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Abstract

We introduce the notion of weakly extendible cardinals and show that

these cardinals are characterized in terms of weak compactness of second

order logic. The consistency strength and largeness of weakly extendible

cardinals are located strictly between that of strongly unfoldable (i.e. shrewd)

cardinals, and strongly uplifting cardinals.

Weak compactness of many other logics can be connected to certain vari-

ants of the notion of weakly extendible cardinals.

We also show that, under V = L, a cardinal κ is the weak compactness

number of Lℵ0,II
stat,κ,ω if and only if it is the weak compactness number of LII

κ,ω.

The latter condition is equivalent to the condition that κ is weakly extendible

by the characterization mentioned above (this equivalence holds without the

assumption of V = L).
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1 Compactness and Löwenheim-Skolem theorems

of extended logics

introSuppose that L is a logic with its model relation |=L (with all expected properties for

a model relation, like those assumed in Lindström’s theorem: see e.g. Chapter XII

of [6]). In the following, we will not treat these logics and model relations associated

to them in a strict axiomatic setting of an abstract model theory. Instead we just

say that such logics are “proper”1) and, if necessary, mention only the specific

properties of the logics explicitly which are assumed in some of the assertions.

For such proper logic L, a cardinal κ is said to be L-compact, if for any collection

T of L-sentences, T is satisfiable (i.e. there is a structure A with A |=L T ) if (and

only if) T is <κ-satisfiable (i.e. all T0 ∈ [T ]<κ are satisfiable).

If κ is L-compact then any cardinal λ > κ is L-compact as well. Thus by

naming the minimal L-compact cardinal (if it exists), we completely describe the

situation with L-compactness. We shall call this minimal cardinal the compactness

number of L and denote it by cn(L) (if it exists, otherwise we write cn(L) = ∞).

Thus

cn(L) := min({κ ∈ Card : for any L-theory T , T is satisfiable if and only

if all T0 ∈ [T ]<κ are satisfiable} ∪ {∞}).

We denote with LII the (monadic, full) second-order logic whose formulas are

defined similarly to the first-order logic but with additional second-order variables

X, Y , Z etc. and built-in predicate symbol ε for which it is allowed to build

(1.1) x-intro-a-aatomic formulas of the form x ε X for a first-order variable x and a

second-order variable X:
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the second-order variables are interpreted as such running over all subsets of the

underlying set of the structure, and the atomic formula x ε X is interpreted as the

(true) element relation between valuations of the variables (as element and subset

of the underlying set of the structure in consideration).

For a cardinal κ, LII
κ,ω is the Lκ,ω extension of the second-order logic LII. That

is, the formulas of LII
κ,ω are constructed inductively as in LII with the additional

clause saying that conjunction
∧∧

Φ and disjunction
∨∨

Φ of set Φ of formulas of

size <κ are allowed as far as the set of free variables appearing in Φ is finite. The

model relation for infinitary conjunction and disjunction is defined as expected.

For ω < λ ≤ κ, LII
κ,λ is the Lκ,λ extension of LII

κ,ω where we ease the restriction

for
∧∧

Φ and
∨∨

Φ such that the formulas
∧∧

Φ and
∨∨

Φ are now permitted if the

set of the free variables in Φ has cardinality <λ, and, in addition, existential and

universal quantification over a block of quantifiers of size <λ is allowed.

For n ≥ 2, let Ln be the nth-order logic and LHO be the higher-order logic

defined as the union of all Ln, n ∈ ω. LHO
κ,ω, LHO

κ,λ are then defined similarly to LII
κ,ω,

LII
κ,λ.

Using this terminology, the classical characterization of extendible cardinals (for

the definition of extendible cardinals see the beginning of the Section 2 below) by

M. Magidor can be reformulated as follows:

Theorem 1.1 (M.Magidor [19], see also Theorem 23.4 in [15]) P-intro-0( 1 ) A cardinal κ

is extendible if and only if we have κ = cn(LII
κ,ω); if this equality holds then we also

have cn(LII
κ,ω) = cn(LHO

κ,κ).

( 2 ) For a cardinal κ, κ = cn(LII) holds if and only if κ is the least extendible car-

dinal. If κ is the least extendible cardinal then we also have cn(LHO
κ,κ) = cn(LII

κ,ω) =

cn(LII
κ,κ) = cn(LII) = κ.

Lemma 1.2 P-intro-4For any uncountable cardinal κ, we have κ ≤ cn(Lκ,ω). (Actually we

have κ ≤ wcn(Lκ,ω) where wcn(·) is defined below).

Proof. For all infinite µ < κ, and infinite µ′ ≤ µ the theory

Tµ′ := {∀x(
∨∨

α<µ′ x ≡ cα)} ∪ {d 6≡ cα : α < µ′}.

is <µ′-satisfiable but not satisfiable. This shows µ < ( wcn(Lκ,ω) ) ≤ cn(Lκ,ω).

(Lemma 1.2)

It is classical that strongly compact cardinals are also characterized in a similar

vein:
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Lemma 1.3 P-intro-1An uncountable cardinal κ is strongly compact if and only if κ =

cn(Lκ,κ) = cn(Lκ,ω).

Proof. The first equality is simply the definition of strong compactness e.g.

adopted in Kanamori [15]. The second equation can be obtained by a modification

of the proof of Proposition 4.1 in Kanamori [15]. (Lemma 1.3)

We define the weak compactness spectrum WCS(L) of a logic L by:

WCS(L) := {κ ∈ Card : κ > ℵ0, for any L-theory T of signature with

at most ≤κ-many non-logical symbols, if T is

<κ-satisfiable, then T is satisfiable}.

We shall also say that an uncountable cardinal κ is weakly L-compact if κ ∈
WCS(L).

In analogy to cn(L), we can also define the weak compactness number wcn(L)
as the minimum of WCS(L):

wcn(L) := min({κ ∈ Card : κ > ℵ0, for any L-theory T of signature with

at most ≤κ-many non-logical symbols, if T is

<κ-satisfiable, then T is satisfiable} ∪ {∞}).

In contrast to L-compactness, there is no guarantee that WCS(L) is an end-segment

of Card and hence wcn(L) does not necessarily decide WCS(L).
The following is a direct consequence of the definitions of the notions we intro-

duced above:

Lemma 1.4 P-intro-2( 1 ) For any logic L, we have {κ ∈ Card : κ ≥ cn(L)} ⊆ WCS(L).
( 2 ) wcn(L) ≤ cn(L).
( 3 ) If L and L′ are logics such that each formulas of L can be translated to

formulas of L′ then we have

wcn(L) ≤ wcn(L′), cn(L) ≤ cn(L′) and WCS(L) ⊇ WCS(L′).

Corollary 1.5 P-intro-5For cardinals κ and κ′ with κ ≤ κ′, if κ′ is the least extendible

cardinal ≥ κ, then

{λ ∈ Card : κ′ ≤ λ} ⊆ WCS(LHO
κ,κ) ⊆ WCS(LII

κ,ω) ⊆ WCS(LII).

Proof. By Theorem 1.1 and Lemma 1.4. (Corollary 1.5)
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Lemma 1.6 P-intro-3( 1 ) An uncountable cardinal κ is weakly compact if and only if

κ = wcn(Lκ,κ) = wcn(Lκ,ω).

( 2 ) {µ ∈ Card : µ ≥ κ, µ is either weakly compact or

µ ≥ the first strongly compact cardinal above κ} ⊆ WCS(Lκ,κ).

Proof. (1): The first equality is just the definition of weakly compactness while

the second equality can be obtained as a byproduct of the characterization of weak

compactness by tree property (see e.g. the proof of Theorem 7.8 in Kanamori [15] or

Lemma 32.1 in Jech [11]). Note that by the definition of wcn(Lκ,ω) (adopted from

[15]), it is easy to see that κ = wcn(Lκ,ω) implies that κ is strongly inaccessible.

(2): By (1), Lemma 1.4, and Lemma 1.3. (Lemma 1.6)

The question about a possible solution of the following “equation” seems to be

a natural one:

(1.2) x-intro-a

weakly compact cardinals

strongly compact cardinals
=

x

extendible cardinals
.

In terms of compactness and weak compactness, x above must be a large car-

dinal property which should be characterized by

(1.3) x-intro-a-0κ = wcn(LII
κ,ω).

In Section 2, we introduce a new notion of large cardinals which we named “weak

extendibility” and show that these cardinals are exactly those characterized by

(1.3) (Theorem 2.2).

We prove that the consistency strength of weak extendibility is strictly between

that of subtleness and strong unfoldability (Theorem 2.5). Note that, by Lücke

[18], strong unfoldability is equivalent to shrewdness of Michael Rathjen [21].

Remembering Lindström’s Theorem which gives the characterization of the

first-order logic as the maximal logic satisfying the (countable) compactness and

Downward Löwenheim-Skolem Theorem down to countable (see e.g. [6]), it seems

to be natural to consider also the spectrum of Löwenheim-Skolem number of logics

in our context (though a straight-forward generalization of Lindström’s Theorem

itself seems to be impossible: see [24]).

In the following, we denote with |A| the underlying set of the (first-order) struc-
ture A and with ‖A‖ the cardinality of (the underlying set of) A. Nevertheless, if

we are talking about a set A, we continue to denote the cardinality of A with |A |.
Suppose that L is a logic with the associated notion of elementary submodel

≺L (which should satisfy all the expected properties of an elementary submodel

relation, like the properties assumed in the proof of the following Lemma 1.7). The

Löwenheim-Skolem-Tarski spectrum of L is defined by:
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LSTS(L) := {µ ∈ Card : for any structure A of a countable signature

and S ⊆ |A| with |S | < µ, there is

B ≺L A such that S ⊆ |B| and ‖B‖ < µ}.

The terminology with “Löwenheim-Skolem-Tarski spectrum” is chosen in accor-

dance with that of [20]. The definition here is however slightly different since we

consider not the cardinality of sentences but rather the cardinality of the signature.

In [7], and [8], corresponding notion is refered to as ”strong Löwenheim-Skolem

property”.

Our present definition of the Löwenheim-Skolem-Tarski spectrum corresponds

to the Löwenheim-Skolem property in [19]:

Lemma 1.7 P-intro-6For a logic L, we have

LSTS(L) = {µ ∈ Card : for any structure A with signature of

size <µ, there is B ≺L A such that ‖B‖ < µ}.

Proof. “⊆”: Suppose that µ ∈ LSTS(L) and let A be a structure of signature

of size ν < µ. Without loss of generality, we may assume that A is a relational

structure and A = 〈 |A| , Rn,α〉n∈ω,α<ν where Rn,α is an n-ary relation on |A| for

n ∈ ω and α < ν. We may also assume, without loss of generality, that ‖A‖ ≥ µ

and ν ⊆ |A| .
Let Rn :=

⋃
α<ν{α} ×Rn,α for each n ∈ ω. Let A− := 〈 |A| , Rn〉n∈ω.

Applying our assumption on µ, we find B− ≺L A− with ‖B−‖ < µ and

ν ⊆ |B−| . By the last condition, we can reconstruct a submodel B of A from B−

with |B| = |B−| and B ≺L A.

“⊇”: Suppose now that µ is in the set on the right side of the equality. Let A

be a structure of size ≥ µ with a countable signature, and S ∈ [ |A| ]<µ.

Let A+ = 〈A, a〉a∈S. Applying the assumption on µ, we obtain B+ ≺L A+ of

size <µ. Denoting by B the structure B+ reduced to the original signature, we

have ‖B‖ < µ, S ⊆ |B| and B ≺L A. (Lemma 1.7)

Lemma 1.8 P-intro-7For any logic L, LSTS(L) is a closed class of cardinals.

Proof. Suppose that 〈κα : α < δ〉 is a strictly increasing sequence in LSTS(L)
and κ = supα<δ κα. We want to show that κ ∈ LSTS(L).

Suppose that A is a structure of countable signature and S ⊆ [ |A| ]<κ. Let

α < δ be such that |S | < κα. Since κα ∈ LSTS(L), there is a B ≺L A such that

S ⊆ |B| and ‖B‖ < κα < κ. This shows that κ ∈ LSTS(L). (Lemma 1.8)
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For LII, one detail of the definition of the LII-elementary submodel relation must

be emphasized: for structures A and B with A ⊆ B, A ≺LII B if and only if for all

LII-formula φ(x0, ...) (in the signature of the structures) without free second-order

variables and a0, ... ∈ |A| ,

(1.4) x-intro-0A |=LII φ(a0, ...) ⇔ B |=LII φ(a0, ...).

Exclusion of the second-order parameters from the definition is justified by

the fact that we would have only trivial cases of elementary substructure relation

A ≺LII B (namely when A = B) if we would have included the second-order

parameters in the definition (1.4).

By Lemma 1.8, the proof of Theorem 1 and Theorem 2 in [19] can be recast to

show the following:

Theorem 1.9 (M.Magidor [19]) P-intro-7-0

LSTS(LII) = LSTS(LHO) = {κ ∈ Card : κ is a supercompact cardinal,

or a limit of supercompact cardinals}.

Similarly to cn(L) and wcn(L), we define the Löwenheim-Skolem-Tarski number

of a logic L be the least element of LSTS(L). More precisely, for a logic L, we let

(1.5) x-intro-1-0lstn(L) := min(LSTS(L) ∪ {∞}).

Theorem 1.9 implies

(1.6) x-intro-1-1lstn(LII) = lstn(LHO) = the least supercompact cardinal (if there is one).

Lℵ0,II denotes the weak (monadic) second-order logic with second-order variables

X, Y , Z etc. whose intended interpretation is that they run over countable subsets

of the underlying set of the structure in consideration. We shall call this type of

second-order variables weak second-order variables (in ℵ0 -interpretation).

The formulas of Lℵ0,II, Lℵ0,II
κ,ω , Lℵ0,II

κ,λ are defined in exactly the same way as the

formulas of LII, LII
κ,ω, LII

κ,λ but the inductive definition of the semantics uses the

ℵ0-interpretation:

A |=Lℵ0,II ∃Xφ(a0, ..., X,A0, ...)

:⇔ there is B ∈ [ |A| ]ℵ0 such that A |=Lℵ0,II φ(a0, ..., B,A0, ...).

In case of this weak second-order logic, a definition of the elementary submodel

relation with second-order parameters also makes sense. Here, for simplicity, we

assume below that the elementarity ≺Lℵ0,II , ≺Lℵ0,II
κ,ω

etc. are always defined similarly

to (1.4) without second-order parameters.
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The Löwenheim-Skolem theorems of stationary quantifier in the context of the

weak second-order logic and its interplay with various reflection principles were

studied in [7].

The logic Lℵ0
stat is defined as the logic with monadic second-order variables with

the second-order quantifier stat (and its dual a.a.) such that the recursive definition

of Lℵ0
stat-formulas includes (1.1) together with the following in addition to the clauses

in the usual definition of the first-order logic:

If φ is a Lℵ0
stat-formula and X a second-order variable, then statX φ is also

a Lℵ0
stat-formula.

The model relation of this logic is then defined as usual with the following additional

clause:

For any Lℵ0
stat-formula φ(x0, ..., X,X0, ...), a0, ... ∈ |A| andA0, ... ∈ [ |A| ]ℵ0 ,

A |=Lℵ0
stat

statX φ(a0, ..., X,A0, ...)

:⇔ {A ∈ [ |A| ]ℵ0 : A |=Lℵ0
stat

φ(a0, ..., A,A0, ...)} is a stationary

subset of [ |A| ]ℵ0 .

Lℵ0,II
stat is the extension of Lℵ0

stat with the weak second-order existential (and uni-

versal) quantification. Lℵ0
stat,κ,λ and Lℵ0,II

stat,κ,λ are then the infinitary versions of Lℵ0
stat

and Lℵ0,II
stat defined as expected.

Lemma 1.10 P-intro-8( 1 ) The expressive power of Lℵ0,II
κ,ω exceeds that of Lκ,ω.

( 2 ) For ω < λ ≤ κ, Lℵ0,II
κ,λ has the same expressive power as Lκ,λ.

( 3 ) For any ω < λ ≤ κ, Lℵ0,II
stat,κ,λ is interpretable in LIII

κ,λ where LIII denotes the

third-order logic, and LIII
κ,λ its infinitary extension.

Proof. (1): For a binary relation symbol R, “R is well-founded” can be expressed

by the Lℵ0,II-sentence:

(1.7) ∀X∃y(y ε X ∧ ∀x(x 6R y)).

On the other hand, Lκ,ω cannot express the well-foundedness of R by a theorem of

Lopez-Escobar [17].

(2): We define the translation of Lℵ0,II
κ,λ -formula φ into Lκ,λ-formula φ∗ by as-

signing each second-order variable X to countably many new first order variables

xXi , i ∈ ω; assigning each atomic formula of the form x ε X to the formula∨∨
{x ≡ xXi : i ∈ ω};
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and assigning each Lℵ0,II
κ,λ -formula φ of the form ∃X ψ(..., , X, ...) to Lκ,λ-formula φ∗

of the form ∃xX
0
∃xX

1
...(

∧∧
i<j<ω

xXi 6≡ xXj ∧ ψ∗(..., x
X
0 , x

X
1 , ..., ...)).

(3): A translation of Lℵ0,II
stat,κ,λ-formula φ into LIII

κ,λ-formula φ∗∗ will do which

starts similarly to φ 7→ φ∗ in (2) and continues with the following details of the

recursive definition:

If the Lℵ0,II
stat,κ,λ-formula φ is of the form ∃Xψ, the translation φ∗∗ is defined to

be the LIII
κ,λ-formula:

∃X∃xX
0
∃xX

1
· · · (

∧∧
i<j<ω

xXi 6≡ xXj ∧ ∀y(y ε X ↔
∨∨

k<ω
y ≡ xXk ) ∧ ψ∗∗).

If the Lℵ0,II
stat,κ,λ-formula φ is of the form statXψ, the translation φ∗∗ is defined

to be the LIII
κ,λ-formula:

∃X ( ∀X (X ε X →
∃xX

0
∃xX

1
...(

∧∧
i<j<ω

xXi 6≡ xXj ∧ ∀y(y ε X ↔
∨∨

k<ω
y ≡ xXk ) ∧

ψ∗∗))

∧ ∀Y (“Y is a club of countable sets” → ∃X (X ε X ∧ X ε Y)))

where X and Y are third order variables. (Lemma 1.10)

Proposition 1.11 P-intro-9( 1 ) An uncountable cardinal κ is weakly compact if and only

if κ = wcn(Lℵ0,II
κ,ω ).

( 2 ) wcn(Lℵ0,II
stat,κ,ω) ≤ wcn(LIII

κ,ω) ≤ the first weakly extendible cardinal above κ.

Proof. By Lemma 1.6, Lemma 1.4, (3) and Lemma 1.10. The rightmost inequality

in (2) follows from Theorem 2.2 (for the definition of weakly extendibility, see

around (2.1)). (Proposition 1.11)

In Section 4, we discuss about further results related to Proposition 1.11 above.

In particular, we shall show that wcn(Lℵ0,II) is above certain large cardinals (see

the remark after Proposition 4.1) while, in L, the condition κ = wcn((Lℵ0
stat)κ,ω) is

equivalent to κ = wcn((LII)κ,ω) (Theorem 4.6).

2 Weakly extendible cardinals

weakl-extLet us begin with recalling the definition of extendible cardinals: a cardinal κ is

extendible if, for any η > 0, there is a ζ and j such that j : Vκ+η
≺→κ Vζ (see

Kanamori [15])2) .

2)
fn-0In the following, write j : M

≺→κ N to denote the situation that j is an elementary embedding
(in the sense of elementarity in the first-order logic) of M = 〈M,∈〉 into N = 〈N,∈〉, both M and
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As it is well known, weakly and strongly compact cardinals are characterized

in terms of elementary embeddings:

Lemma 2.1 P-w-ext-a( 1 ) (see e.g. [9]) A cardinal κ is weakly compact if and only if κ =

2<κ and satisfies the following Embedding Property: for any transitive M with

κ ∈M and |M | = κ, there is a transitive N with j such that j :M
≺→κ N .

( 2 ) (Theorem 22.17 in [15]) A cardinal κ is strongly compact if and only if, for

any cardinal λ > κ, there are classes M , j such that j : V
≺→κ M and, for any

a ∈ [M ]≤λ, there is b ∈ [M ]<j(κ) ∩M with a ⊆ b.

Comparing the definition of extendibility with the characterizations of weak

and strong compact cardinals in Lemma 2.1, The following notion seems to be a

good candidate of the large cardinal property which should be characterized by

(1.3):

We shall say that a cardinal κ is weakly extendible if

(2.1) x-w-ext-0κ = 2<κ and,

(2.2) x-w-ext-1for any θ > κ, and M ≺ Vθ with κ + 1 ⊆ M , and |M | = κ, there are θ

and j with j :M ≼κ Vθ.

Here, when we write j : M ≼κ N , we assume that κ + 1 ⊆ M,N (but M =

〈M,∈〉 and N = 〈N,∈〉 are not necessarily transitive), and j : M → N is an

elementary embedding with j ↾ κ = idκ and j(κ) > κ. Similarly to the notation

j : M
≺→κ N , the “elementary embedding” here is meant in terms of first-order

logic. Note that, if m : M
∼=→ M0, n : N

∼=→ N0 are the Mostowski collapses of M

and N , we have n ◦ j ◦m−1 :M0
≺→κ N0.

A weakly extendible cardinal is (strongly) inaccessible. This can be shown by

an easy direct argument (see LemmaA2.1 below). However, by the definition of the

weak extendibility and the characterization of weak compactness (Lemma 2.1, (1)),

we see immediately that a weakly extendible cardinal is weakly compact and we

know that a weakly compact cardinal is inaccessible (e.g. Proposition 4.4 in [15]).

LemmaA2.1 P-w-ext-a-0If κ is weakly extendible then κ is (strongly) inaccessible.

Proof. κ is not a successor cardinal: Suppose otherwise, say κ = µ+. Let M ≺
Vκ+1 be such that κ+ 1 ⊆M and |M | = κ. Let j :M ≼κ Vθ. Then j(µ) = µ and

N are transitive, and κ is the critical point of j. M , N , j are sets in the definition of extendibility
but later we shall also treat the cases where these are proper classes possibly in some generic
extension of V.
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hence Vθ |=“ j(κ) is the successor of µ ”. It follows that j(κ) = (µ+)Vθ ≤ µ+ = κ.

This is a contradiction.

κ is not a singular cardinal: Suppose otherwise, say κ = limα<µ κα for µ < κ

and κα < κ for α < µ. For an M ≺ Vκ+1 with 〈κα : α < µ〉 ∈M and |M | = κ let

j :M ≼κ Vθ. By elementarity, we have

Vθ |=“ j(κ) is the limit of j(〈κα : α < µ〉) ”.

Since j(〈κα : α < µ〉) = 〈κα : α < µ〉, it follows that j(κ) = κ. This is again a

contradiction.

κ is a strong limit: Otherwise there is a µ < κ such that 2µ = κ (Note that the

assumption 2<κ = κ implies 2µ ≤ κ).

Let f : µ2 → κ be a bijection and let M ≺ Vκ+1 be such that f ∈M , κ+1 ⊆M

and |M | = κ. Note that µ2 ⊆M and hence (µ2)M = µ2.

Let j : M ≼κ Vθ. Then j(
µ2) = µ2 and j(f) = j(f) ↾ µ2 = f . By elementarity,

it follows that Vθ |=“ j(κ) is the least upper bound of f ′′ µ2 ” which implies j(κ) =

κ. This is a contradiction. (Lemma 2.1)

The next theorem shows that our notion of weak extendibility is exactly what

we are looking for.

After we had written the first version of this paper, Will Boney told us that

he also obtained a slight variation of the following theorem which also can be seen

as a characterization of the weak compactness of infinitary second-order logics (cf.

Theorem 4.5 in [4]). We keep our proof of the theorem here since it will be modified

to obtain further results in this and next sections.

Theorem 2.2 P-w-ext-0For a cardinal κ, the following are equivalent:

( a ) κ = wcn(LII
κ,ω).

( b ) κ = wcn(LHO
κ,κ).

( c ) κ is weakly extendible.

Proof. “(c) ⇒ (b)”: Assume that κ is weakly extendible. κ is then inaccessible

(see the remark after the definition of weakly extendibility). Suppose that T is a

<κ-satisfiable LHO
κ,κ -theory of signature of size ≤ κ. We want to show that T is

satisfiable.

Since T has cardinality ≤ κ, we may assume that T is a subset of κ by some

reasonable coding.

Let θ be large enough. In particular, such that

(2.3) x-w-ext-2θ ≥ κ+ω and
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(2.4) x-w-ext-3Vθ |=“ T is <κ-satisfiable ”.

Let M ≺ Vθ be such that κ + 1 ⊆ M , T ∈ M , |M | = κ, and let θ, j be such

that j :M ≼κ Vθ. Then we have Vθ |=“ j(T ) is <j(κ)-satisfiable ” by (2.4) and by

elementarity of j.

Since Vθ |=“ |T | < j(κ) and

= j(T ) ∩ κ︷︸︸︷
T ⊆ j(T ) ”, it follows that there is A ∈ Vθ such

that Vθ |=“A |=LHO
κ,κ

T ”. Now θ ≥ j(κ)+ω ≥ κ+ω by (2.3) and by elementarity of j.

Thus, it follows that A |=LHO
κ,κ

T . Thus, T is realizable.

“(b) ⇒ (a)”: By Lemma 1.4, (3) and Lemma 1.2.

“(a) ⇒ (c)”: Assume that κ = wcn(LII
κ,ω) holds. Then we have κ = wcn(Lκ,ω)

by Lemma 1.2. Hence κ is weakly compact by Lemma 1.6. In particular, κ is

inaccessible. Thus it is enough to show that κ satisfies (2.2).

Suppose that θ > κ and M ≺ Vθ is such that κ+ 1 ⊆M and |M | = κ.

Let φ∗ be an LII-sentence in the signature {∈} such that

(2.5) x-w-ext-3-0〈 |A| , ∈A〉 |= φ∗ ⇔ ∈A is well-founded and extensional binary relation,

and the Mostowski collapse of (〈 |A| , ∈A〉) is 〈Vγ,∈〉
for some γ

Let

(2.6) x-w-ext-4T := {φ∗} ∪ {φ(ca0 , ...) : φ is a first-order formula in the signature {∈},
a0, ... ∈M and M |= φ(a0, ...)}

∪ {∀x(x ∈ cα ↔
∨∨

β<α
x ≡ cβ) : α < κ}

∪ {cα ∈ d : α < κ}
∪ {d ∈ cκ}.

 (*)

The signature of the LII
κ,ω-theory T is {∈, d}∪{ca : a ∈M} and it is of cardinality

κ.

Claim 2.2.1 T is <κ-satisfiable.

` Suppose that T0 ∈ [T ]<κ. We have to show that T0 has a model.

Let C0 := {a ∈M : ca appears in T0} and

α∗ := sup{α + 1 : α < κ, cα appears in T0}.

Let M = 〈Vθ, dM, (ca)
M, ∈M〉a∈C0 where dM := α∗ and (ca)

M := a for all a ∈ C0.

Then M |=LII
κ,ω

T0. a (Claim 2.2.1)

By the assumption on κ, it follows that T is satisfiable. Let B be a model of

T . By B |=LII φ∗, we can take the Mostowski collapse B∗ of B, and |B∗| = Vθ

12



for some ordinal θ. Note that we have ∈B∗
=∈. By the definition j : M → Vθ ;

a 7→ [ca]
B∗
, we obtain j : M ≼κ Vθ. Note that κ is the critical point of j by

(2.6) (*). (Theorem 2.2)

We also obtain a characterization of elements of WCS(LII) by modifying the

proof of Theorem 2.2.

Let us call a cardinal κ weakly sub-extendible if, for any θ > κ andM ≺ Vθ with

κ+1 ⊆M and |M | = κ, there are θ and j with j :M ≼µ Vθ for some µ ≤ κ such

that (2.7) : x-w-ext-4-0j(κ) > sup(j ′′κ).

Theorem 2.3 P-w-ext-0-0For a cardinal κ, κ ∈ WCS(LII) ⇔ κ is weakly sub-extendible.

Proof. (⇐): Suppose that κ is weakly sub-extendible and T is a <κ-satisfiable

LII-theory of cardinality κ (note that, since LII is finitary, the cardinality of T

(+ℵ0) is equal to the cardinality of the signature (+ℵ0). We may assume that T

is is nicely coded as a subset of κ.

Let θ > κ be large enough regular cardinal such that Vθ |=“T is <κ-satisfiable ”.

Let M ≺ Vθ be such that κ+ 1 ⊆ M , T ∈ M and |M | = κ. By assumption there

are j and θ such that j :M ≼µ Vθ for some µ ≤ κ and j(κ) > κ.

By elementarity, we have Vθ |=“ j(T ) is <j(κ)-satisfiable ”. Since Vθ |=“ j ′′T ∈
[j(T )]<j(κ) ”, it follows that Vθ |= “ j ′′T is satisfiable ”. Let A ∈ Vθ be such that

Vθ |= “ j ′′T |=LII A ”. Since Vθ interpret |=LII correctly (later we introduce the

terminology with which we would say Vθ is LII-truthful), we have A |=LII j ′′T .

Thus, by renaming the structure of A we obtain a model A′ of T .

(⇒): Suppose that κ ∈ WCS(LII). Suppose that θ and M are as in the

definition of the weakly sub-extendibility. Let

(2.8) x-w-ext-5T := {φ∗} ∪ {φ(ca0 , ...) : φ is a first-order formula in the signature {∈},
a0, ... ∈M and M |= φ(a0, ...)}

∪ {cα ∈ d : α < κ}
∪ {d ∈ cκ}

}
(**)

where φ∗ is the LII-sentence in (2.5).

T is a LII-theory of size κ. Similarly to the proof of Theorem 2.2 we can show

that T is <κ-satisfiable. Thus, by definition of κ, T has a model A. The Mostowski

collapse A∗ of the model A with respect to ∈A is Vθ for some θ > κ and j :M → Vθ;

a 7→ (ca)
A∗

is an elementary embedding of M into Vθ. Because of missing first line

of (2.6) (*) in T of (2.6), our T in (2.8) cannot guarantee that κ is the critical point

of the elementary embedding but its critical point must be some cardinal ≤ κ by

(2.8) (**), and (2.7) holds.
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This shows that κ is weakly sub-extendible. (Theorem 2.3)

To place the weakly extendible cardinal in the hierarchy (or a zoo?) of (small)

large cardinals, let us recall some notions of large cardinals we are going to mention

in Theorem 2.5:

A cardinal κ is said to be strongly unfoldable if κ = 2<κ and, for any ordinal

λ > κ and any transitive model M of ZFC− such that κ ∈ M , κ>M ⊆ M and

|M | = κ, there is a transitive N ⊇ Vλ with j : M
≺→κ N and j(κ) > λ. Here,

ZFC− denotes the axiom system ZFC without the Power Set Axiom.

The notion of strongly unfoldable cardinal was introduced by A.Villaveces in

[25]. Recently, P. Lücke [18] proved that the strong unfoldability is equivalent to

the shrewdness, a natural strengthening of the total indescribability which was

introduced by M.Rathjen in [21].

Similarly to the argument after the definition (2.1), (2.2) of weakly extendible

cardinals, we can also easily prove that a strongly unfoldable cardinal is weakly

compact and hence inaccessible in particular.

An uncountable cardinal κ is said to be subtle if, for any club C ⊆ κ, and any

sequence 〈Aα : α ∈ C〉 such that Aα ⊆ α for all α ∈ C, there are α, β ∈ C with

α < β such that Aα = Aβ∩α. The notion of subtle cardinal was first considered by

Jensen and Kunen in [14]. Baumgartner [2], [3] studied further its combinatorial

properties and associated ideals.

Note that subtle cardinals are compatible with V = L: if κ is subtle, then so it

is in L.

Strongly uplifting cardinals are introduced in Hamkins and Johnstone [10]: an

inaccessible cardinal κ is strongly uplifting if, for every A ⊆ κ there are arbitrarily

large regular θ > κ such that 〈Vκ,∈, A〉 ≺ 〈Vθ,∈, A〉 for some A ⊆ Vθ.

The following LemmaA2.2 and PropositionA 2.3 were originally used in a direct

proof of Theorem 2.5, (4).

LemmaA2.2 P-w-ext-0-1Suppose that κ is a subtle cardinal. Then: ( 1 ) κ is inaccessible.

( 2 ) For any club C ⊆ κ and any sequence 〈Aα : α ∈ C〉 such that Aα ⊆ α for

all α ∈ C, there are inaccessible α, β ∈ C with α < β and Aα = Aβ ∩ α.

Proof. (1): κ is regular: Suppose that κ is a singular cardinal. Say, κ = supξ<µ κξ

for some µ < κ and a continuously and strictly increasing sequence of ordinals such

that κ0 > µ. Let C = {κξ : ξ < µ} and, for each κξ ∈ C, let Aκξ
= {ξ}. Then

〈Aη : η ∈ C〉 is a counter example for the subtleness of κ.

κ is a strong limit: Suppose that κ is not a strong limit. Then there is µ < κ

such that 2µ ≥ κ. Let C = κ \ µ and let f : C → P(µ) be an injection. Then
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〈f(ξ) : ξ ∈ C〉 is a counterexample for the subtleness of κ.

(2): Let C ⊆ κ be a club and let 〈Aα : α ∈ C〉 be such that Aα ⊆ α for all

α ∈ C. We want to show that there are inaccessible α, β ∈ C with α < β and

Aα = Aβ ∩ α.
Since κ is inaccessible by (1), we may assume that

(ℵ2.1) x-w-ext-8-0all α ∈ C are strong limit cardinals.

For each α,

Eα := even ordinals ⊆ α, and Oα := odd ordinals ⊆ α.

Let fα : α → Oα be the unique order preserving bijection for each α ∈ C. Note

that

(ℵ2.2) x-w-ext-8-1for all α, β ∈ C with α < β, we have fα = fβ ↾ α.

Let

(ℵ2.3) x-w-ext-8-2B′
α := fα

′′Aα,

(ℵ2.4) x-w-ext-8-3

B′′
α =


a cofinal subset D of Eα of order-type cf(α), such that 0 is the

least element of D and cf(α) is the one but least element of D,

if α is singular;

∅, otherwise
and

(ℵ2.5) x-w-ext-8-4Bα = B′
α ∪̇ B′′

α

for all α ∈ C.

Applying the subtleness of κ to the sequence 〈Bα : α ∈ C〉, let α, β ∈ C be

such that Bα = Bβ ∩ α. By (ℵ2.3) (and (ℵ2.2)), it follows that Aα = Aβ ∩ α.
Both of α and β must be regular by (ℵ2.4) and hence inaccessible by (ℵ2.1).

(Lemma 2.3)

PropositionA2.3 P-w-ext-0-2A cardinal κ is subtle if and only if

(ℵ2.6) x-w-ext-9for any club C ⊆ κ and any sequence 〈Bα : α < κ〉 such that Bα ⊆ Vα for

all α ∈ C, there are α, β ∈ C such that α < β, α and β are inaccessible,

and Bα = Bβ ∩ Vα.

Proof. It is clear that (ℵ2.6) implies that κ is subtle. To prove the converse,

assume that κ is subtle. Let f : κ → Vκ be a bijection such that f ′′α ⊆ Vα for all

α < κ and f ′′α = Vα if and only if |α | = |Vα | (this is possible by Lemma 2.2, (1)).
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Let Aα := f−1 ′′Bα for α ∈ C. By Lemma 2.2, (2), there are inaccessible α,

β < κ with α < β and Aα = Aβ ∩ α. Noticing that the mappings f ↾ α : α → Vα

and f ↾ β : β → Vβ are bijective, we obtain

Bα = f ′′Aα = f ′′(Aβ ∩ α) = (f ′′Aβ) ∩ (f ′′α) = Bβ ∩ Vα. (Proposition 2.3)

Theorem 2.4 P-w-ext-0-1-0(Hamkins and Johnstone [10] Theorem 7) Any subtle cardinal is

a stationary limit of strongly uplifting cardinals.

Theorem 2.5 P-w-ext-1( 1 ) If κ is weakly extendible, then there is a weakly compact

λ > κ. On the other hand, strong unfoldability of κ does not imply the existence of

inaccessible λ > κ.

( 2 ) If κ is weakly extendible and ν is the first inaccessible cardinal above κ (which

exists by (1)), then Vν |=“κ is strongly unfoldable but not weakly extendible ”. Also

Vν |=“ there is no inaccessible cardinal above κ ”. It follows that ZFC + “ there is a

weakly extendible cardinal” proves consis(⌜⌜ZFC⌝⌝+⌜ there is a strongly unfoldable

cardinal⌝).
( 3 ) (Boney, Dimopoulos, Gitman, and Magidor [5], Proposition 4.8) If κ is a

strongly uplifting cardinal then κ is weakly extendible and κ is a stationary limit of

weakly extendible cardinals.

( 4 ) If κ is a subtle cardinal, then κ is a stationary limit of weakly extendible

cardinals.

Proof. (1): Suppose that κ is a weakly extendible cardinal. By Lemma 2.1, (1),

κ is weakly compact.

Let M ≺ Vθ for a θ > κ be such that Vθ |=“κ is weakly compact ”, κ+ 1 ⊆M

and |M | = κ. Let θ > κ and j be such that j :M ≼κ Vθ.

By elementarity, Vθ |= “ j(κ) is weakly compact ”. Hence j(κ) > κ is really

weakly compact.

The second assertion follows from (2).

(2): Suppose that κ is weakly extendible and ν > κ is the first inaccessible

cardinal above κ.

Since κ = 2<κ, we also have Vν |= κ = 2<κ.

Suppose thatM ∈ Vν is a transitive model of ZFC− such that κ ∈M , κ>M ⊆M

and |M | = κ. Let κ < λ < ν (= OnVν ). We have to show that, in Vν , there is an

elementary embedding of M into a target model satisfying the conditions in the

definition of strong unfoldability.
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Let κ < θ < ν be such that M ∈ Vθ and let M∗ ≺ Vθ be such that M ∈ M∗,

M ⊆ M∗, κ + 1 ⊆ M∗, and |M∗ | = κ. By weak extendibility of κ, there is θ > κ

and j such that j :M∗ ≼κ Vθ. Note that j(κ) ≥ ν since j(κ) must be inaccessible.

Let N ≺ Vθ be such that Vλ, j
′′M∗ ⊆ N and |N | < ν. Let m : N → N∗

be the Mostowski collapse. Then we have N∗ ∈ Vν , and, letting j∗ := m ◦ j,
j∗ :M∗ ≼κ N

∗. Note that we also have j∗ ∈ Vν .

Since Vλ ⊆ N , we have m ↾ Vλ = idVλ
and hence Vλ ⊆ N∗. Also, it follows that

j∗(κ) ≥ λ.

By elementarity, N∗ |=“ j∗(M) is transitive ”. Since N∗ is transitive it follows

that j∗(M) is really transitive. Also, by elementarity N∗ |= [j∗(M)]<j∗(κ) ⊆ j∗(M).

It follows that Vλ ⊆ j∗(M).

It is easy to check that j∗ ↾ M : M
≺→κ j∗(M) and all of these objects are

elements of Vν .

This shows that κ is strongly unfoldable in Vν .

Clearly, Vν |=“ there is no inaccessible cardinal >κ ” and this shows the second

half of (1).

Since Vν as above is also a model of ZFC, we obtain consis(⌜⌜ZFC⌝⌝ + ⌜ there
is a strongly unfoldable cardinal ⌝).

(3): For the proof of the first claim see [5] (noticing Theorem 2.2). The second

claim is obtained by a slight modification of the proof given in [5]: Suppose that

κ is a strongly uplifting cardinal and C is a club subset of κ. By the first claim,

κ = wcn(LII
κ,ω). Let θ be sufficiently large such that Vθ |= “κ = wcn(LII

κ,ω) ” and

there is C ⊆ θ such that 〈Vκ,∈, C〉 ≺ 〈Vθ,∈, C〉.
Since 〈Vθ,∈, C〉 |=“ C (κ) and κ = wcn(LII

κ,ω) ”, we have

〈Vθ,∈, C〉 |=“ there is a cardinal δ in C with δ = wcn(LII
δ,ω) ”

(we denote with C the unary predicate symbol corresponding to C and C), it

follows that

〈Vκ,∈, C〉 |=“ there is a cardinal δ in C with δ = wcn(LII
δ,ω) ”

by elementarity. Since κ is strongly uplifting, it follows that “δ = wcn(LII
δ,ω)” holds

in V for δ as above.

(4): follows from Theorem 2.4 and (3). Suppose that κ is a subtle cardinal and

C ⊆ κ is a club. By Theorem 2.4, there is λ ∈ Lim(C) such that λ is strongly

uplifting. Now since C ∩ λ is a club in λ, there is a weakly extendible µ ∈ C ∩ λ
by (3). (Theorem 2.5)

Theorem 2.3 implies that wcn(LII) cannot be a small cardinal. This follows

from the next observation which should be well-known:
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Lemma 2.6 P-w-ext-3Suppose that ① M ≺ Vθ, κ+ 1 ⊆M , N and ② j :M ≼µ N for

µ ≤ κ. Then, µ is ( 1 ) a regular cardinal, ( 2 ) weakly inaccessible, and

( 3 ) weakly Mahlo, weakly hyper Mahlo, etc.

Proof. Without loss of generality, we may assume that N is transitive.

(1): Suppose toward a contradiction that µ is singular. Then, by the elemen-

tarity ①, there are ν < µ and f ∈ M such that M |= “ f : ν → µ is cofinal ”.

Since j(f) = j(f) ↾ j(ν) = j(f) ↾ ν = f it follows, by the elementarity ②, that

N |=“ f : ν → j(µ) is cofinal ”. Thus µ = j(µ). This is a contradiction.

(2): By (1) (and since µ cannot be ω), it is enough to show that µ is not a

successor cardinal. Suppose it were, say µ = ν+. j(µ) = µ by definition of µ > ν.

By the elementarity ①, we have

M |=“∀x < µ (x 6= 0 → ∃y(y : ν → x is a surjection)) ”.

By the elementarity ②, it follows that

N |=“∀x < j(µ) (x 6= 0 → ∃y(y : ν → x is a surjection)) ”.

Thus we have µ ≤ j(µ) ≤ ν+ = µ and hence j(µ) = µ. This is a contradiction to

the choice of µ.

(3): Suppose that C ∈ M is a club subset of µ. Then j(C) ∩ µ = C and

N |=“ j(C) is a club subset of j(µ) ”. This and (2) together with the elementarity

② imply N |= “µ ∈ j(C) and µ is a weakly inaccessible cardinal ”. Again by the

elementarity ② and since C was arbitrary, we obtain

M |=“∀x (x is a club subset of µ →
x contains an element which is weakly inaccessible) ”.

By the elementarity ②, the same statement holds in Vθ and hence also in V .

This shows that µ is weakly Mahlo. The same argument can be repeated to show

that µ is weakly hyper Mahlo, weakly hyper hyper Mahlo, etc. (Lemma 2.6)

Proposition 2.7 P-w-ext-4( 1 ) If wcn(LII) <∞, wcn(LII) is greater than the first weakly

Mahlo cardinal, first weakly hyper Mahlo cardinal, etc.

( 2 ) 2ℵ0 /∈ WCS(LII), (2ℵ0)+ 6∈ WCS(LII), etc.

Proof. (1): By Theorem 2.3 and Lemma 2.6.

(2): T := “the LII-theory of 〈P(ω), a,∈〉a∈P(ω)” ∪ {d 6= c
a
: a ∈ P(ω)}

is a counter-example to 2ℵ0 ∈ WCS(LII).

For n ∈ ω \ 1, let f : P(ω) → 2ℵ0 be a bijection, and let
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Fn := {g : g : (2ℵ0)+k → α is a surjection for k ∈ n, 0 < α < (2ℵ0)+(k+1)}.

Then

Tn := “the LII-theory of

〈P(ω) ∪ (2ℵ0)+n,P(ω), 2ℵ0 , (2ℵ0)+1, ..., (2ℵ0)+(n−1), f, g,∈〉g∈Fn”

∪ {d 6= c
a
: a ∈ P(ω) ∪ (2ℵ0)+n}

is a counter example to (2ℵ0)+n ∈ WCS(LII). (Proposition 2.7)

3 General characterization of weakly L-compact

cardinals

comp-cardWe show in this section that Theorem 2.2 can be generalized to a wider class of

logics.

In the following, ZC− denotes the Zermelo set-theory with the Axiom of Choice

minus the Power-set Axiom.

Suppose thatN |= ZC−. For a signature S ∈ N with S = 〈c i, f
j
, r

k
〉i∈κ0,j∈κ1,k∈κ2

where c i, is a constant symbol, f
j
anmj-place function symbol, and r

k
an nk-place

relation symbol for each i ∈ κ0, j ∈ κ1, k ∈ κ2; κ0 + 1, κ1 + 1, κ2 + 1 ⊆ N , and

(3.1) x-LS-24-aN |=“A is a structure in the signature {c i, f j, rk}i∈κ0,j∈κ1,k∈κ2 ”

we denote with AN the structure

(3.2) x-LS-24-0AN := 〈A ∩N, ci, fj ↾ (A ∩N)mj , rk ∩ (A ∩N)nk〉i∈κ0,j∈κ1,k∈κ2

where ci = (c i)
A, fj = (f j)

A, etc.

Note that,

(3.3) x-LS-24if m : N
∼=→ N0 is the Mostowski collapse, then AN ∼= m(A) = (m(A))N0 .

For a logic L, if N is such that N |= ZC− and N contains all parameters needed

to define L, we shall say that N is L-truthful if, for all structures A as above (in

connection with this N), N |=“A |=L φ ” is equivalent to AN |=L φ. By (3.3), if

N is L-truthful, then its Mostowski collapse N0 is also L-truthful.
Note that, for a sentence φ in a proper logic L, there is a first-order formula φ∗

such that

(3.4) x-LS-24-1N |=“A |=L φ ” ⇔ N |= φ∗(A),

and an L-formula φ∗∗ such that
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(3.5) x-LS-24-2AN |=L φ ⇔ N |=L φ∗∗(A).

Thus, letting

(3.6) x-LS-24-3Φ∗
L := {∀x(“x is a structure in the signature of φ” → (φ∗(x) ↔ φ∗∗(x)))

: φ is an L-formula},

we have

(3.7) x-LS-24-4N |= Φ∗
L ⇔ N is L-truthful

for any N with N |= ZC−

Let us call here a logic L finitary if the set of free variables in any L-formula is

finite, the set of all L-formulas of given signature S of cardinality ≤ κ, for an infinite

κ has size ≤ κ, and, for any infinite ordinal θ and φ ∈ Vθ, Vθ |=“φ is an L-formula ”

if and only if φ is (really) an L-formula.

Lκ,ω for an uncountable cardinal κ is an example of non finitary logic (since the

size of the set of formulas in a signature can exceed the size of the signature).

Theorem 3.1 P-comp-2( 1 ) Suppose that L is a finitary proper logic such that

(3.8) x-comp-6Vθ for all regular uncountable θ is L-truthful; and
(3.9) x-comp-7“∈ is well-founded” is expressible by a formula φ∗

L in L.

Then a cardinal κ is weakly L-compact (i.e. κ ∈ WCS(L)) ⇔

(3.10) x-comp-8for any regular θ ≥ κ and M ≺ Vθ such that κ+ 1 ⊆ M , |M | = κ, there

are j, N such that κ+1 ⊆ N , j :M ≼ N , j(κ) > min(OnN \ sup(j ′′κ)),

and N is L-truthful.

( 2 ) Suppose that L∗ is a logic obtained from a finitary proper logic L which

satisfies (3.8) and (3.9), by extending L by taking the closure of the set of L formulas

with respect to infinitary conjunction and disjunction of set of formulas of size <κ

and first order logical operations.

Then κ is weakly L∗-compact ⇔ 2<κ = κ and

(3.11) x-comp-8-0for any regular θ ≥ κ and M ≺ Vθ such that κ+ 1 ⊆ M , |M | = κ, there

are j, N such that j :M ≼κ N ,3) and N is L-truthful.

Proof. (1): “⇐”: Assume that (3.10) holds for κ. Let T be a <κ-satisfiable

L-theory of signature of size ≤ κ. Since L is finitary, we may assume that |T | = κ.

3)For the notation j : M ≼κ N see directly after (2.2).
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Without loss of generality, we may further assume that T is coded as a subset of κ.

Let θ be sufficiently large regular cardinal such that Vθ |=“T is <κ-satisfiable ”.

Let M ≺ Vθ be such that T ∈ M , κ + 1 ⊆ M (note that this implies T ⊆ M),

and |M | = κ. By (3.10), there are j and N such that

(3.12) x-comp-9κ+ 1 ⊆ N ,

(3.13) x-comp-10j :M ≼ N ,

(3.14) x-comp-11j(κ) > min(OnN \ sup(j ′′κ)), and

(3.15) x-comp-12N is L-truthful.

By elementarity (3.13), we have

(3.16) x-comp-13N |=“ j(T ) is a <j(κ)-satisfiable L-theory ”.

Let α∗ := min(OnN \ sup(j ′′κ)) and T ∗ := j(T )∩α∗. Then T ∗ ∈ N and j ′′T ⊆ T ∗.

By (3.14) and (3.16), it follows that N |= “A |= T ∗ ” for some structure A ∈ N .

By (3.15), it follows that AN |= T ∗ and hence AN |= j ′′T . Thus, by renaming the

components of the structure AN , we obtain a model of T .

“⇒”: Assume that κ is weakly L-compact.

Suppose that θ ≥ κ is a regular cardinal, andM is such thatM ≺ Vθ, κ+1 ⊆M ,

and |M | = κ. Let T be the L-theory defined by:

(3.17) x-comp-14T := {φ∗
L}

∪ {φ(ca0 , ...) : φ is a first-order formula in the signature {∈},
a0, ... ∈M and M |= φ(a0, ...)}

∪ {cα ∈ d : α < κ}
∪ {d ∈ cκ}
∪ Φ∗

L

where φ∗
L is an L-formula as in (3.9) and Φ∗

L a set of L-formulas in (3.6).

T is <κ-satisfiable: by (3.8) and (3.7), Vθ can be expanded to a model A0 of

any subset T0 of T of size <κ by letting (ca)
A := a for all constant symbols of

this form appearing T0, and (d)A := sup({α < κ : cα appears in T0}). Note that

sup({α < κ : cα appears in T0}) < κ since κ is regular.

By assumption, there is a model B of T . By φ∗
L ∈ T , we can take the Mostowski

collapse B∗ of B (with respect to ∈B). We then have ∈B∗
= ∈ and |B∗| is a

transitive set.

By (3.7) and since Φ∗
L ⊆ T , N := |B∗| is L-truthful.

Let j : M → N be defined by j(a) := (ca)
B∗

for a ∈ M . Then these N , j are

as desired in (3.10).
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(2): This can be proved similarly to (1). For the direction “⇒”, note the

following Lemma 3.2. Also, note that 2<κ = κ follows from the assumption of the

weakly L∗-compactness of κ since κ is then at least weakly compact.

For the proof of the direction “⇐”, consider

T ′ := {φ∗
L}

∪ {φ(ca0 , ...) : φ is a first-order formula in the signature {∈},
a0, ... ∈M and M |= φ(a0, ...)}

∪ {∀x(x ∈ cα ↔
∨∨

β<α
x ≡ cβ) : α < κ}

∪ {cα ∈ d : α < κ}
∪ {d ∈ cκ}
∪ Φ∗

L∗

in place of T in the proof of (1). (Theorem 3.1)

Lemma 3.2 P-comp-2-0Suppose that L and L∗ are as in Theorem 3.1. If M is a model of a

sufficiently large fragment of set theory, M ⊇ κ+ 1, and M is L-truthful, then M
is also L∗-truthful.

LemmaA3.1 P-comp-3-0Suppose that L is a finitary proper logic andM is a transitive model

of ZC− such that (3.18) : x-comp-16M is L-truthful, N ∈ M , and (3.19) :
x-comp-17

M |= “N is an

L-truthful model of ZC− ”.3)a Then N is L-truthful.

Proof. Let A ∈ N and φ is a L-formula in N in the signature of A. Then we have

N |=“A |=L φ ”

by (3.18) and since L contains the first-order logic︷︸︸︷
⇔ M |=“N |=“A |=L φ ” ” ⇔︸︷︷︸

by (3.19)

M |=“AN |=L φ ”

⇔︸︷︷︸
by (3.18)

AN |=L φ.

(Lemma 3.2)

Theorem 3.1 is a generalization of Theorem 2.2. This can be seen in the follow-

ing:

Lemma 3.3 P-comp-4If a transitive set N (seen as an ∈-structure) is elementary equivalent

(in first-order logic) to Vθ for some limit ordinal θ and N is LII-truthful then

N = Vθ′ for some limit ordinal θ′.

Proof. Note that, by elementarity,

3)a In general, this can be formulated by infinitely many conditions: one for each L-formula.
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N |=“∀x∃α∃f ( “α is an ordinal” ∧ “f is a mapping on α”

∧ “f is an initial segment of the cumulative hierarchy”

∧ “x ∈ f(β) for some β < α) ”.

Thus, it is enough to show that, if A ∈ N , then P(A) ⊆ N . Let A ∈ N be such

that N |=“A = 〈P(A)∪A,A,∈〉 ”. Since N is transitive, we have (3.20) : x-comp-17-0AN = A.

N |=“A |=LII ∀X(∀y(y ε X → y ∈ A) → ∃z∀y (y ∈ z ↔ y ε X)) ”,

since N is elementary equivalent to Vθ.

It follows that

A |=LII ∀X(∀y(y ε X → y ∈ A) → ∃z∀y (y ∈ z ↔ y ε X))

by LII-truthfulness of N (and (3.20)).

It follows that |AN | = P(A) ∪ A. Thus, P(A) ⊆ N . (Lemma 3.3)

wcn(L) for a finitary logic L as in Theorem 3.1, (1) is always fairly large since

the following analog of Proposition 2.7 holds for such a logic:

Proposition 3.4 P-comp-4-0Suppose that L is a finitary proper logic satisfying (3.8) and

(3.9).

( 1 ) If wcn(L) < ∞, wcn(L) is greater than the first weakly Mahlo cardinal,

first weakly hyper Mahlo cardinal, etc.

( 2 ) 2ℵ0 /∈ WCS(L), (2ℵ0)+ 6∈ WCS(L), etc.

Proof. (1): By Theorem 3.1, (1) and Lemma 2.6.

(2): The theories similarly to T and Tn in the proof of Proposition 2.7 with LII-

theories of the structures replaced by corresponding L-theories show the inequality.

(Proposition 3.4)

4 Weak compactness of stationary logic

statAs is already noted, lstn(LII) is the least supercompact cardinal by one of Magidor’s

Theorems (see Theorem 1.9). In contrast, lstn(Lℵ0,II) is (2ℵ0)+ while lstn(Lℵ0
stat) can

be (consistently) ≤ 2ℵ0 though the consistency strength of LSTS(Lℵ0
stat) 6= ∅ is still

rather high (see the following Lemma 4.1, (4) and (5)). The size of lstn(Lℵ0
stat) is

wildly undecided under ZFC (see Lemma 4.1, (10)).

We shall call a cardinal κ ·ℵ0-closed if µℵ0 < κ holds for all µ < κ.

For a class P of posets, a cardinal κ is said to be P-generically supercompact

(P-gen. supercompact, for short) if for, any λ ≥ κ, there is a poset P ∈ P such

that, for a (V,P)-generic G, there are classes j and M (in V[G]) such that
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(4.1) x-stat-aV[G] |=“ j : V
≺→κ M ”, j(κ) > λ, and j ′′λ ∈M

where we are using here the convention in the footnote 2) .

Proposition 4.1 P-stat-0( 1 ) LSTS(Lℵ0,II) = {κ : κ is ·ℵ0 -closed}.
( 2 ) lstn(Lℵ0,II) = (2ℵ0)+.

( 3 ) If □κ holds then lstn(Lℵ0
stat) > κ+.

( 4 ) If □κ holds for class many κ, then LSTS(Lℵ0
stat) = ∅.

( 5 ) MA+ω1(σ-closed) implies lstn(Lℵ0
stat) = ℵ2. In particular, lstn(Lℵ0

stat) = 2ℵ0

is consistent (modulo a large cardinal, e.g. a supercompact). Note that, by (2),

lstn(Lℵ0,II
stat ) ≤ 2ℵ0 is inconsistent.

( 6 ) lstn(Lℵ0
stat) = ℵ2 implies 2ℵ0 ≤ ℵ2. (CH is also possible under lstn(Lℵ0

stat) =

ℵ2).

( 7 ) If κ ∈ LSTS(Lℵ0
stat) and κ > ℵ2 then κ > 2ℵ0.

( 8 ) lstn(Lℵ0
stat) = 2ℵ0 implies 2ℵ0 = ℵ2.

( 9 ) If κ is σ-closed-gen. supercompact then lstn(Lℵ0,II
stat ) ≤ κ.

(10) Assuming the consistency of ZFC + “there is a supercompact cardinal”, the

following assertion is consistent with ZFC for any natural number n ≥ 2:

(4.2) x-stat-0lstn(Lℵ0,II
stat ) = ℵn.

Proof. (1): is easy to prove. Let C := {κ ∈ Card : κ is ·ℵ0-closed }.
C ⊆ LSTS(Lℵ0,II): Suppose that κ is ·ℵ0-closed. Let A be an arbitrary structure

of countable signature and S ∈ [A ]<κ. Let θ be a sufficiently large regular cardinal

(A ∈ H(θ) in particular).

Let M ≺ H(θ) be such that A ∈ M , S ⊆ M , [M ]ℵ0 ⊆ M and |M | < κ (this

is possible since κ is ·ℵ0-closed). Then A ↾ ( |A| ∩M) contains S as a subset of its

underlying set |A| ∩M , | |A| ∩M | < κ, and A ↾ ( |A| ∩M) ≺Lℵ0,II A.

LSTS(Lℵ0,II) ⊆ C: Suppose that κ is not in C and let µ < κ be such that

µℵ0 ≥ κ.

Let A := 〈H(µ+),∈〉. Note that

A |=Lℵ0,II ∀X∃x∀y (y ε X ↔ y ∈ x).

If B ≺Lℵ0,II A, then

B |=Lℵ0,II ∀X∃x∀y (y ε X ↔ y ∈ x)
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by elementarity, and hence [ |B| ]ℵ0 ⊆ |B| . Thus, if µ ⊆ |B| then [µ]ℵ0 ⊆ |B| ,
and hence we have κ ≤ µℵ0 ≤ ‖B‖ . This shows that κ 6∈ LSTS(Lℵ0,II).

(2): follows from (1).

(3): If □κ holds then there is a non-reflecting stationary set S ⊆ Eκ+

ω .

S∗ := {s ∈ [κ+]ℵ0 : sup({α + 1 : α ∈ s}) ∈ S} is a non-reflecting stationary

subset of [κ+]ℵ0 . S∗ can be recast to a counter-example of lstn(Lℵ0
stat) ≤ κ+.

(4): follows from (3).

(5): This can be proved by a modification of arguments in [7]. The second

assertion holds since MA+ω1(σ-closed) + 2ℵ0 = ℵ2 is consistent (e.g. modulo a

supercompact).

(6): lstn(Lℵ0
stat) = ℵ2 implies the principle RP in [12]. RP implies 2ℵ0 ≤ ℵ2

(Todorčević, see Theorem 37.17 in [12]).

Suppose V satisfies CH and there is a supercompact cardinal κ then collapsing

κ to ℵ2, we obtain a model of lstn(Lℵ0
stat) = ℵ2 (see (9)) and CH.

(7): If κ ∈ lstn(Lℵ0
stat) then SDLS−(Lℵ0

stat, < κ) holds (see [7] for definition).

Thus, by Proposition 2.1 in [8], if κ > ℵ2 then κ > 2ℵ0 holds.

(8): This follows from Corollary 2.3 in [8].

(9): See [7] (for the detail of a direct proof, see [0]).

Suppose that A is a structure with ‖A‖ ≥ κ and S ∈ [ |A| ]<κ. Let P be a

σ-closed poset with a (V,P)-generic G such that there are j,M ⊆ V[G] with

(ℵ4.1) x-LS-25j : V
≺→κ M ,

(ℵ4.2) x-LS-26j(κ) > ‖A‖ and

(ℵ4.3) x-LS-27j ′′µ ∈M where µ := ‖A‖ ℵ0 .

Without loss of generality, we may assume that (4.3) : x-LS-27-a|A| = ‖A‖ .
Let B := j(A) ↾ j ′′ |A| . By (ℵ4.3) and (4.3), B, j ↾ |A| ∈ M . Thus, A ∈ M

and we have

(ℵ4.4) x-LS-27-0M |=“ j ↾ |A| : A
∼=→ B ”.

Since ([ |A| ]ℵ0)V = ([ |A| ]ℵ0)V[G] by σ-closedness of P and ([ |A| ]ℵ0)V ⊆ ([ |A| ]ℵ0)M ,

we have

(ℵ4.5) x-LS-28([ |A| ]ℵ0)V = ([ |A| ]ℵ0)M .

Claim 4.1.1 Cl-LS-8For any Lℵ0,II
stat -formula φ(x0, ..., X0, ...), a0, ... ∈ |A| and A0, ... ∈

[ |A| ]ℵ0,
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(ℵ4.6) x-LS-29V |=“A |= φ(a0, ..., A0, ...) ” ⇔ M |=“A |= φ(a0, ..., A0, ...) ”.

` We prove (ℵ4.6) by induction on φ. The most crucial step is when φ is of the

form statX ψ(x0, ..., X,X0, ...):

Suppose that a0, ... ∈ |A| and A0, ... ∈ [ |A| ]ℵ0 .

First assume that V |=“A |= statX ψ(a0, ..., X,A0, ...) ”. This is equivalent to

V |=“ {A ∈ [ |A| ]ℵ0 : A |= ψ(a0, ..., A,A0, ...)} is stationary ”.

We have

({A ∈ [ |A| ]ℵ0 : A |= ψ(a0, ..., A,A0, ...)})V

= ({A ∈ [ |A| ]ℵ0 : A |= ψ(a0, ..., A,A0, ...)})M

by (ℵ4.5) and induction hypothesis. Since P is proper, it follows that M |=“ {A ∈
[ |A| ]ℵ0 : A |= ψ(a0, ..., A,A0, ...)} is stationary ”. Thus M |=“A |= statX ψ(a0,

..., X,A0, ...) ”.

Now assume that V 6|=“A |= statX ψ(a0, ..., X,A0, ...) ”. This means that there

is a club C ⊆ [ |A| ]ℵ0 such that V |= “ for all A ∈ C, A 6|= ψ(a0, ..., A,A0, ...) ”.

Now C ∈M by (ℵ4.3). By induction hypothesis

M |=“ for all A ∈ C, A 6|= ψ(a0, ..., A,A0, ...) ”.

By σ-closedness of P, C is club in V[G] and hence also in M .

Thus, it follows that M 6|=“A |= statX ψ(a0, ..., X,A0, ...) ”. a (Claim 4.1.1)

For an Lℵ0,II
stat -formula φ(x0, ..., X0, ...), a0, ... ∈ |A| and A0, ... ∈ [ |A| ]ℵ0

M |=“ j(A) |= φ(j(a0), ..., j(A0), ...) ”

by elementarity of j︷︸︸︷
⇔ V |=“A |= φ(a0, ..., A0, ...) ”

⇔︸︷︷︸
by Claim 4.1.1

M |=“A |= φ(a0, ..., A0, ...) ”

⇔︸︷︷︸
by (ℵ4.4)

M |=“B |= φ(j(a0), ..., j(A0), ...) ”.

Since M |= ‖B‖ < j(κ), j(S) (= j ′′S) ⊆ |B| , we obtain

M |=“ there is an Lℵ0,II
stat -elementary substructure X of j(A) of size <j(κ)

with j(S) ⊆ X ”.

By elementarity, it follows that

V |=“ there is an Lℵ0,II
stat -elementary substructure X of A of size <κ with

S ⊆ X ”.
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This shows that κ ∈ LSTS(Lℵ,II
stat).

(10): By (3) and (5). Note that, if κ is a supercompact cardinal, and P =

Col(ℵk, κ) for k > 0 (in the notation of Kanamori [15]) then, in V[G] for a (V,P)-

generic G, κ = ℵk+1 and κ is σ-closed-gen. supercompact. (Proposition 4.1)

In contrast to the possible smallness of lstn(Lℵ0,II) shown in Proposition 4.1, (2)

(e.g. it can be ℵ2 under CH), wcn(Lℵ0,II) is fairly a large cardinal. This is because

we can apply Proposition 3.4 to Lℵ0,II.

For a logic L, the Hanf number hn(L) of L is defined by

(4.4) x-stat-1hn(L) := min({κ : for any L-sentence φ if φ has a model of size at least

κ then φ has arbitrarily large model}).

Note that all proper logics have Hanf number assuming the properness include

the properties that, there is a cardinal κL such that each L-formula is in a signa-

ture of size <κL and there are only set-many L-formulas in each signature. The

following should be well-known:

Lemma 4.2 P-stat-2For a proper logic L, we have hn(L) ≤ cn(L).

Proof. Suppose that κ < hn(L) then there is an L-sentence φ such that φ has a

model A with κ ≤ ‖A‖ < hn(L) such that any model of φ has size < hn(L).
Let T := {φ} ∪ {cα 6≡ cβ : α < β < hn(L)}. Then T does not have any model

but, for any T0 ∈ [T ]<κ+
, A can be expanded to a model of T0. This shows that

cn(L) > κ+. (This proof actually shows that hn(L) < cn(L) if hn(L) is a successor.

But this fact is irrelevant for the application in the following Lemma). (Lemma 4.2)

In the following Lemma 4.3, Q1 denotes the (first-order) quantifier “there exists

uncountably many” and L(Q1) the logic obtained by adding the quantifier Q1 to

the first-order logic.

The next lemma follows immediately from Lemma 4.2. Note the quantifier Q1

is interpretable in Lℵ0
stat.

[ Q1 xφ 7→ statX∃x(x 6 ε X ∧ φ∗) where φ∗ is the Lℵ0
stat-interpretation of φ. ]

Lemma 4.3 P-stat-3( 1 ) wcn(Lℵ0
stat) ≥ wcn(L(Q1)) ≥ ℵω.

( 2 ) (Shelah [22]) For a proper Logic L, hn(L) is a strong limit. If hn(L) > ℵ0,

then cn(L) ≥ hn(L) ≥ ℶω.

( 3 ) (Shelah [23]) hn(Lℵ0
stat) > ℶω. In particular cn(Lℵ0

stat) > ℶω, while we have

cn(Lℵ0
stat) ≥ cn(L(Q1)) ≥ hn(L(Q1)) = ℶω.
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For the Proposition 4.5 below, we use Jensen’s global square C (for the existence

of the class C as below, see the proof of Theorem 5.1 in [13]):

Let

SINGL := {α : L |=“α is a singular limit ordinal ”}.

A global square is a class function C (i.e. the corresponding L∈-formula defining

the class function) such that the following are provable from ZFC−:

( I ) C is a class function with dom(C) = SINGL.

( II) For each α ∈ SINGL, C(α) ∈ L is a club subset of α with otp(C(α)) < α.

(III) (Coherence) If α ∈ SINGL, and β ∈ Lim(C(α)), then β ∈ SINGL and

C(β) = C(α) ∩ β.
(IV) For any transitive set model W of ZFC−, we have CW = C ↾ (SINGL)

W .

Lemma 4.4 P-stat-3-0(see e.g. Kunen [16], Lemma 4.11) Assume V = L. Then Lκ = H(κ)

whenever κ > ω and κ is regular.

Proposition 4.5 P-stat-4Assume that κ = wcn(Lℵ0,II
stat,κ,ω) and suppose that λ > κ is a

regular cardinal and M ≺ Lλ is such that κ + 1 ⊆ M and |M | = κ. Then there

are λ > κ and j such that

(4.5) x-stat-1-aλ is a regular cardinal in L of uncountable cofinality (in V), and

(4.6) x-stat-1-a-0j :M ≼κ Lλ .

Proof. If 0# exists, then, since the regular cardinals κ, λ belong to the indis-

cernibles associated with 0#, we can easily find j as above for any regular λ ≥ κ+.

In the following, we assume that 0# does not exist. Observe first that it is

enough to prove the following variation of the statement of the present proposition:

(4.7) x-stat-2-0For any M ≺ Lλ with κ + 1 ⊆ M and |M | = κ, there is M∗ ≺ Lλ such

that M ⊆M∗ and |M∗ | = κ, with λ > κ and j∗ such that

(4.5) λ is a regular cardinal, and

(4.6)′ j∗ :M∗ ≼κ Lλ .

This is because, if M∗, λ, j∗ are as in (4.7) for given M , then M , λ and

j := j∗ ↾M satisfy (4.5) and (4.6).

Let E := (Eλ
ω \ ω2)

V. For any α ∈ E, we have (cf(α))L < ω2 by Covering

Lemma. Thus, C(α) exists for such α and otp(C(α)) < α by (II). By Fodor’s

Lemma, there is ν < λ such that
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(4.8) x-stat-2-1E0 := {α ∈ E : otp(C(α)) = ν} is stationary.

Since cf(ν) = ω (in V), this statement is equivalent to

(4.9) x-stat-2-2E1 := {a ∈ [λ]ℵ0 : a does not have the maximal element, sup(a) ∈ E0}
is stationary subset of [λ]ℵ0 .

Now suppose that M ≺ Lλ is such that κ+1 ⊆M and |M | = κ. Let M∗ ≺ Lλ

be such that M ∪ {ν} ⊆M∗ and |M∗ | = κ.

Let

(4.10) x-stat-2-3T :=

(∗)︷ ︸︸ ︷
{φ(ca0 , ...) : a0, ... ∈M∗, φ(x0, ...) is an Lℵ0,II

stat,κ,ω-formula with

Lλ |= φ(a0, ...)}
∪ {cα < d : α ∈ κ}
∪ {d < cκ}
∪ {∀x ((x is an ordinal ∧ x < cα) →

∨∨
β<α

x ≡ cβ) : α < κ}.

(∗∗)

Apparently T is of a signature of size κ. As before we can also show that T is

<κ-satisfiable. Hence, by κ = wcn(Lℵ0,II
stat,κ,ω), T has a model A.

Since ∈A is well-founded (which is declared in the (∗) part of T ), we can take

the Mostowski collapse A∗ of A. The underlying set of A∗ is of the form Lλ (also

because this is formulated in the (∗) part of T ).
Letting j∗ :M∗ → Lλ; a 7→ (ca)

A∗
, we have

(4.11) x-stat-2-4j∗ :M∗ ≼κ Lλ

(the elementarity follows from (∗) part of T , and crit(j) = κ from (∗∗) of T ), and

(4.12) x-stat-2-5〈Lλ, a〉a∈M∗ ≡Lℵ0,II
stat,κ,ω

〈Lλ, j
∗(a)〉a∈M∗

by the (∗) part of T .
Note that cf(λ) > ω by (4.12). Thus, we are done by showing that λ is regular

in L. Suppose not, by way of contradiction. Then C(λ) exists. C := {α < λ :

α is a limit of C(λ)} is a club subset of λ. E2 := {α < λ : otp(C(α)) = j∗(ν)} is

stationary by (4.9), the elementarity (4.12)) and (IV).

Let ξ0, ξ1 ∈ C ∩E2 be with ξ0 < ξ1. Then C(ξ0) = C(ξ1)∩ ξ0 by (III). This is a

contradiction to ξ0, ξ1 ∈ E2. (Proposition 4.5)

Under V = L, the condition κ = wcn(Lℵ0,II
stat,κ,ω) becomes equivalent to κ =

wcn(LII
κ,ω):

Theorem 4.6 P-stat-7Assume V = L. Then κ = wcn(Lℵ0,II
stat,κ,ω) holds if and only if κ is

weakly extendible.
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Theorem 4.6 follows from Proposition 4.5 and the following characterization of

weak extendibility:

Lemma 4.7 P-stat-8For a cardinal κ, the following are equivalent:

( a ) κ is weakly extendible.

( b ) 2<κ = κ holds, and, for any regular λ > κ and anyM ≺ H(λ) with κ+1 ⊆M

and |M | = κ, there are regular λ > κ and j :M ≼κ H(λ).

Proof. (a) ⇒ (b): Assume that κ is weakly extendible. Then we have 2<κ = κ

by definition. For a regular λ > κ and M ≺ H(λ) with κ + 1 ⊆ M and |M | = κ,

let θ := λ+ ω. Then M , H(λ) ∈ Vθ. Let M
∗ be such that

(4.13) x-stat-9M∗ ≺ Vθ,

(4.14) x-stat-10M , H(λ) ∈M∗, M ⊆M∗ and

(4.15) x-stat-11|M∗ | = κ.

Since κ is weakly extendible, there are θ and j with (4.16) : x-stat-12j : M∗ ≼κ Vθ. Note

that θ is a limit ordinal by the choice of θ and by the elementarity (4.13) and (4.16).

We have Vθ |= “ j(λ) is a regular cardinal ” by elementarity (4.16), and hence

j(λ) is really a regular cardinal. By the elementarity, we also have Vθ |=“ j(H(λ)) =

H(j(λ)) ”. Since H(j(λ)) ∈ Vθ, it follows that j(H(λ)) = H(j(λ)).

Thus, letting j := j ↾M and λ := j(λ), we obtain j :M ≼κ H(λ).

(b) ⇒ (a): Assume that (b) holds. We want to show that (2.2) holds. Suppose

θ > κ and M ≺ Vθ is such that κ+ 1 ⊆M and |M | = κ.

Let λ > θ be a regular cardinal such that Vθ ∈ H(λ), and let M∗ ≺ H(λ) be

such that M , θ, λ ∈M∗, M ⊆M∗ and |M∗ | = κ.

By (b), there are regular λ > κ and j such that j : M∗ ≼κ H(λ). Then, by

letting j := j ↾M and θ := j(θ), we obtain j :M ≼κ Vθ. (Lemma 4.7)

Proof of Theorem 4.6: If κ is weakly extendible then κ = wcn(LHO
κ,κ) holds

(Theorem 2.2). By Lemma 1.10, (3), it follows that κ = wcn(Lℵ0,II
stat,κ,ω).

Now assume that κ = wcn(Lℵ0,II
stat,κ,ω). We want to show that (b) in Lemma 4.7

holds.

We have 2<κ = κ since κ = wcn(Lκ,ω) and hence κ is weakly compact.

Suppose that λ > κ is regular and M ≺ H(λ) is such that κ + 1 ⊆ M and

|M | = κ. By Lemma 4.4, we have H(λ) = Lλ. Thus, by Proposition 4.5, there are

regular λ > κ and j with j :M ≼κ Lλ. Again by Lemma 4.4, we have H(λ) = Lλ.

This shows that (b) in Lemma 4.7 holds. (Theorem 4.6)
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For a cardinal κ with κ = wcn(Lℵ0,II
stat,κ,ω), we do not know if the same equation

holds in L. However we can show that quite strong large cardinal properties hold

around κ in L:

Theorem 4.8 P-stat-6Assume that κ = wcn(Lℵ0,II
stat,κ,ω). Then we have:

( 1 ) L |=“κ is weakly compact, and there are stationarily many weakly compact

cardinals below κ ”.

( 2 ) L |=“ there is a weakly compact cardinal >κ which is a limit of weakly

compact cardinals ”.

Proof. (1): As already noted in the proof of Theorem 4.6, κ is weakly compact.

It follows that κ is also weakly compact in L (see e.g. Theorem 17.22 in [12]).

Suppose that D ∈ L is a closed unbounded subset of κ. We have to show that

there is µ ∈ D such that L |=“µ is weakly compact ”.

Let λ > κ be a regular cardinal and let (4.17) : x-stat-13M ≺ Lλ be such that κ +

1 ⊆ M , D ∈ M , and |M | = κ. By Proposition 4.5, there are λ > κ regular

in L, and j such that (4.18) : x-stat-14j : M ≼κ Lλ. Since λ is regular in L, we have

Lλ |=“κ is weakly compact ” (this can be seen e.g. in the characterization of weak

compactness in terms of the tree property). By the elementarity (4.17) and (4.18),

and since D = j(D) ∩ κ is unbounded in κ, we have Lλ |=“κ ∈ j(D) ”. Thus

Lλ |=“ there is weakly compact µ ∈ j(D) ”.

Hence Lλ |= “ there is weakly compact µ ∈ D ” by the elementarity (4.17) and

(4.18). Since λ is regular, it follows that L |=“ there is weakly compact µ ∈ D ”.

(2): Let λ > κ be regular and (4.19) : x-stat-15M ≺ Lλ be such that κ + 1 ⊆ M

and |M | = κ. By Proposition 4.5, there are regular λ > κ and j with (4.20) :

x-stat-16j :M ≼κ Lλ. By (1) and since λ > κ is regular, we have

Lλ |=“κ is weakly compact and is stationary limit of weakly compact

cardinals. ”

By the elementarity (4.19) and (4.20), it follows that

Lλ |=“ j(κ) is weakly compact and is stationary limit of weakly compact

cardinals. ”

Since λ is regular in L, it follows that

L |=“ j(κ) is weakly compact and is stationary limit of weakly compact

cardinals. ”
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(Theorem 4.8)

There are still many open problems concerning the compactness of weak second-

order logic and stationary logic including the one we mentioned before Theorem 4.8.

We neither know the answer to the following:

Problem 4.9 Is “wcn(Lℵ0,II
stat ) < wcn(LII)” consistent?

Acknowledgments: The authors would like to thank Philipp Lücke for pointing

out a serious flaw in an early draft of the paper.
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