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Identity crises DID (4/3)

» One of M. Magidor's classical theorems says that it is consistent
that the first strongly compact cardinal is equal to the first
measurable cardinal while it is also consistent (modulo a
supercompact cardinal) that the first strong compact cardinal is the
first supercompact cardinal. Magidor called this kind of phenomena
identity crises.

[Magidor] M. Magidor, How large is the first strongly compact cadinal? or a study
of identity cirses, AML, 10 (1976), 33-57.

> Similar kind of identity crisis is also studied in the recent paper:

[Hayut-Magidor-Poveda] Y. Hayut, M. Magidor, and A. Poveda, Identity crisis
between supercompactness and Vopénka principle, JSL, Vol.87 (2), 2022, 626-648.

» In this talk, we study some cases of dissociative identity disorder
(DID, previously known as MPD (ZE A#§)) among large cardinals
(LCs) and Laver-generic large cardinal axioms (LgLCs) where the
apparent consistency strengths of certain LCs and LgLCs are shown
to be totally different from the actual consistency strengths.
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Large cardinals characterized by elementary embeddings DID (5/35)

» Most of the notions of large cardinals, in particular the notions of
large cardinals stronger than measurable cardinals, are characterized
as critical points of certain elementary embeddings. For example:

>> A cardinal k is said to be supercompact if and only if, for any
A > K, there are classes j, M C V s.t. (1) : V S, MO (2)
J(k) > A, and M is sufficiently closed, or more specifically:
(3) "M C M.

> The existence of j with the target model M can be considered as a
strong reflection property.

» Many notions of large cardinals are obtained by modifying the
definition of supercompact cardinals around the closedness
condition (3), and/or by changing “for all A > k" to “for some A > k".

Mwith v 2. M" we denote the circumstance “M is a transitive class, J
is an elementary embedding of the class structure (V, €) into the class structure
(M, €), and & is the critical point of j (i.e. kK = min{u € Card : j(u) # u})"



Large cardinals characterized by elementary embeddings (2/3) oo g3

D> A cardinal « is said to be supercompact if and only if, for any
A > &, there are classes j, M C V st. (1) j : V S5, M,(2)
J(k) > A, and M is sufficiently closed, or more specifically:

(3) "M C M.

» Many notions of large cardinals are obtained by modifying the
definition of supercompact cardinals around the closedness
condition (3), and/or by changing “for all A > k" to “for some A > k",

> Thus, we obtain the definition of super-almost-huge cardinal by
replacing (3) with (3)' /(")> M C M in the definition of
supercompactness.

> The definition of superhuge cardinal is obtained by replacing (3)
with (3)" /"M C M in the definition of supercompactness.

A more comprehensive list:



Large cardinals characterized by elementary embeddings (3/3) o3

D> A cardinal « is said to be supercompact if and only if, for any
A > &, there are classes j, M C V st. (1) j : V S5, M,(2)
J(k) > A, and M is sufficiently closed, or more specifically:

(3) "M C M.

» Many notions of large cardinals are obtained by modifying the
definition of supercompact cardinals around the closedness
condition (3), and/or by changing “for all A > k" to “for some A > k".

The condition (3): *M C M | “for all A > &"
replaced by replaced by “for some A > k"
hyperhuge MM cCcm -
ultrahuge (KM C M and Vioy €M -
superhuge &M cm -
super-almost-huge || /"> M C M -
huge iRpMC M v
almost-huge W>mcm v




Large large caridnals ordered by implication DID (8/35)

> By definition: hyperhuge

|

ultrahuge

l

superhuge

huge l
l / super-almost-huge

almost-huge

|

|

v
supercompact

B<+— A: “if a cardinal x is A then x is B.”

B« — A: "if a cardinal k is A then there are cofinally many 0 < < &
s.t. pis Bin V,,”



Large large cardinals ordered by implication (2/2) DID (9/%)

» The global character “for all A > x ..." of super-almost-huge
cardinal gives the impression that it might be much stronger than
hugeness in terms of consistency strength.

> However, we can show in the following:



Ordered by implication, and by “normal measure one occurrence below” i (10/3)

hyperhuge

|

ultrahuge

/ superhuge

super-almost-huge

almost-huge

|

|

v
supercompact

B« —A: "if a cardinal x is A then there are cofinally many 0 < u < &
wis Bin V"

B < A: "if a cardinal x is with the large cardinal property A, then
there are normal measure one many A with B in V,.".



There are many super-almost-huge cardinals in V,, for a huge x o (13

Proposition 1. Suppose that x is huge. Then,
{a <k : V,; E“ais super almost-huge” }

is a normal measure 1 subset of k.

Idea of Proof: Modify Theorem 24.11 in
[kanamori] Akihiro Kanamori, The Higher Infinite, Springer Verlag (2004)

to characterize super-almost hugeness. Then solve the
corresponding modification of Exercise 24.12 (see these slides for
more details).

(Proposition 1.)


https://fuchino.ddo.jp/slides/2003_Book_TheHigherInfinite350-351.pdf
https://fuchino.ddo.jp/slides/kobe2023-06-05a-pf.pdf#page=7

Another (classical) DID with extendible cardinal DID (12/3%)

The condition (3): *M C M | “for all A > &"
replaced by replaced by “for some A > k"
hyperhuge MM Ccm -
ultrahuge WM C M and \/j()\) eM -
superhuge IRpMC M -
super-almost-huge || /"> M C M -
huge IRpMC M Vv
almost-huge IR>MC M Vv
extendible Viow e M -




Another (classical) DID with extendible cardinal (2/2)

hyperhuge

l

ultrahuge

|

/ superhuge

almost-huge
I
I

v
extendible

|

supercompact

B« — A: "if a cardinal k is A then there are cofinally many 0 < u < &

wis Bin V"

B < A: "if a cardinal x is with the large cardinal property A, then
there are normal measure one many A with B in V,.".

DID (13/3)



From large cardinals to generic large cardinals DID (14/3)
» Small cardinals like X1, Ny, 2%0 cannot be a large cardinal! But

they can have many features of large cardinals by being generic

large cardinals.

> An important ingredient for the composition of the notion of
generic large cardinal is Proposition 22.4 (b) in [kanamori].

» For a class P of p.o.s, k is said to be P-generic supercompact if,
for all A > k there is P € P s.t. for a (V,P)-generic G there are

JMCV[G]st. j: V5. M, j(k) >\ and (3)* j”A e M.

> The equivalence in Proposition 22.4 (b) in [kanamori| is no more
valid in the generic elementary embedding context but (3)* is still a
closedness property of the target model M. This fact is summarized in
Lemma 3.5 in S.F., A. Ottenbreit Maschio Rodrigues, and H. Sakai [Il].

» A small cardinal can be P-generic large cardinal. For example, in
the standard model of Proper Forcing Axiom (PFA), 2% is P-generic
supercompact (for P = proper p.o.s).


https://fuchino.ddo.jp/slides/2003_Book_TheHigherInfinite317.pdf
https://fuchino.ddo.jp/slides/2003_Book_TheHigherInfinite317.pdf
https://fuchino.ddo.jp/papers/SDLS-II-x.pdf#page=10

From generic large cardinals to Laver-generic large cardinals i (15/3%)

» A small cardinal can be P-generic large cardinal. For example, in
the standard model of Proper Forcing Axiom (PFA), 2% is P-generic
supercompact (for P = proper p.o.s).

> Similarly, in the standard model of Martin's Maximum (MM), 2%
is P-generic supercompact (for P = semi-proper p.o.s).

» Analyzing the standard model of PFA and Martin’s Maximum MM,
we obtain the notion of Laver-generic large cardinal:

> A cardinal k is tightly P-Laver-generic supercompact if, for any A > k,
and for any P € P, there is a P-name Q s.t. |-p “Q € P” and for any
(V, P Q)-generic H, there are j, M C V[H] s.t. j: V S5, M, j(k) > A,
P,P+Q He M, (4) /"X € M, and (5) | RO * Q)| < j(x).

The word “tightly” refers to the condition (5).

D> The P-Laver-generic large cardinal axiom for the notion of supercompact-
ness (P-LgLC for supercompact, for short) is the assertion that
Krefl i= max{2"0, N5} is tightly P-Laver-generic supercompact cardinal.



Laver-generic large cardinals DID (16/3)

» The condition “k = k" is (almost) a consequence of Laver-gen.
supercompactness.

Proposition 2. (Theorem 5.9 in [II]) For P = o-closed p.o.s, proper
p.0.S, semi-proper p.o.s, ccc p.o.s, etc., if x is tightly P-Laver gen.
supercompact then Kk = Ky .

» Along with the hierarchy of large cardinals, we can introduce
corresponding LgLC by modifying the condition (4) in the definition
of P-LgLC for supercompact.

The condition (4): j"A e M
P-LgLC for is replaced by

hyperhuge J"jN) e M
"j(k) € M and Vi,V e M

superhuge J"j(k) €
(1)

ultrahuge

super-almost-huge || j”j(1) € M for all p < j(k)



https://fuchino.ddo.jp/papers/SDLS-II-x.pdf#page=41

Laver-generic large cardinals (2/3) DID (17/3)

> By definition: P-LgLC for hyperhuge

l

P-LgLC for ultrahuge

P-LgLC for superhuge

l

P-LgLC for super-almost-huge

l

P-LgLC for supercompact
B<+— A : “the axiom A implies the axiom B"

» By Theorem 5.3 in S.F., and T.Usuba [S.F. & Usuba], it follows
that P-LgLC for hyperhuge, and for transfinitely iterable P is
equiconsistent with the existence of an hyperhuge cardinal.


https://fuchino.ddo.jp/papers/recurrence-axioms-x.pdf#page=31

Laver-generic large cardinals (3/3) DID (16/3)

3 a hyperhuge <----- > P-LgLC for hyperhuge
cardinal l

Theorem 5.3 in [S.F. & Usuba]

P-LgLC for ultrahuge

P-LgL.C for superhuge

l

P-LgLC for super-almost-huge

l

P-LgLC for supercompact
B +— A : “the axiom A implies the axiom B"
B<-->A : “the axioms A and B are equi-consistent.”

» P-LgLC for hyperhuge, for transfinitely iterable P is one of only few families
of strong axioms of set-theory whose exact consistency strength is known.


https://fuchino.ddo.jp/papers/recurrence-axioms-x.pdf#page=31

LgLCs imply strong mathematical reflection theorems DID (19/3)

Proposition 3. (ccc-LgLC for supercompact) For any non-free algebra
A (in universal algebra) there is non-free subalgebra B of A of size
< 2%,

Proof. Note that ccc-LgLC for supercompact implies that the
continuum is extremely large and hence ri = 2%,

» Suppose toward a contradiction, that A is a non-free algebra s.t. all
subalgebras of A of size < 2% are free.

> Let A :=2/Al W.lo.g., the underlying set of Ais u < \. Let P be
a ccc p.o. adding \' > X\ many reals and let Q be a P-name of a
cce p.o. s.t. for a (V, P« Q)-generic H, there are j, M C V[H] as in

~

the definition of ccc-LgLC with the critical point x = 2%0.

» Then Ac M. Since M =A< j(A)and M = |A| < j(k) = 2%,
by elementarity, it follows that M = A is free.

» On the other hand, since Px Q is ccc, V[H] = A is not free. Hence
M = A'is not free. This is a contradiction,. [ (Proposition 3)



LgLCs imply strong mathematical reflection theorems (2/3) DID (20/35)

Proposition 4. (Cohen-LgLC for supercompact) Any non-metrizable
topological space X with character < 2%° has a non-metrizable
subspace Y of size < 2%,

Proof. Similarly to Proposition 3. Using a result of Dow, Tall, and
Weiss, Cohen forcing preserve non-metrizability of a topological space.
(0] (Proposition 3.)
Proposition 5. (1) For any o-closed generically supercompact cardi-
nal k, if T is non-special tree then there is T' € [T]<* which is
also non-special.
(2) If o-closed-LgLC for supercompact holds, then Rado Conjecture
(RC) holds.
(3) If P contains all ccc p.o.s, then P-LgLC for supercompact implies =RC.

Proof. (1),(2): Similarly to Proposition 3. Using the fact that
o-closed p.o.s preserve non-specialty of trees (Todorcévic).
(3): Since MA implies =RC and by Theorem 6 below. [ (Proposition 5)



LgLCs imply strong mathematical reflection theorems (3/3) DID (21/35)

Theorem 6. (Theorem 5.7 in S.F., A. Ottenbreit Maschio Rodrigues, and H. Sakai [I1])
(P-LgLC for supercompact for a stationary preserving P)
MAT <%=t (P) holds. [

Corollary 7. Suppose that P is stationary preserving and contains
all o-closed p.o.s. Then P-LgLC for supercompact implies the
Fodor-type Reflection Principle (FRP).
Proof. By Theorem 6, it follows that P-LgLC implies MA™ (o-closed).
It is known that this principle implies FRP (See Section 2 of S.F.,
I.Juhdsz, L.Soukup, Z.Szentmikléssy and T.Usuba, Fodor-type Reflection
Principle and reflection of metrizability and meta-Lindelofness ) (Corollary 7)

» |n contrast:

Proposition 8. FRP is independent over P-LglLC for supercompact
(actually for any large cardinal property) for any class P of ccc
p.o.s as far as the axiom “P-LgLC for supercompact” is consistent.[d


https://fuchino.ddo.jp/papers/SDLS-II-x.pdf#page=39
https://fuchino.ddo.jp/papers/ssmL-erice-x.pdf#page=7
https://fuchino.ddo.jp/papers/ssmL-erice-x.pdf#page=7

LgLCs provide an integrated picture of axioms and principles of set theory DID (22/3)

Theorem 6. (Theorem 5.7 in S.F., A. Ottenbreit Maschio Rodrigues, and H. Sakai [I1])

(P-LgLC for supercompact for stationary preserving P)
MAT< "=t (P) holds. s

Theorem 9. ([S.F.& Usuba], see Theorem 6.1 in [S.F.&Gappo&Parente])
(P-LgLC for ultrahuge) The restricted version of Recurrence Axiom
(P, H(Keft))r-RcAT holds for I = conjunctions of X, and M, formulas. [F]

Theorem 10. (Theorem 7.2in [S.F.1]) (P-LgLC for ultrahuge)
The Unbounded Resurrection Axiom for P of Tsaprounis [Tsaprounis]
holds. [

Theorem 11. (Theorem 4.10 in [S.F.& Usuba]) (Super-C(®)-P-LglLC
for ultrahuge) The Maximality Principle (Hamkins [Hamkinsl])
MP('P,'H(Hwﬂ)) holds. @


https://fuchino.ddo.jp/papers/SDLS-II-x.pdf#page=39
https://fuchino.ddo.jp/papers/generic-absoluteness-revisited-x.pdf#page=41
https://fuchino.ddo.jp/papers/RIMS2022-RA-MP-x.pdf#34
https://www.jstor.org/stable/43864237
https://fuchino.ddo.jp/papers/recurrence-axioms-x.pdf#page=23
https://www.jstor.org/stable/4147695

LgLCs provide an integrated picture of axioms and principles of set theory (2/2) oi (23

Theorem 12. (Theorems 5.2 and 5.3 in [S.F.& Usuba])
(P-LgLC for hyperhuge (for any P)) The bedrock exists and k. is
hyperhuge in the bedrock. Note that this implies =GA. [

Theorem 13. (1) (Proposition 2.8 in [II])  Suppose that x is P-
generically supercompact and all elements of P are u-cc for a
cardinal . Then Singular Cardinal Hypothesis (SCH) above
max{2<* u} holds.

(2) (Corollary 5.2 in [S.F.& Usuba] ) (P-LgLC for hyperhuge (for an
arbitrary P)) There are class many huge cardinals, and SCH
holds above some cardinal.

Proof. (1): A modification of the proof of Solovay's theorem on SCH
above a supercompact cardinal will do.

2): By Theorem 12. [0 (Theorem 13)
y


https://fuchino.ddo.jp/papers/recurrence-axioms-x.pdf#page=27
https://fuchino.ddo.jp/papers/SDLS-II-x.pdf#page=39
https://fuchino.ddo.jp/papers/recurrence-axioms-x.pdf#page=32
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» A cardinal k is tightly P-Laver generically extendible if if, for any A > k,
and for any P € P, there is a P-name Q s.t. |-p “Q € P” and for any
(V,P*Q)-generic H, there are j, M C V[H] s.t. j : V S M, (k) > A,
(1): Vi € M, and (2): | RO(P Q)| < j(x).

> The P-Laver-generic large cardinal axiom for the notion of extendibility
(P-LgLC for extendible, for short) is the assertion that k.. is tightly
P-Laver-generic extendible cardinal.

» A cardinal & is tightly super-C(°)-P-Laver generically extendible if, for
any n € N, \g > k, and P € P, there are A > )¢ and a P-name @ s.t.
Vi <5, V. [Fp“Q € P” and for any (V,P x Q)-generic H, there are j,
M C VIH] s.t. (3): Viy B <5, V[H], j: V5.0 M, j(k) > A,
(1): Vi € M, and (2): |RO(P Q)| < j(x).

> The super-C(>)-P-Laver-generic large cardinal axiom for the notion of
extendibility (super-C(>)-P-LgLC for extendible, for short) is the asser-
tion that ke is tightly super C(OO)—’P—Laver—generic extendible cardinal.



LgLCs for extendible (2/2) DID (25/3)
» Note that, in general, “x is tightly super-C(>)-P-Laver generically
extendible” is not formalizable in the language of ZF. In contrast,
the axiom “super-C(°)-P-LgLC for extendible” is formalizable in
the language of ZF in infinitely many formulas. This is because the
axiom refers to the definable cardinal rg .

piace | Dy 0"
hyperhuge j”j()\) eM

ultrahuge "j(k) € M and Vj» )V[H] eM
superhuge "j(r) €

super-almost-huge || j"j(p) € M for all p < j(k)
extendible \/j(k)V[HI eM




DID around LgLCs for extendible DID (26/3)

» In Theorems 9 and 11, P-LgLC for ultrahuge, and
super-C(®)-P-LgLC for ultrahuge can be replaced by P-LgLC for
extendible, and super- C(°)-P-LgLC for extendible, respectively.

» In the proof of Theorem 10, it seems that P-LgLC for ultrahuge is
used in its full strength. However we have

Theorem 14. (Theorem 7.1in [S.F.1]) (P-LgLC for extendible)
The Boldface Resurrection Axiom for P of Hamkins [Hamkins2]
holds. ]|

» P-LgLC for extendible has consistency strength below that of an
extendible cardinal (see Theorem 15 below).

» Super-C(®)-P-LgLC for extendible have consistency strength
strictly less than that of an almost-huge cardinal (see Conjecture 16).


https://fuchino.ddo.jp/papers/RIMS2022-RA-MP-x.pdf#32
https://www.jstor.org/stable/4147695

DID around LgLCs for extendible (2/2) DID (27/3%)

super C(®)-P-LgL.C for hyperhuge
3 a hyperhuge <----- > P-LgLC for hyperhuge — l
cardinal

super C(>®)-P-LgLC for ultrahuge

P-LgLC for ultrahuge

P-LgLC for quperhuffe

P-LgLC for supel -almost-huge .
super C(*)-P-LgLC for extendible

P-LgLC for extendible —
P-LgLC for supercompact —

B 4+— A : “the axiom A implies the axiom B"
B<-->A : “the axioms A and B are equi-consistent.”



Consistency proof of LgLCs for extendible DID (28/3%)

» The following theorem was suggested by Gabe Goldberg:

Theorem 15. Suppose that « is extendible. Then for many natural
classes P of p.o.s consisting of stationary preserving p.o.s (includ-
ing the class of all ccc p.o.s, all o-closed p.o.s, all proper p.o.s, all
semi-proper p.o.s, etc.), there is a p.o. Py s.t.

IFp,. “K = et and & is tightly P-Laver generic extendible ” 2]

Lemma 15.0. If x is extendible then there are class many measurable
cardinals.

Proof. If  is extendible then it is supercompact (Proposition 23.6 in
[kanamori]). Hence, in particular x is measurable. If jo : V, e Vs
with jo(k) > 7 then Vj |=“ there is a normal ultrafilter over jp(x)”
by elementarity. Since the normal ultrafilter over jo(k) in Vj is
really a normal ultrafilter, jo(x) is measurable. [ (Lemma 15.0)

P The corresponding theorem for the super C>®)-P-Laver generic
ultrahugeness can be formulated for all transfinitely iterable classes P.



Consistency proof of LgLCs for extendible (2/6) DID (29/3%)

» We call a mapping f : M — N cofinal (in N) if for all b € N there
isac Mst. be f(a).

Lemma 15.1. (A special case of Lemma 6 in [S.F. & Sakai]) For
any cardinal 6 and jo : H(0) = N, letting No = [ jo”H(6), we
have jo : H(0) = Np and Jo is cofinal in Np. [

Lemma 15.2. (A special case of Lemma 7 in [S.F. & Sakai]) For

any regular cardinal 8 and cofinal jo : H(6) = N, there are j,
MCVst j:V3M NCM,andjoCJ. [

Lemma 15.3. For a cardinal &, the following are equivalent:
(a) kK is extendible. (b) Forall X > &, there are j, M s.t.
jiV S Mst. j(s) > Xand Vi) € M.

Proof. (b) = (a) is trivial. The other direction follows from Lemma
15.0, Lemma 15.1, and Lemma 15.2. (M) (Lemma 15.3)


https://fuchino.ddo.jp/papers/definability-of-glc-x.pdf#page=10
https://fuchino.ddo.jp/papers/definability-of-glc-x.pdf#page=11

Consistency proof of LgLCs for extendible (3/6) DID (30/3)

Lemma 15.4. An extendible cardinal x admits a Laver-function. l.e.,
there is a mapping f : kK — Vj s.t. for any x, and A > k there are
JoMst.j iV S, Mst. j(k) > A Vi) € M and j(f)(x) = x.B!

Proof. A modification of the proof of Theorem 20.21 in
[Millennium book] (Th. Jech, Set Theory, The Third Millennium Edition) will do.

» Assume, toward a contradiction, that there is no Laver function
f:rk— V.
> Let ¢(f) be the formula
JaFo3x(f:a— Vou A a<d A disinaccessible A x € Vs
A V() Vs> Vg A jis cofinal in Vi — j(F)(@) # x))

> If o(f) holds then the witness of a in ¢(f) is uniquely determined.
In this case, let 0f and x¢ be witnesses for § and x in ¢(x). Let
= rank(xr). We choose df, x¢ and pf so that df minimal
among the possible witnesses of § and xf is chosen so that pr is
minimal. &> If ¢(f) does not hold, we let d¢ := 0 and yuf := 0.



Consistency proof of LgLCs for extendible (4/6) DID (31/3)

S
>

vVVVvVV

v

By assumption, we have ¢(f) for all f : k — V.
Let v be an inaccessible cardinal
> max{df, ur : f:a — V, for inaccessible o < k}.
Let j* : V=5, M be s.t. (11): j*(k) > v and (21): V, € M.
Let Ai={a<k :Vf(f:a—V, = ¢f))}.
By assumption, V = “Vf (f : v — V. — ©(f))". By (21), it follows that
M E“Yf(f:r— Vi — ¢(f))”. Thus we have M = j*(A) > k.
Let 7 : Kk — V, be defined by Xfrla, If 00 €A
o) = .
0, otherwise.
Let x* := j*(f*)(x). > By definition of f*, by &, and since
J(f*) | k= f*, x* together with d¢+ and pf+ witnesses p(f*).
(x* may be different from xg« but this does not matter.)
In particular, x* # ((* [ V5. )(f*)(k) = j(f*)(x). Thisis a
contradiction. (Lemma 15.4)
Bl Lemma 15.4 is well-known. See e.g. [corraza]. | go through the details of

the proof in the present setting so that | can reuse them in the future proof of
Conjecture 16.



https://www.jstor.org/stable/2586614

Consistency proof of LgLCs for extendible (5/6) DID (32/%)

A (sketch of a) proof of Theorem 15: » We show the Theorem for

\Y

the case that P is the class of all proper p.o.s. » Let f be a Laver
function for extendible cardinal x (f exists by Lemma 15.2).
Let (]P’a,@g : a < K, 8 < k) be an CS-iteration of elements of P
s.t.
(), if £(5) is a Pg-name
Qs = and g, “F(8) € P7;
Pg-name of the trivial forcing, otherwise.
We show that |Fp, “P-LgLC for extendible”.
First, note that |Fp, “x = 2% = ket by definition of P,
Let G, be a (V,P,)-generic filter. In V[G,], suppose that P € P
and let [P be a P,.-name for P.
Suppose that A > k. By Lemma 15.0, there is an inaccessible
X > Let j 1V S M besit. (1%): j(k) > A, (2%): Vjey € M
and (3%): j(f)(x) = P. (This is possible since f is a Laver function for extendible x.)



Consistency proof of LgLCs for extendible (6/6) DID (33/3)

>

In M, there is a P, * P-name Q s.t. [Fp,.p “Q € P and Q is the
direct limit of CS-iteration of small p.o.s in P of length j(x), and

P, xPxQ ~ j(Ps)”, > By (2%), the same situation holds in V.
We have J(B)/G, ~ B+Q. Mo ve e deriing G uit
Let H be (V,j(Ps))-generic filter with G,, C H.

The lifting j : V[G,] =, M[H]; a[G,] — j(a)[H] witnesses that
K= (ntef[)V[G”] is tightly P-Laver generic extendible. For this, it
suffices to show:

~

Claim 15.5 V,VIHl ¢ M[H] for all o < j()).

l_

By induction on o < j(\). The successor step from o < j(\) to

« + 1 can be proved by showing that IP,-names of subsets of

V,,VIH] can be chosen as elements of M. This is possible because of

(2%). —{ (Claim 15.5.)
(] (Theorem 15)
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Ja 2-huge .. s -
cardinal > 3 a super C(®)-huperhuge
" cardIi)nal P 8 €-ene- > super C(®)-P-LgLC for hyperhuge
3 a hyperhuge
cargfnal e P-LgLC for hyperhuge — l

super C(®)_P-LgLC for ultrahuge

P-LgLC for ultrahuge
3 an almost-huge
P-LgLC for supelhuge cardinal
‘P-LgLC for super almost huge . i
super C(®)-P-LgL.C for extendible i
P-LgLC for extendible — d
R‘

P-LgLC for supcrcompact —

. &
B <+— A: “the axiom A implies the axiom B" Jan e>.<tend1ble
B<-->A : “the axioms A and B are equi-consistent.” cardinal
B <--- A: “the consistency of A implies the consistency of B but not the other way around.”

The followsing conjecture has been solved positively in the meantime.

Conjecture 16. A model of super-C(®)-P-LgLC for extendible, for arbitrary
tranfinitely iterable P can be obtained starting from a model with a super-
C(*) extendible cardinal, and this cardinal has consistency strength below
that of almost huge.
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