolute way.

Note that, for stationary and co-stationary subset S of wj, various posets are known which
preserve w; while shooting a club in w; \ S (e.g. see [39]).
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j'A P, He M. (*11)

By the choice of IP* (¢ IP* = QQ), there is a nice $*-name C € V of a club set

cwV\S. By (*10), (*11) and by the choice of A, we have C € M.

Thus M S is a non-stationary subset of w;” by (*11). Since crit(j) = k > w;
by Lemma 6, (1), we have S = j(S). By V S is stationary subset of w,”, this is a
contradiction to the elementarity (*9) of ;. O (heorem 10y

P-Laver genericity for stationary preserving %, in particular those # containing
all o-closed posets can be regarded as a strong reflection principle.

Theorem 11 Suppose that P is an iterable class of posets which are w\-preserving
and include all o-closed posets. If k is P-Laver-generically supercompact then

(*1)  for any structure W of countable signature, there is B <r_,,, W of cardinality
< Nz.

Proof. By Theorem 5, MA** (o-closed) holds. Cox [7] proved that MA** (o--closed)
implies DRP(< N, [Cy,) (in the notation of [15]). By Lemma 3.5 in [15], this
principle is equivalent to (*1). O (Theorem 11)

The existence of P-Laver generic large cardinal for the class of all ccc-posets also
implies a reflection statement similar to (*1) (see Theorem 5.9, (3) in [16]).

3 Recurrence, Maximality, and the solution(s) of the Continuum
Problem

In the following, an inner model W of a universe U (in most of the cases U is the
real universe V but sometimes it is some other universe obtained from V) is called
a ground of U, if there is a poset P € W and (W, P)-generic G € U such that
U=W[G].

For a class P of posets and a set A (of parameters), the Recurrence Axiom for P
and A ((P, A)-RcA, for short’) is the following assertion formulated as an axiom
scheme in the language L of set theory:

(P, A)-RcA: For any Le-formula ¢ = ¢(x) and @ € A, if |Fp “@(@’)” for
a P € P, then there is a ground W of the universe V such that @ € W and
W E ¢(a).

The term “Recurrence Axiom” is chosen in allusion to, but not necessarily in (full)
agreement with, Nietzsche’s ,ewige Wiederkehr des Gleichen** (eternal recurrence
of the same), or perhaps rather to Poincaré recurrence theorem: if we understand
the relation “N is (set) generic extension of M as the timeline in the set generic
multiverse, we can interpret (£, A)-RCA as saying that

5 The notation “RcA” is chosen to avoid the collision with “RCA” which is used in Reverse
Mathematics to denote “recursive comprehension axiom”.
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if something (formulatable with parameters in A) happens in one of the near future universe
(in terms of P) then is is already happened in a not very far past universe (not very far, in
the sense that the “present” is attainable from there by a set forcing).

The following is a natural strengthening of the Recurrence Axiom:

(P, A)-RcA*: For any Lc-formula ¢ = ¢(¥) and @ € A, if |Fp“@(a’)” for a
P € P, then there is a P-ground W of the universe V such that @ € W and
W ¢(a).

Here an inner model W of V is called a $-ground if there is a poset P € W with

W E P € £ and (W, P)-generic G € V such that V = W[G].

We shall use the following version of Laver-Woodin Theorem often without
mention. It implies in particular that (#, A)-RcA and (P, A)-RCcA™* are actually
formalizable as axiom schemes in Lc.

Theorem 12 (Reitz [35], Fuchs-Hamkins-Reitz [9]) There is an Lc-formula ®(x,r)
such that the following is provable in ZFC:

(*12) forallr, ®(-,r) :={x : ©(s,r)} is a ground inV,
(*13) for any ground W (of V), there is r such that W = ®(-,r), and

*14) if W is a ground of V and N = W[G] where G is a (W, IP)-generic for
P € W, then r such that W = ®(-,r) can be chosen as an element of
PP[MHY).

We put together here some other basic facts which will be used in the following.
The next lemma was actually already used in the proof of Lemma 4.

Lemma 13. (see [21] for a proof) If a is a limit ordinal and V,, satisfies a large
enough fragment of ZFC, then for any P € V4, and (V,IP)-generic G we have
Vo G] = Va/V[G]-

Proof. “C”: This inclusion holds without the condition on the fragment of ZFC.
Also the condition “IP € V,,” is irrelevant for this inclusion.
We show by induction on @ € On that V,[G] C V,VI%! holds for all @ € On.
The induction steps for @ = 0 and limit ordinals « are trivial. So we assume that
VoG] € Vo VIE] holds and show that the same inclusion holds for @ + 1. Suppose
a € Vou1[G]. Thena = gm for a IP-name @ € V41. Since g € Vi, each (b, p) € a
is an element of V. By induction hypothesis, it follows that QG € V(IV[G] . It follows
that gG C V[,V[G]. Thus a = gG € V(MV[G].
“2”: Suppose that a € V,VIG]. Note that we can choose the “large enough frag-
ment of ZFC” which should be satisfied in V,, such that (x) v, VIG] still satisfies a
large enough fragment of ZFC, although the fragment may be different from the one
V, satisfies. In particular we find a cardinal 1 > | P | in V,, V%! (and hence also in
V(G ~
V[G]) such that a € (H(/I)V"[(] c H)VIET c v, VIG] Note that
HOY""" = (a : |wel(a)] < 3" ¢ {a : |wrel(a)| < BVICT =
‘H(/I)V[G] )
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Let a* € H(2)VIE] be a transitive set such that a € a*. Then a* can be coded by
a subset of 1. We can find the subset of A in V[(5] and this subset has a nice IP-name
which is an element of V,,V since P € V,,. This shows that a € V,, [G].  Owenmarn

Lemma 14. For any n € N\ 1, there is a X,-formula ¢, = ¢,(x,y) (for each
finite sequence X of variables®) such that, if U is a transitive models of large enough
fragment of ZFC, then for any X, formula ¢ = y(X) there is p € H(w) such that
U E ¥ (a) ifand only if U E ¢, (a, p) for all a € U.

Proof. Forn =1, ¢1(x,y) can be chosen as a X;-formula saying

®1)  3IM (M is transitive, ¥ € M, M |=*large enough fragment of ZFC”
yis acode of a Xj-formula and M E Ly.(X)).

If ¢,(x,y) is defined for x of various lengths we can define ¢,.(X) as
EJCﬂtp,, ()_C’ X, y)- O Cemma 14)

Lemma 15. (1) For any n* € N there is n > n* such that, if Vo <3, V, then
VolG] <s,. VIG] for any P € V, and (V,P)-generic G.

(2) For a natural number n, there is n’ > n such that, for any « € On, if
Vol Gl =s,, V[G]foraposetP € Vy and (V,P)-generic G, then we have Vo <3, V.

Proof. (1): Suppose that n > n* is sufficiently large, V), < V, @ € V,[G], and
¢ = ¢(¥) is a X,--formula. There are P-names @ € V, such thata = a[G].

If Va[G] E ¢(a), there is p € G such that V = p|-p “¢(a) ”. By the choice
of n it follows that V = p |Fp “¢(a) ”. Thus V[G] E ¢(a).

The same argument also applies to —¢.

(2): We use the Lc-formula @(x,y) of Lemma 12. By assumption, there is
r € Vo[ G] such that

Vo =@, r)lCl =@,V NV, [G] c ®(,r)).

Vol G

For any X,,-formula ¢(x) and a € ®(-,r) I, Since ¢®-") is a %, -formula

(by the choice of n’), we have )
by assumption

—
Vo E@(@ & VolGlE¢* (@ o VIG]E¢*" (@)
e VE ().
This shows that V,, <5, V. O emma 15)

RcA and RcA* are actually (almost) identical with (certain variations of) already
well-known axioms and principles.

For a class P of posets, an Lc-formula ¢(a) with parameters a (€ V) is said
to be a P-button if there is P € P such that, for any IP-name @Q of poset with

IFp“Q € P, we have |Fp.q “ (@)

6 Similarly to the convention of some computer languages we consider here that we have distinct
@n (X, y) for each length of sequence X of variables.
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If ¢(a) is a P-button then we all IP as above a push of the button ¢(a).

For a class IP of posetsand a set A (of parameters), the Maximality Principle for P
and A (MP (P, A), for short) introduced in Hamkins [27] is the following assertion
formulated in an axioms scheme in L¢:

MP(#, A): For any L-formula ¢(X) and a € A, if ¢(a) is a P-button then ¢(a)
holds.

Proposition 16. (Barton, Caicedo, Fuchs, Hamkins, Reitz, and Schindler [3]) Sup-
pose that P is an iterable class of posets and A a set (of parameters). (1) (P, A)-
RcA* is equivalent to MP (P, A).

(2) (P, A)-RcA is equivalent to the following assertion:

(*15) For any Lc-formula ¢(x) and a € A, if ¢(a) is a P-button then p(a) holds
in a ground of V.

Proof. (1): Suppose first that (P, A)-RcA* holds. We show that MP(#, A) holds.
Suppose that P € ? is a push of the P-button p(a). Let ¢’(x) be the formula
expressing

forany Q € P, |Fq “p(x) " holds. (*16)

Then we have |-p “¢’(@”)”. By (P, A)-RcA*, there is a P-ground M of V such
that a € M and M [ ¢’(a) holds. By the definition (*16) of ¢’, it follows that
V E ¢(a) holds.

Now suppose that MP(#, A) holds and P € % is such that |p “¢(a)” for
ac€A.

Let ¢’ be a formula claiming that

there is a P-ground N such thatx € N and N [ ¢(X). *17)

Then ¢’ (a) is a P-button and P is its push.

By MP(®, A), ¢’ (a) holds in V and hence there is a -ground M of V such that
a € M and M E ¢(a). This shows that (#, A)-RcA* holds.

(2): can be proved similarly to (1). Suppose first that (, A)-RcA holds. We show
that (*15) holds. Suppose that IP € P is a push of the P-button ¢(a). Let ¢’ (x) be
the formula expressing

forany Q € P, |Fq“ @(x7)” holds. (*18)

Then we have |Fp “¢’(a” . By (P, A)-RcA, there is a ground M of V such that
a € M and M |= ¢’ (a) holds. Since P > {1}, it follows that M | ¢(a).
Now suppose that (*15) holds and IP € P is such that |-p “@(a”)” fora € A.
Let ¢”” be a formula asserting that

there is a P-ground N such thatx € N and N [ ¢(X). (*19)

Then ¢” (a) is a P-button and IP is its push. Thus, By (*15), ¢’ (@) holds in a ground
M of V with a € M. By the definition (*19) of ¢”, there is a -ground N of M such
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thata € Nand N [ ¢(a). Since N is also a ground of V, this shows that (P, A)-RcA
holds. [ (Theorem 16)

Recurrence Axioms are also related to the Inner Model Hypothesis introduced by
Sy Friedman in [22]. The Inner Model Hypothesis (IMH) is the following assertion
formulated in the language of second-order set theory (e.g. in the context of von
Neumann-Bernays-Godel set theory):

IMH :  For any statement ¢ without parameters, if ¢ holds in an inner model of an
inner extension of V then ¢ holds in an inner model of V.

Here we say a (not necessarily first-order definable) transitive class M an inner
model of V if M is a model of ZF and On™ = On". In the perspective from such
M, we call V an inner extension of M.

We call a set-forcing version of this principle Inner Ground Hypothesis (IGH):

For a (definable) class P of posets and a set A (of parameters),

IGH(P,A) : For any Lc-formula ¢ = ¢(x) and a € A, if P € P forces “there is a
ground M with @ € M satisfying ¢(a)”, then there is a ground W of V such that
aeWandW E ¢(a).

Proposition 17. (Barton, Caicedo, Fuchs, Hamkins, Reitz, and Schindler [3]) For a
class P of posets with {1} € P and a set A (of parameters), (P, A)-RcA holds if and
only if IGH(P, A) holds.

Proof. Suppose that (P, A)-RcA holds. Let ¢ = ¢(X) be an Lc-formula, a € A,
and P € P be such that |Fp “@(a*) holds in a ground ”.

Let ¢'(x) be the L-formula asserting that ¢(x) holds in a ground. Then
IFp“¢’ (@)”. By (P,A)-RcA, it follows that there is a ground W of V such
that W |= ¢’(a*). Since a ground of a ground is a ground, we conclude that there
is a ground Wy of V such that @ € My and Wy | ¢(a). This shows that IGH(®, A)
holds.

Suppose now that IGH(P, A) holds. Assume that |Fp “@(a@”)” for an Le-
formula ¢ = ¢(X),a € A,and P € P. Then |p “¢(a”) holds in a P-ground (of
the universe) ” since |p “{1} € P ”. Thus, by IGH(P, A), there is a ground W of
V such that W | ¢(a). O proposition 17)

(P, A)-RcA* (& MP(P, A) for an iterable #) can be also characterized in terms
of a strengthening of Inner Ground Hypothesis: For a (definable) class P of posets
and a set A (of parameters),

IGH* (P, A) : For any Lc-formula ¢ = ¢(x) and @ € A if P € P forces “there is a
P-ground M with a € M satisfying ¢(a)”, then there is a P-ground W of V such
thata € W and W E ¢(a).

The following proposition can be proved similarly to Proposition 17.

Proposition 18. For an iterable class P of posets and a set A (of parameters),
(P, A)-RcA* holds if and only if IGH* (P, A) holds.



Reflection and Recurrence. 15

Proof. Suppose that (#, A)-RcA* holds and assume that ¢ = ¢(¥) is an Le-formula,
a € A,and P € P is such that

IFp“@(@”) holds in a P-ground M witha € M ”

Let ¢’ (a) be the formula expressing “¢(x) holds in a P-ground M with a € M”.
Then IP is a push of the switch ¢’(a). Thus, by Proposition 16, (1), ¢’(a) holds in
V. By definition of ¢’, there is a -ground W of V such thata € W and W E ¢(a).
This shows that IGH* (P, A) holds.

Suppose now that IGH* (P, A) holds, and assume that ¢ = ¢(X) is an £-formula,
e Aand |Fp“e(a’)” then (since {1} € P) |Fp “¢(a*) holds in a P-ground
M witha € M. By IGH™ (P, A), it follows that there is P-ground W of P-ground
of V such that @ € Wy and Wy £ ¢(a). Since P is iterable, Wy is a P-ground of V.
This shows that (P, A)-RcA* holds. O (proposition 1)

In spite of these characterizations and near characterizations, we want to keep the
Recurrence Axioms as autarchic axioms. The reason is that we have the following
monotonicity which does not hold e.g. for Maximality Principles.

Lemma 19. (Monotonicity of Recurrence Axioms) For classes of posets P, P’ and
sets A, A’ of parameters, if P C P’ and A C A’, then we have

(P, A))-RcA = (P, A)-RcA. O

If we decide that the Recurrence Axioms are desirable extensions of the axioms
of ZFC, then we should adopt the maximal instance of these axioms. (i.e. the one
with maximal strength among the instances consistent with ZFC) By Lemma 19, this
means we should try to take the instance of Recurrence Axioms with the maximal
% and A (with respect to inclusion) among the consistent ones.

Lemma 20 in the next section suggests that the following two as candidates of
such maximal instances:

(E) ZFC+ (P, H (krefr))-ReA for the class P of all stationary preserving posets.

(Z) ZFC +(Q,H(2%))-RcA for the class Q of all posets.

The consistency of (Z) follows from the consistency of ZFC + “there are sta-
tionarily many inaccessible cardinals” ([27]). The consistency of (E) follows from
Lemma 29, Theorem 30, (B’), and Theorem 28.

The maximality of (E) and (Z) follows from Lemma 20, (2’) and (5°) respectively.

By Lemma 20, (4) and (5), (E) implies 2% =N, and (2) implies CH. In particular,
these two extensions of ZFC are not compatible. However, as we are going to discuss
in Section 7, we can combine (E) with a reasonable weakening of (Z).

Z*)  ZFC + (P, H (kyef1))-RCA* + (Q,?—((wl)w)—RCA+ where P is the class
of all proper posets, Q the class of all posets, and W the bedrock’ which is also
assumed here to exist.

7 For the definition of the bedrock see Section 5.
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Clearly (Z*) implies 2™ = N,. This is what I meant when I wrote “the maximal
setting of Recurrence Axioms points to the universe with the continuum of size N,”
in the introduction. We shall further discuss about (Z*) in Section 6.

4 Restricted Recurrence Axioms

The following restricted forms of Recurrence Axioms are enough to decide many
interesting aspects including the cardinal arithmetic around the continuum.

For an iterable class P of posets, a set A (of parameters), and a set I' of L-
formulas, P-Recurrence Axiom for formulas in I with parameters from A (P, A)r-
RcA, for short) is the following assertion expressed as an axiom scheme in L¢:

(P, A)r-RcA: Forany ¢(x) e Tand @ € A, if |-p “@(a”) ”, then there is a ground
W of V such thata € W and W [ ¢(a).

(P, A)r-RcA™ corresponding to (P, A)-RcA* is defined similarly.

(P, A)r-RcA*:For any ¢(X) e Tand @ € A, if |Fp “¢@(@”)”, then there is a
P-ground W of V such thata € W and W = p(a).

Lemma 20. ([21]) Assume that P is an iterable class of posets. (1) If P contains a
poset which adds a real (over the universe), then (P, H (kyeft ))x, -RCA implies —CH.

(2) Suppose that P contains a poset which forces N,V to be equinumerous with
N1V, Then (P, H(2%))s, -RcA implies 2% < X,.

(2°) If P contains a posets which forces N>V 10 be equinumerous with N1V, then
(P, H((R2)*))x,-RcA does not hold.

(3) If (P, H(keeft )z, -RCA holds then all P € P preserve N1 and they are also
stationary preserving.

(4) If P contains a poset which adds a real as well as a poset which collapses sz,
then (P, H (kref1))x, -RCA implies 250 = K.

(5) If P contains a poset which collapses N1V, then (P, H(2%))s, -RcA implies
CH.

(5°) If P contains a poset which collapses N1V then (P, H((2%)*))x,-RcA does
not hold.

Proof. (1): Assume that # is an iterable class of posets containing a poset IP adding
areal and (P, H (krefr ))x, -RCA holds. If CH holds, then P(w)V e H (kyerr ). Hence

(NZ) “Ix(xCwAx¢ P(u))v)”

is a Xj-formula with parameters from 7 (ky.fi) and IP forces the formula in the
forcing language corresponding to this formula: “3x (s C & Ax ¢ (P(w)V)")".

By (P, H (kyeft))x,-RCA, the formula (2) must hold in a ground. This is a con-
tradiction.
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(2): Assume that (P, H (2%)x,)-RcA holds and P € P forces N,V to be equinu-
merous with N Voot > N, then X V, NQV € (H(2N0). Letting ¢/ (x, y) a X;-formula
saying “3f (f is a surjection from x to y)”, we have |-p “w((xlv)“, (NZV)/) i

By (P, H(2%))x,-RcA, the formula JJ/(NIV, NZV) must hold in a ground. This is
a contradiction.

(2°): Assume that P € % is such that |Fp“| (sz)f | = | (va)f |, and
(P, H(X2"))x,-RcA holds. Then, since Ny, Ny € H(N") and “|x| = |y]|” is
>, there is a ground W of V such that W £ | N>V | = |81V ]. This is a contradiction.

(3): Suppose that IP € # is such that |p “ va is countable ”. Note that w, 8| €
H (kyer ). By (P, H (keeft))x,-RCA, it follows that there is a ground W of V such
that W E“N 1V is countable”. This is a contradiction.

Suppose now that S C w; is stationary and [P € P destroys the stationarity of S.
Note that wy, S € H(N7). Let ¢ = ¢(y, z) be the X -formula

dx (x is a club subset of the ordinal y and z N x = 0).

Then we have |Fp “ (w1, S)”. By (P, H (ki1 ))s, -RCA, it follows that there is
a ground W C V such that S € W and W = ¢(wy, S). This is a contradiction to the
stationarity of S.

(4): follows from (1), (2) and (3).

(5): IE Ny < 280, then 8;Y € H(280).

Let IP € # be a poset collapsing N.V. That is, IFp “N;" is countable ”. Since
“... is countable” is X, there is a ground M such that M = N,V is countable” by
(P, H(2%))s,-RcA. This is a contradiction.

(57): Assume that P € P issuchthat |-p “ N V'is countable ”, and (P, H((2R0)*))-
RcA holds. Since 8| € H ((2%)*), it follows that there is a ground W of V such that
W EN 1V is countable. This is a contradiction. O temma 20y

Corollary Al. (E) (stationary preserving, H (kyeit ))-RCA is maximal among Re-
currence Axioms with similar pair of parameters, and it implies 280 = 5.

(Z) (all posets, H(2%))-RcA is maximal among Recurrence Axioms with similar
pair of parmeters, and it implies CH.

Proof. (E): By Lemma 20, (3), “stationary preserving” cannot be replaced by a larger
class of posets. By Lemma 20, (4), (stationary preserving,  (2%))-RcA implies
2% = N,. Thus H (kyefr) = H(N2) in this case and, by Lemma 20, (2’), this cannot
be replaced by H (H (N3)).

(Z): CH holds by Lemma 20, (5), and, by By Lemma 20, (5°),  (2™) cannot be
replaced by H ( (2K())+). O (corottary A1

Laver-genericity implies the plus version of Recurrence Axiom (< Maximality
Principle) restricted to X;.

Theorem 21 Suppose that « is tightly P-Laver-generically ultrahuge for an iterable
class P of posets. Then (P, H (k))s,-RcA* holds.
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Proof. Assume that « is tightly $-Laver generically ultrahuge for an iterable class
P of posets.
Suppose that ¢ = ¢(X) is X, formula (in L¢), a € H(k), and IP € P is such that

V I: “—IP L‘¢(a\/) 7’- (*20)
Let A > « be such that IP € V; and
Va<s, V for a sufficiently large n. (*21)

In particular, we may assume that we have chosen the n above so that a sufficiently
large fragment of ZFC holds in V,; (“sufficiently large” means here, in particular, in
terms of Lemma 13 and that the argument at the end of this proof is possible).

Let (9 be a IP-name such that |-p @ € P, and for (V, P = @)-generic H, there

are j, M € V[H] with

i VS M, (*22)

j(k) > A, (*23)

P+Q, P, H, V'™ € M, and (*24)
[P +QJ < j(x). (*25)

By (*25), we may assume that the underlying set of P+ Q is j(«x) and P+ Q € Vju)v.
Let G := H N P. Note that G € M by (*24) and we have

Since V; M (= \/}/([lﬂ)ﬂ) satisfies a sufficiently large fragment of ZFC

by elementarity of j, and hence the equality follows by Lemma 13

—
Vio™ = V™ = v V[H]L (*26)
——
by (*24)

Thus, by (“24) and by the definability of grounds, we have V;( ,UV € M and
Vi IG] e M.
Claim 21.1. V; )V [G] E ¢(a).
F By Lemma 13, V;V[G] = V;,V[%] and V() V[G] = V; (1) V[]. By (*21), both
V,V[G] and Vjv( 2 [G] satisfy large enough fragment of ZFC. Thus

ViV [G] <, ViV [G]. ("27)

By (*20) and (*21), we have VY [G] [ ¢(a). By (*27) and since ¢ is X, it follows
that Vj(,l)V[G] E o(a). - (Claim21.1)

Thus we have

M [ there is a P-ground N of V;(,) with N | ¢(a)”. (*28)
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By the elementarity (*22), it follows that
V [“there is a P-ground N of V, with N | ¢(a)”. (*29)

Now by (*21), it follows that there is a P-ground W of V such that W E ¢(a).

D (Theorem 21)

5 Recurrence, Laver-generic large cardinal, and beyond

Laver-genericity does not imply full Recurrence Axiom (Theorem 26 and Corollary

27 below).
For an Lc-formula ¢ = (X), a (large) cardinal « is ¥ -absolute if the formula y

is absolute between V, and V (i.e. (Vx € V) (¢V> (X) & ¢(X)) holds for y = k).

Lemma 22. Foranyn € N, there is an Lc-formula ), such that, for any inaccessible

K, K is Y, -absolute if and only if

(*30) for any ground W of V such that N = W[G] for a poset P € VW and
(W, P)-generic G,® we have that all £,,-formulas are absolute between VW
and W.

Proof. By Theorem 12 and Lemma 14. O emma22)

Lemma 23. Let ), be as in Lemma 22. yr; -absolute inaccessible cardinals are not
resurrectable. That is, if a cardinal A satisfies

IFp“Adis ¥,-absolute inaccessible” *3D)

for some poset P, then A is really yr,,-absolute inaccessible.

Proof. (*31) implies that A is inaccessible. By the definition (*30) of ), if ¥, is
absolute between V,;VIG! and V[G] for some (V, P)-generic G then, it is absolute
between V" and V. O Cemma23)

Lemma 24. Suppose that there are stationarily many inaccessible cardinals.’ Then,
for each n € N, there are stationarily many ¢;,-absolute inaccessible cardinals.

Proof. For n € N let n* > n be such that ; is Z,+. For any club C € On,
CnC™) ={aeC :V, <s,.+Vv} is a club in On (Lévy-Montague Reflection
Theorem), there is an inaccessible cardinal u € CNC (%), By the choice of n*, such

[ is a yr,,-absolute inaccessible cardinal. O (temma24)

8 Note that this includes the case that P = {1} and V = W.

9 “There are stationarily many inaccessible cardinals” is the statement formalizable in an axiom
scheme claiming, for each Lc-formula ¢ = ¢(x), that “if ¢ (x) defines a club subclass of On
then there is an inaccessible u with ¢ (u)”.
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Theorem 25 Suppose that (P, 0)-RcA holds, where P is a class of posets such that
either (a) P contains posets collapsing arbitrary large cardinals to a small cardinality
(less than the first inaccessible if there are inaccessibles at all), or (b) P contains
posets adding arbitrarily many reals.

Ifthere is a r},-absolute inaccessible cardinal for some n € N, then there are cofinally
many ,-absolute inaccessible cardinals.

Proof. Assume that (P, 0)-RcA holds for # as above and there is a cardinal A such
that there are some i}, -absolute inaccessible cardinals but all of them are below A.
Let IP be a poset which either collapses A to small cardinality or add at least A
many reals. Then, by Lemma 23, we have |-p “there is no ¢};-absolute inaccessible
cardinal .
By (P, 0)-RcA, it follows that there is a ground W of V such that W | there is
no y,,-absolute inaccessible cardinal”. Again by Lemma 23, this is a contradiction.

[ (heorem 25)

Theorem 26 Suppose that A is an inaccessible cardinal, k < A is such that Vy E“«
is x-large cardinal”, where “x-large cardinal” is a notion of large cardinal, for which
a Laver function exists. Assume also that {u < A : u is inaccessible} is stationary in
A

Then, for each of the classes P of posets considered in Theorem 9, there are Ay with
A> Ay >k, and P € P with P C V. such that, for a (V,,P)-generic GG, we have

Va, |G] E“« is a tightly* P-Laver-generically x-large cardinal
and =(?, 0)-RcA”.

Proof. Suppose that P is one of the classes of posets considered in Theorem 9. Note
that then, (a) or (b) of Theorem 25 holds. Let n € IN be such that the formula “k is an
x-large cardinal” is Z,,. By the assumption, there is an inaccessible cardinal u with
A > u > ksuch that Vy > V. Let 4 > A9 > u be the minimal cardinal such that
Va | Ao is ¢};-absolute inaccessible cardinal — such A exists by Lemma 24. Then
we have

Va, E k is an x-large cardinal” (*32)

In V,,, let IP be the limit of k-iteration with appropriate support as described in
Theorem 9 which forces that « is tightly* $-Laver generically x-large cardinal in the
generic extension of V. Let G be (V,, IP)-generic filter. Then we have V,, [G] E*“«
is a tightly* $-Laver generically x-large cardinal” and V,[G] > V,[G] by Lemma
15, (1). In particular, by Lemma 23, we have V,,[G] | u is the largest ¢, -absolute
inaccessible cardinal. By Theorem 25, it follows that V,[G] = “ (P, 0)-RcA”.

D (Theorem 26)

The conditions of Theorem 26 are satisfied by practically all large cardinal no-
tions. For example, under the consistency of the existence of a 2-huge cardinal, the
conditions of Theorem 26 are satisfied by x-large cardinal = hyperhuge cardinal (see
Lemma 29 below). Thus we obtain the following:
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Corollary 27. Under the assumption of the consistency of the existence of a 2-huge
cardinal, the existence of a tightlyt P-Laver generically hyperhuge cardinal does not
imply (P, 0)-RcA for any class P of posets as in Theorem 9. O

A natural strengthening of Laver-genericity does imply the full Maximality Prin-
ciple (hence also the full Recurrence Axiom). As the proof of Theorem 25 suggests,
such property must be formulated not in a single formula but as an axiom scheme.

For a natural number n, we call a cardinal

« super C"™ -hyperhuge if for any A9 > « there are A > Ay with V <y, V,and j,
M C Vsuchthat j: V5, M, j(k) > 4,7 YM C M and V(4 <5, V.

kis super C") -ultrahuge if the condition above holds with /(Y M C M” replaced
by “/IM C M and V;(1) € M.

If « is super C")-hyperhuge then it is super C")-ultrahuge. This can be shown
similarly to Lemma 4.

We shall also say that « is super C™)-hyperhuge (super C'™) -ultrahuge, resp.)
if it is super C ") -hyperhuge (super C""-ultrahuge, resp.) for all natural number 7.

A similar kind of strengthening of the notions of large cardinals which we call
here “super C ") appears also in Boney [6]. It is called in [6] “C ")+ and the notion
is considered there in connection with extendibility.

For a natural number n and an iterable class # of posets, a cardinal

k is super C"- P-Laver-generically ultrahuge if, for any 1o > « and for any
IP € P, there are a 4 > Ap with V <5, V, a P-name Q with |Fp“Q € P,

such that, for (V, P * @Q)-generic H, there are j, M C V[H] with j : V 5, M,
J() > A4, P H, Vi) VI e M and V) VT <5, VIH].

A super C""- P-Laver-generically ultrahuge cardinal

K is tightly super C" - P-Laver-generically ultrahuge, if additionally |IP * Q| <
j (k) (see Footnote 2) holds in the definition above.

Super C'®) - P-Laver-generically hyperhugeness and tightly super C®) - P-Laver
generically hyperhugeness are defined similarly to super C(®) -ultrahugeness.

Note that, in general, super C(*®)-hyperhugeness and super C(*)-ultrahugeness
are notions not formalizable in the language of ZFC without introducing a new
constant symbol for k since we need infinitely many L -formulas to formulate them.
Exceptions are when we are talking about a cardinal in a set model being with one
of these properties like in Lemma 29 below (and in such a case “natural number n”
actually refers to “n € w”), or when we are talking about a cardinal definable in V
having these properties in an inner model like in Corollary 36 or Corollary 37. In
the latter case, the situation is formalizable with infinitely may £c-sentences.

In contrast, the super C(*)-P-Laver generically ultrahugeness of « is expressible
in infinitely many Lc-sentences. This is because a $-Laver generic large cardinal
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k for relevant classes # of posets is uniquely determined as kef; or 280 (see e.g.
Theorem 7 and Theorem 8).
A modification of the proof of Theorem 21 shows the following:

Theorem 28 ([21]) Suppose that P is an iterable class of posets and k is super
C®)-P-Laver-generically ultrahuge. Then (P, H (x))-RcA* holds.

Proof. Suppose that k is super C(*)-P-Laver-gen. ultrahuge, P € #, and
IFp“@(@@”)” for an Lc-formula ¢ and @ € H (k). We want to show that ¢(a)
holds in some #-ground of V.

Let n be a sufficiently large natural number such that the following arguments
go through. In particular, we assume that VeV <y, V implies that “p(X)” and
“|-.“@(x¥) " are absolute between VY and V, and V,,V <3, V also implies that a
sufficiently large fragment of ZFC holds in V.

Let (NQ be a IP-name such that |-p “ (13 € P and, for (V,IP = @)—generic H, there

are a A > k with
®3) Vi<, V,

and j, M C V[H] such that j : V 55, M, j(k) > 2, P, H, V;()V"l € M and
Vi ™M <, VIH].

By the choice of n, we have V3 | |Fp“¢(@’)”. j(Va¥) = V; ™ <5, M by
elementarity of j, and V; ™ = j(,l)v[m] by the closedness of M. Since V; <3, V,
we have V,[H] <0 V[H] for a still large enough ny < n by Lemma 15, (1). Since
Vi VI <5, VIH], it follows that V, VI <5 V) VI Thus

Ch VY <5, Vi

ny

for a still large enough n; < ng by Lemma 15, (2).

In particular, we have ijv E |Fp“@(@”)”, and hence Vi [G] E e(a)
where G is the IP-part of IH. Note that by (3) and (4), V;(,) satisfies a sufficiently
large fragment of ZFC.

Thus we have V() [H] * there is a P-ground satisfying ¢(a)”, and hence

Vj(,l)v[]H] E“ there is a P-ground satisfying ¢(a)”

by Lemma 13. By elementarity, it follows that

Vi E* there is a P-ground satisfying ¢(a)”.

Finally, this implies V | there is a -ground satisfying ¢(a@)” by (3).

[ (Theorem 28)

The following Lemma can be proved similarly to Theorem Sc in Barbanel-
DiPrisco-Tan [2] (see also Theorem 24.13 in Kanamori [29]).

Lemma 29. ([21]) If « is 2-huge with the 2-huge elementary embedding j, that is,
there is M C \ such that j : V SeMcCV, and

Py M, (*33)
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then Vi) B« is super C®)_hyperhuge cardinal”, and for each n € w,
Vi) E* there are stationarily many super C (") _hyperhuge cardinals”. O

The proof of the existence of Laver-function for a supercompact cardinal can be
modified to show that super C(*)-hyperhuge cardinal in V. has a Laver function for
super C(®)-hyperhugeness ([21]). Similarly to Theorem 9 we obtain the following:

Theorem 30 ([21]) (A) Suppose that y is inaccessible and k < p is super C(®)-

hyperhuge in V. Let IP = Col(N1, k). Then, in V,,[G], for any V,,P-generic @,
N;/" [G] (= «) is tightly super C®)-o-closed-Laver-generically hyperhuge and CH

holds.

(B) Suppose that 1 is inaccessible and k < p is super C ™) -hyperhuge with a Laver
function f : k — V. for super C ™) -hyperhugeness in V. If P is the CS-iteration of

length « for forcing PFA along with f, then, in V,|G] for any (V,,P)-generic G,
N;/ ulGl (= k) is tightly super C ™) -proper-Laver-generically hyperhuge and 28 = R,

holds.

(B’) Suppose that u is inaccessible and k < u is super C™)-hyperhuge with
a Laver function f : k — V, for super C') -hyperhugeness in V. If P is the
RCS-iteration of length « for forcing MM along with f, then, in V,[G] for any

(Vu, IP)-generic G, N;/“ [ (= k) is tightly super C'™) -stationary_preserving-Laver-
generically hyperhuge and 2% = R, holds.

(T') Suppose that yu is inaccessible and k is super C®) -hyperhuge with a Laver
function f : k — V, for super C*)-hyperhugeness in V. If P is a FS-iteration of
length « for forcing MA along with f, then, in V,|G] for any (V,,,P)-generic G, 280
(= k) is tightly super C®)-c.c.c.-Laver-generically hyperhuge, and 2™ is very large
inV,[G].

(A) Suppose that ju is inaccessible and « is super C® -hyperhuge with a Laver
function f : k — Vi for super C'®) -hyperhugeness in V. If P is a FS-iteration of
length « along with f enumerating “all” posets, then, in V, [G] for any (V,,P)-
generic G, 2% (= Ny ) is tightly super C*)-all posets-Laver-generically hyperhuge,
and CH holds.

Proof. The proof can be done similarly to that of Theorem 5.2 in [16]. In the

following we shall only check the case (A).

Suppose that f : k — V, is a super C(®)-hyperhuge Laver function.
Let (P, Qp : @ < «, B < k) be a FS-iteration defined by

< { f(a), if f(a) is a IPg-name of a poset;

S5 Qp= ~

~ {1}, otherwise

for B8 < «.
Let G be a (V,, IP,)-generic filter. Clearly V,[G] 2N = k = N;”. We show
that « is tightly super C(*)-all posets-Laver-generically ultrahuge in V. [G].
Suppose that IP is a poset in V,, [ G], k < Ap and n € w. Let n” > n be sufficiently
large and let IP be a IP ,-name of IP.

Working in V,,, we can find
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®6) |P|<Ad<k*<A*andj, M CV
such that
M)V S M,
(8)  j(k) =«", j(A) = A,
®9) YMcM,
®10) Vy=s, V, Ve <5, V,and
Gy () =P
by definition of f.
By elementarity (and by the definition (5) of IP,),
*12) j(Py) ~p, (Pe*P)*R

for a (P, * IP)-name IR of a poset. Note that (IP, * IP *R)/G corresponds to a poset
of the form P = Q.

Let H* be (V, (P, * P) = R)-generic filter with G € H*. H* corresponds to a
(V, j(IP,))-generic filter H 2 G via the equivalence (12).
Let j be defined by

(*13) J:VIG] - M[H]; ¢% = j(@"
for all IP-names a.

A standard proof shows that f is well-defined, and j : V[G] >, M[H]. By (8)
and (9), we have "/ j(1) = j”j(1) € M[H]. Since H € M[H], the (V[G], P *Q)-
generic filter corresponding to H is also in M [H].

By (6), (10), by the choice of n’, and by Lemma 15, (1), we have v VIG] <y, VIG]
and  Vy(, VI = v VT <5 D VH].

Since IP and n were arbitrary, this shows that « is tightly super C(*)-all posets-
Laver-generically ultrahuge in V,,[G]. O (theorem 30)

6 Toward the Laver-generic Maximum

Besides Theorem 21 and Theorem 28, , we also have some other advantages of
assuming the existence of $-Laver-generically hyperhuge cardinal or even its “super
C®)” version. One of them is that they imply the existence of the (set-generic)
bedrock (see below for definition); another is that we know the exact consistency
strength of these principles.

For a class P of posets, a cardinal « is tightly P-generic hyperhuge if for any
A > k, there is Q € P such that for a (V, Q)-generic H, there are j, M C V[H]
suchthat j : V5, M, A< j(x),| Q| < j(x),and j”j(2),H e M.

Note that, for any class P of posets with {1} € P, the hyperhugeness of a cardinal
k implies its tightly $-generically hyperhugeness. Likewise, if P is iterable then, the
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tightly $-Laver-generic hyperhugeness of k implies its tightly $-generically hyper-
hugeness.

For an iterable P:
the bedrock exists

K is hyperhuge Theorem32 7
k is tightly P-generically
hyperhuge

k is tightly P-Laver-
generically hyperhuge
/
K is tightly super C'(™)-P-Laver- (P, H(k))-RecA
generically hyperhuge \ Theorem 28

K is tightly super C'(°)-P-Laver-
generically ultrahuge

Usuba [36] proved that the grounds of V are downward directed (with respect to
subclass relation) for class many grounds (this is formalizable by virtue of Theorem
12). More concretely

Theorem 31 (Theorem 1.3 in Usuba [36]) For any collection of grounds of V, indexed
by a set of parameters (in the sense of Theorem 12), there is a ground which is included
in all grounds in the collection. O

From this theorem, it follows that the mantle, i.e., the intersection of all grounds
is a model of ZFC. In [36], it is proved that the mantle is a ground and hence it
is the bedrock, i.e., the smallest ground of V provided that there exists a hyperhuge
cardinal(Theorem 1.6 in [36]). Later the assumption of the existence of a hyperhuge
cardinal in this theorem is weakened to the existence of an extendible cardinal
(Theorem 1.3 in Usuba [37]).

In [21], we obtained the following generalization of Theorem 1.6 in [36]:

Theorem 32 ([21]) If there is a tightly P-generically hyperhuge cardinal «, then the
mantle is a ground of V. In particular it is the bedrock.

A sketch of the proof. The overall structure of the structure of the proof is just the
same as that of Theorem 1.6 in [36] or Theorem 1.3 in [37].

We call a ground W of V a < k-ground if there is IP € W with | IP IV < kand a
(W, P)-generic G such that V = W[G]. Let

W= m{W : Wis a < k-ground}. (*34)

By Theorem 31, there is a ground W C W. For such W it is enough to show that
actually W € W holds.

Let $ € W be a poset with cardinality u (in V) such that there is a (W, $)-generic
IF € V with V = W[IF]. Without loss of generality, u > «.

By Theorem 12, there is » € V such that W = ®(., r)V.

Let 8 > u be such that » € Vy, and for a sufficiently large natural number n, we
have V¥ <y, V.By the choice of 6, ®(-, r)V"V =d(., r)V NVeY =WnVyY = VW,
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Let Q € P such that for (V, Q)-generic H, there are j, M € V[H] with j : V 5 M,
0 <), QI <jK), Vi ™M c M, and H, j”j(0) € M.

Using this j we can show that VgV C VW holds (this part of the proof is quite
involved, for thi details, the reader is referred to [21]). Since 6 can be arbitrary large,
It follows that W € W. O (Theorem 32)

Analyzing the details of the proof of Theorem 32 we dropped in our present
exposition, we also obtain the following surprising result:

Theorem 33 ([21]) Suppose that P is any class of posets. If k is a tightly P-
generically hyperhuge cardinal, then « is a hyperhuge cardinal in the bedrock W
of V. O

The following equiconsistency results are immediate consequences of the theorem

above:
Corollary 34. Suppose that P is the class of all posets. Then the following theories
are equiconsistent:

(a) ZFC + “there is a hyperhuge cardinal”.

(b) ZFC + “there is a tightly P-Laver generically hyperhuge cardinal”.

(c¢) ZFC + “there is a tightly P-generically hyperhuge cardinal”.

(d) ZFC + “the bedrock W exists and w; is a hyperhuge cardinal in W”. O

Corollary 35. Suppose that P is one of the following classes of posets: all semi-
proper posets; all proper posets; all ccc posets; all o-closed posets. Then the following
theories are equiconsistent:

(a) ZFC + “there is a hyperhuge cardinal”.

(b) ZFC + “there is a tightly P-Laver generically hyperhuge cardinal”.

(¢ ) ZFC + “there is a tightly P-generically hyperhuge cardinal”.

(d) ZFC + “the bedrock W exists and kyefi is a hyperhuge cardinal in \W”. O

A slight modification of the proofs of the theorems above also show the following.
Note that as we already noticed, super-C(*-large cardinal is not formalizable in the
language of ZFC. However, the assertions (a) and (b) in the following Corollary 36
and Corollary 36 can be formulated as schemes of sentences in Lc.

Corollary 36. Suppose that P is the class of all posets. Then the following theories
are equiconsistent:

(a) ZFC + “c is a super C'®) hyperhuge cardinal” where ¢ is a new constant
symbol but “... is super C'™) hyperhuge ...” is formulated in an infinite collection of
formulas in L.

(b) ZFC + “there is a tightly super C\™) -P-Laver generically hyperhuge cardinal”.

(¢) ZFC + “the bedrock W exists and w\ll is a super C'™) -hyperhuge cardinal in
W, O
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Corollary 37. Suppose that P is one of the following classes of posets: all semi-
proper posets; all proper posets; all ccc posets; all o-closed posets. Then the following
theories are equiconsistent:

(a) ZFC + “c is a super C'®) hyperhuge cardinal” where c is a new constant
symbol but “... is super C®) hyperhuge ...” is formulated in an infinite collection of
SJormulas in Lc.

(b) ZFC + “there is a tightly super C ™) -P-Laver generically hyperhuge cardinal”.

(c¢) ZFC + “the bedrock W exists and Krefl Viis a super C*®)-hyperhuge cardinal
inW”, O
Finally, we move to the promised proof of Theorem 7, (3).

Corollary 38. Suppose that P is an arbitrary class of posets and « is a tightly
P-generically hyperhuge cardinal. Then

(1) there are cofinally many huge cardinals.
(2) SCH holds above some cardinal.

Proof. Suppose that « is a tightly $-generically hyperhuge cardinal. By Theorem
32, there is the bedrock W and « is hyperhuge cardinal in W.

(1): Since the existence of a hyperhuge cardinal implies the existence of cofinally
many huge cardinals (it is easy to show that the target j(«) of hyperhuge embedding
for a sufficiently large inaccessible A is a huge cardinal), there are cofinally many
huge cardinals in W. Since V is attained by a set forcing starting from W, a final
segment of these huge cardinals survive in V.

(2): By Theorem 20.8 in [28], SCH holds above  in W. Since V is a set generic
extension of W. SCH should hold above some cardinal g > «. O (coroltary 0)

For iterable stationary preserving # containing all proper posets, Theorem 38, (2)
holds already under the P-Laver-generic supercompactness of k. The reason is that
in such case PFA holds by Theorem 5, and by Viale [38], SCH follows from it.
Proof of Theorem 7, (3). let 2 and @ be such that

(*35) A > 2%, k and A is large enough such that SCH holds above some u < A
(this is possible by Corollary 38 ,(2), and it is here the place that we need
the Laver generic hyperhugeness of «),

(*36) Q@ is positive elements of a complete Boolean algebra, and,

(*37) for (V, Q)-generic H, there are j, M C V[H] such that (1) j:V e M,
(2) j(©) >, (3) |Q] < j(k),and (4) V;'M € M.

By (*36), each Q-name r of a real corresponds to a mapping f : w — Q. By
(*35) and by (*37), (3), there are at most j(«x) many such mappings. Thus we have
V[H] “2% < j(k)”, By (*37), (4), it follows M |=“2% < j(k)”. By elementarity,
it follows that V 2N < k7, O crmcorem 7.3

Returning to (E) and (Z) at the end of Section 3, we now know that the existence of
a super C(*)_stationary preserving-Laver-generically hyperhuge cardinals implies
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(E) (actually it even implies (stationary preserving posets, H (krefr))-RCA™), and
that the existence of a super C(*)-all posets-Laver-generically hyperhuge cardinals
implies (Z) (actually it even implies (all posets, H (280))-RcA*). These two scenar-
ios are not compatible since the former implies 2% = N, while the latter implies
CH.

However, with the following axiom, (E) is reconciled with a meaningful fragment
of (Z):

LGMy: the continuum is tightly super C(*)-stationary preserving-Laver generi-
cally hyperhuge and there is a ground W of V such that the continuum is tightly
super C(*)-all posets-Laver generically hyperhuge in W.

If we admit that Recurrence Axioms, Maximal Principles and Laver-genericity
are natural requirements, we should be also ready to accept ZFC + LGMj as a natural
candidate of the extension of ZFC.

By Theorem 5, LGMj implies the double plus version of Martin’s Maximum
(MM**) and hence all the consequences of it including 2™ = N,.

By Theorem 32, LGMj implies that there is the bedrock. So by Theorem 28,
LGMy implies (Z*) on page 15. (Z*) implies that if some statement ¢ is forcable by
a stationary preserving poset, then for any A € H (N,), there is a semi-proper-ground
W of V such that A € W and W [ ¢. In particular, Cichoii’s Maximum [25], [26]
is a phenomena in many semi-proper-grounds in this sense. Note that, by Corollary
38, (1) the forcing argument for ¢ may even utilize class many huge cardinals (e.g.
the proof in [25] uses four strongly compact cardinals). '

Even in the case that the forcing to show the consistency of ¢ is not stationary
preserving, we can still find some ground W of V which satisfies ¢.

Thus ZFC + LGMy is a very strong axiom system which integrates practically
all known statements into itself which can be proved to be consistent by way of
forcing and/or methods of inner models. Against this backdrop, we want to call the
axiom system LGMy(or possibly some further extension of it in the future) the Laver
Generic Maximum.

The consistency and equiconsistency of LGM)j is easily established: we start from
a model with two super C(®) hyperhuge cardinals ko < ;. We force kq to be tightly
super C(*)-all posetsLaver generically hyperhuge (Theorem 30, (A)). We then force
make «; to be tightly super C(*)-stationary preserving-Laver generically hyperhuge
(Theorem 30, (B")).

By Theorem 33 the consistency strength of LGMj can be proved to be equivalent
with that of two super C(*) hyperhuge cardinals (which may be formulated by using
two new constant symbols).

(o0

10 1n [21], we even show that LGM implies that there are stationarily many super-C (*) -hyperhuge

cardinals.
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7 More about Consistency Strength

When I was a student of Janos Makowsky in the early 1980s at the Free University
of Berlin, one of the papers he was preparing then was [31] in which the effects of
Vopénka Principle on properties of model theoretic logics is studied. I remember
that Janos gave a talk on this subject in the (West) Berliner Logic Colloquium. Back
then, I was still living in a set theory of consistency strength way below a measurable
cardinal, and could not begin with the material of his paper at all because of the
vertiginous consistency strength of the Vopénka Principle.

Janos left Berlin before I wrote up my diploma thesis on abstract elementary
classes which was the subject Janos gave me; all the assertions I proved in the thesis
remained in the consistency strength of ZFC.

=l -
2-huge —, super C'™-hyperhuge

N
superhuge «—— ultrahuge < hyperhuge

huge —

super almost-huge

almost huge

/

Vopénka’s Principle

|

extendible
supercompact —, strongly compact

superstrong — /
\‘ Woodin
|

The consistency strength of my set theoretic world view reached the realm of
one supercompact cardinal when I wrote [10] in the early 1990s in which some
consequences of MA* (o -closed) were discussed. However, it is only quite recently
that I caught up Janos definitively (at least in terms of consistency strength) when I
considered in [21] the super C(*)-P-Laver-generically hyperhuge cardinals whose
consistency strength is (demonstrably — see Section 6) strictly between hyperhuge
and 2-huge.

In the meantime, active research on abstract model classes is resumed and Janos’s
[31] begins to attract the attention of young logicians. For example, the paper [31]
was recently cited in Boney [6] which was already mentioned in Section 6. Boney
cites the main theorem of [31] as Fact 3.12 in his paper and comments in allusion
to Aki Kanamori’s comment on Kunen’s inconsistency proof in [29] that Vopénka’s
Principle “ ‘rallies at least to force a veritable Gotterdimmerung’ for compactness
cardinals for logics.” The gap between Vopénka’s Principle and a huge cardinal
Boney mentions in connection with this ,gotterddmmerigen** statement seems to
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have some resemblance to the discrepancy between usual Laver-generic large cardi-
nal axioms and the super C(*)-Laver-generic large cardinals.

Now one of the urgent items in my to-do-list is to check Janos’s [31] as well as
[32], [33], [34] more carefully to find out further possible connections of his results
to the context I described above.

Is this also an instance of (the eternal?) recurrence?
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