DID among large cardinals and Laver-generic large cardinal axioms

Sakaé Fuchino (渕野 昌)

Kobe University, Japan https://fuchino.ddo.jp/index.html

(2025年1月15日 (19:23 JST) printer version) 2024年12月24日 (16:50~17:30 JST) 第19回関西集合論セミナ — 中百舌鳥ファイナル

The following slides are typeset using uplaTEX with beamer class, and presented on GoodReader v.5.19.1204

The most up-to-date version of these slides is downloadable as https://fuchino.ddo.jp/slides/Kansai-set-theory-2024-fuchino-pf.pdf

The research is supported by Kakenhi Grant-in-Aid for Scientific Research (C) 20K03717

References DID (2/35)

- [II] S.F., A. Ottenbreit Maschio Rodrigues, and H. Sakai,
 Strong downward Löwenheim-Skolem theorems for stationary logics, II
 reflection down to the continuum, Archive for Mathematical Logic, Vol.60,
 3-4, (2021), 495–523. https://fuchino.ddo.jp/papers/SDLS-II-x.pdf
- [S.F & Sakai] S.F.. and H. Sakai, The first order definability of generic large cardinals, submitted. https://fuchino.ddo.jp/papers/definability-of-glc-x.pdf
- [S.F.1] S.F., Maximality Principles and Resurrection Axioms under a Laver generic large cardinal, (a pre-preprint version for the paper "Maximality Principles and Resurrection Axioms in light of a Laver generic large cardinal", in preparation) https://fuchino.ddo.jp/papers/RIMS2022-RA-MP-x.pdf
- [S.F. & Usuba] S.F., and T. Usuba, On Recurrence Axioms, preprint. https://fuchino.ddo.jp/papers/recurrence-axioms-x.pdf
- [S.F.2] S.F., Reflection and Recurrence, to appear in the Festschrift on the occasion of the 75. birthday of Professor Janos Makowsky, Birkhäuser, (2025). https://fuchino.ddo.jp/papers/reflection_and_recurrence-Janos-Festschrift-x.pdf
- [S.F. & Gappo & Parente] S.F., T. Gappo, and F. Parente, Generic Absoluteness revisited, preprint. https://fuchino.ddo.jp/papers/generic-absoluteness-revisited-x.pdf

4□ ► 4₫ ► 4½ ► 4½ ► ½ 900

Outline DID (3/35)

- Outline

- Ordered by implication, and by "normal measure one occurrence below"
- $\,dash$ There are many super-almost-huge cardinals in V_{κ} for a huge κ

- > From generic large cardinals to Laver-generic large cardinals
- □ LgLCs imply strong mathematical reflection theorems
- > LgLCs provide an integrated picture of axioms and principles of set theory
- ▷ LgLCs for extendible
- ▷ DID around LgLCs for extendible
- □ LgLCs

Identity crises DID (4/35)

▶ One of M. Magidor's classical theorems says that it is consistent that the first strongly compact cardinal is equal to the first measurable cardinal while it is also consistent (modulo a supercompact cardinal) that the first strong compact cardinal is the first supercompact cardinal. Magidor called this kind of phenomena identity crises.

[Magidor] M. Magidor, How large is the first strongly compact cadinal? or a study of identity cirses, AML, 10 (1976), 33-57.

- > Similar kind of identity crisis is also studied in the recent paper:
- [Hayut-Magidor-Poveda] Y. Hayut, M. Magidor, and A. Poveda, Identity crisis between supercompactness and Vopěnka principle, JSL, Vol.87 (2), 2022, 626-648.
- ▶ In this talk, we study some cases of dissociative identity disorder (DID, previously known as MPD (多重人格)) among large cardinals (LCs) and Laver-generic large cardinal axioms (LgLCs) where the apparent consistency strengths of certain LCs and LgLCs are shown to be totally different from the actual consistency strengths.

- ▶ Most of the notions of large cardinals, in particular the notions of large cardinals stronger than measurable cardinals, are characterized as critical points of certain elementary embeddings. For example:
- ightharpoonup A cardinal κ is said to be supercompact if and only if, for any $\lambda > \kappa$, there are classes j, $M \subseteq V$ s.t. (1) $j : V \xrightarrow{\prec}_{\kappa} M$, [1] (2) $j(\kappa) > \lambda$, and M is sufficiently closed, or more specifically: (3) ${}^{\lambda}M \subseteq M$.
- \triangleright The existence of j with the target model M can be considered as a strong reflection property.
- ▶ Many notions of large cardinals are obtained by modifying the definition of supercompact cardinals around the closedness condition (3), and/or by changing "for all $\lambda > \kappa$ " to "for some $\lambda > \kappa$ ".

^[1] With " $j: V \xrightarrow{\searrow}_{\kappa} M$ " we denote the circumstance "M is a transitive class, j is an elementary embedding of the class structure (V, \in) into the class structure (M, \in) , and κ is the critical point of j (i.e. $\kappa = \min\{\mu \in \text{Card} : j(\mu) \neq \mu\}$)"

- ightharpoonup A cardinal κ is said to be **supercompact** if and only if, for any $\lambda > \kappa$, there are classes j, $M \subseteq V$ s.t. (1) $j : V \xrightarrow{\prec}_{\kappa} M$,(2) $j(\kappa) > \lambda$, and M is sufficiently closed, or more specifically: (3) ${}^{\lambda}M \subseteq M$.
- ▶ Many notions of large cardinals are obtained by modifying the definition of supercompact cardinals around the closedness condition (3), and/or by changing "for all $\lambda > \kappa$ " to "for some $\lambda > \kappa$ ".
- \triangleright Thus, we obtain the definition of super-almost-huge cardinal by replacing (3) with (3)' $j(\kappa) \ge M \subseteq M$ in the definition of supercompactness.
- \triangleright The definition of superhuge cardinal is obtained by replacing (3) with (3)" $j(\kappa)M\subseteq M$ in the definition of supercompactness.

A more comprehensive list:

Large cardinals characterized by elementary embeddings (3/3) DID (7/35)

- ightharpoonup A cardinal κ is said to be **supercompact** if and only if, for any $\lambda > \kappa$, there are classes j, $M \subseteq V$ s.t. (1) $j : V \xrightarrow{\prec}_{\kappa} M$,(2) $j(\kappa) > \lambda$, and M is sufficiently closed, or more specifically: (3) ${}^{\lambda}M \subseteq M$.
- ▶ Many notions of large cardinals are obtained by modifying the definition of supercompact cardinals around the closedness condition (3), and/or by changing "for all $\lambda > \kappa$ " to "for some $\lambda > \kappa$ ".

	The condition (3): ${}^{\lambda}M\subseteq M$ replaced by	"for all $\lambda > \kappa$ " replaced by "for some $\lambda > \kappa$ "
hyperhuge	$j(\lambda)M\subseteq M$	-
ultrahuge	$j(\kappa)M\subseteq M$ and $V_{j(\lambda)}\in M$	-
superhuge	$j(\kappa)M\subseteq M$	-
super-almost-huge	$j(\kappa) > M \subseteq M$	-
huge	$ \begin{vmatrix} j(\kappa)M \subseteq M \\ j(\kappa) > M \subseteq M \end{vmatrix} $	✓
almost-huge	$j(\kappa) > M \subseteq M$	✓

▶ By definition:

 $B \longleftarrow A$: "if a cardinal κ is A then κ is B."

B ← − A : "if a cardinal κ is A then there are cofinally many 0 < μ < κ s.t. μ is B in V_{κ} "

Large large cardinals ordered by implication (2/2)

- ▶ The global character "for all $\lambda > \kappa$ …" of super-almost-huge cardinal gives the impression that it might be much stronger than hugeness in terms of consistency strength.

Ordered by implication, and by "normal measure one occurrence below" DID (10/35)

- B ← − A : "if a cardinal κ is A then there are cofinally many 0 < μ < κ μ is B in V_{κ} "
- B \blacktriangleleft "if a cardinal κ is with the large cardinal property A, then there are normal measure one many λ with B in V_{κ} ".

```
Proposition 1. Suppose that \kappa is huge. Then, \{\alpha < \kappa : V_{\kappa} \models \text{``}\alpha \text{ is super almost-huge''}\} is a normal measure 1 subset of \kappa.
```

Idea of Proof: Modify Theorem 24.11 in

[kanamori] Akihiro Kanamori, The Higher Infinite, Springer Verlag (2004)

to characterize super-almost hugeness. Then solve the corresponding modification of Exercise 24.12 (see these slides for more details).

(Proposition 1.)

	The condition (3): ${}^{\lambda}M\subseteq M$ replaced by	"for all $\lambda > \kappa$ " replaced by "for some $\lambda > \kappa$ "
hyperhuge	$j(\lambda)M\subseteq M$	-
ultrahuge	$j(\kappa)M\subseteq M$ and $V_{j(\lambda)}\in M$	-
superhuge	$j(\kappa)M\subseteq M$	-
super-almost-huge	$j(\kappa) > M \subseteq M$	-
huge	$j(\kappa)M\subseteq M$	✓
almost-huge	$j(\kappa) > M \subseteq M$	✓
extendible	$ \begin{aligned} j(\kappa)M &\subseteq M \\ j(\kappa) &\nearrow M &\subseteq M \\ V_{j(\lambda)} &\in M \end{aligned} $	-

- B \blacktriangleleft A : "if a cardinal κ is A then there are cofinally many 0 < $\mu < \kappa$ μ is B in V_κ "
- B \blacktriangleleft "if a cardinal κ is with the large cardinal property A, then there are normal measure one many λ with B in V_{κ} ".

From large cardinals to generic large cardinals

- ▶ Small cardinals like \aleph_1 , \aleph_2 , 2^{\aleph_0} cannot be a large cardinal! But they can have many features of large cardinals by being generic large cardinals.
- An important ingredient for the composition of the notion of generic large cardinal is Proposition 22.4 (b) in [kanamori].
- For a class \mathcal{P} of p.o.s, κ is said to be \mathcal{P} -generic supercompact if, for all $\lambda > \kappa$ there is $\mathbb{P} \in \mathcal{P}$ s.t. for a (V, \mathbb{P}) -generic \mathbb{G} there are $j \ M \subseteq V[\mathbb{G}]$ s.t. $j : V \xrightarrow{\prec}_{\kappa} M$, $j(\kappa) > \lambda$, and $(3)^* j''\lambda \in M$.
- The equivalence in Proposition 22.4 (b) in [kanamori] is no more valid in the generic elementary embedding context but (3)* is still a closedness property of the target model M. This fact is summarized in Lemma 3.5 in S.F., A. Ottenbreit Maschio Rodrigues, and H. Sakai [II].
- ▶ A small cardinal can be \mathcal{P} -generic large cardinal. For example, in the standard model of Proper Forcing Axiom (PFA), 2^{\aleph_0} is \mathcal{P} -generic supercompact (for $\mathcal{P} = \text{proper p.o.s}$).

- ▶ A small cardinal can be \mathcal{P} -generic large cardinal. For example, in the standard model of Proper Forcing Axiom (PFA), 2^{\aleph_0} is \mathcal{P} -generic supercompact (for $\mathcal{P} = \text{proper p.o.s}$).
- \triangleright Similarly, in the standard model of Martin's Maximum (MM), 2^{\aleph_0} is \mathcal{P} -generic supercompact (for $\mathcal{P}=$ semi-proper p.o.s).
- ► Analyzing the standard model of PFA and Martin's Maximum MM, we obtain the notion of Laver-generic large cardinal:

The word "tightly" refers to the condition (5).

ightharpoonup The \mathcal{P} -Laver-generic large cardinal axiom for the notion of supercompactness (\mathcal{P} -LgLC for supercompact, for short) is the assertion that $\kappa_{\text{teff}} := \max\{2^{\aleph_0}, \aleph_2\}$ is tightly \mathcal{P} -Laver-generic supercompact cardinal.

- ▶ The condition " $\kappa = \kappa_{\mathfrak{refl}}$ " is (almost) a consequence of Laver-gen. supercompactness.
- **Proposition 2.** (Theorem 5.9 in [II]) For $\mathcal{P}=\sigma$ -closed p.o.s, proper p.o.s, semi-proper p.o.s, ccc p.o.s, etc., if κ is tightly \mathcal{P} -Laver gen. supercompact then $\kappa=\kappa_{\mathfrak{refl}}$.
- ▶ Along with the hierarchy of large cardinals, we can introduce corresponding LgLC by modifying the condition (4) in the definition of *P*-LgLC for supercompact.

$\mathcal{P} ext{-LgLC}$ for	The condition (4): $j''\lambda \in M$ is replaced by
hyperhuge	$j''j(\lambda) \in M$
ultrahuge	$j''j(\kappa) \in M \text{ and } V_{j(\lambda)}^{V[\mathbb{H}]} \in M$ $j''j(\kappa) \in M$
superhuge	
super-almost-huge	$j''j(\mu) \in M$ for all $\mu < j(\kappa)$

► By definition:

 \mathcal{P} -LgLC for supercompact

 $B \leftarrow A$: "the axiom A implies the axiom B"

▶ By Theorem 5.3 in S.F., and T. Usuba [S.F. & Usuba], it follows that \mathcal{P} -LgLC for hyperhuge, and for transfinitely iterable \mathcal{P} is equiconsistent with the existence of an hyperhuge cardinal.

Laver-generic large cardinals (3/3)

 \exists a hyperhuge $\leftarrow \cdots \rightarrow \mathcal{P}$ -LgLC for hyperhuge cardinal Theorem 5.3 in [S.F. & Usuba] \mathcal{P} -LgLC for ultrahuge \mathcal{P} -LgLC for superhuge \mathcal{P} -LgLC for super-almost-huge

 \mathcal{P} -LgLC for supercompact

 $B \longleftarrow A$: "the axiom A implies the axiom B"

 $B \leftarrow A$: "the axioms A and B are equi-consistent."

 $ightharpoonup \mathcal{P} ext{-LgLC}$ for hyperhuge, for transfinitely iterable \mathcal{P} is one of only few families of strong axioms of set-theory whose exact consistency strength is known.

- **Proposition 3.** (ccc-LgLC for supercompact) For any non-free algebra A (in universal algebra) there is non-free subalgebra B of A of size $< 2^{\aleph_0}$.
- **Proof.** Note that ccc-LgLC for supercompact implies that the continuum is extremely large and hence $\kappa_{\text{teff}} = 2^{\aleph_0}$.
- ▶ Suppose toward a contradiction, that A is a non-free algebra s.t. all subalgebras of A of size $< 2^{\aleph_0}$ are free.
- ▶ Let $\lambda := 2^{|A|}$. W.l.o.g., the underlying set of A is $\mu < \lambda$. Let $\mathbb P$ be a ccc p.o. adding $\lambda' \geq \lambda$ many reals and let $\mathbb Q$ be a $\mathbb P$ -name of a ccc p.o. s.t. for a $(V, \mathbb P * \mathbb Q)$ -generic $\mathbb H$, there are $j, M \subseteq V[\mathbb H]$ as in the definition of ccc-LgLC with the critical point $\kappa = 2^{\aleph_0}$.
- ▶ Then $A \in M$. Since $M \models A \leq j(A)$ and $M \models |A| < j(\kappa) = 2^{\aleph_0}$., by elementarity, it follows that $M \models A$ is free.
- ▶ On the other hand, since $\mathbb{P} * \mathbb{Q}$ is ccc, $V[\mathbb{H}] \models A$ is not free. Hence $M \models A$ is not free. This is a contradiction,. \square (Proposition 3)

- **Proposition 4.** (Cohen-LgLC for supercompact) Any non-metrizable topological space X with character $< 2^{\aleph_0}$ has a non-metrizable subspace Y of size $< 2^{\aleph_0}$.
- **Proof.** Similarly to Proposition 3. Using a result of Dow, Tall, and Weiss, Cohen forcing preserve non-metrizability of a topological space.
- **Proposition 5.** (1) For any σ -closed generically supercompact cardinal κ , if T is non-special tree then there is $T' \in [T]^{<\kappa}$ which is also non-special.
- (2) If σ -closed-LgLC for supercompact holds, then Rado Conjecture (RC) holds.
- (3) If \mathcal{P} contains all ccc p.o.s, then \mathcal{P} -LgLC for supercompact implies $\neg RC$.
- **Proof.** (1),(2): Similarly to Proposition 3. Using the fact that σ -closed p.o.s preserve non-specialty of trees (Todorcévic).
- (3): Since MA implies $\neg RC$ and by Theorem 6 below. \Box (Proposition 5)

- **Theorem 6.** (Theorem 5.7 in S.F., A. Ottenbreit Maschio Rodrigues, and H. Sakai [II]) (\mathcal{P} -LgLC for supercompact for a stationary preserving \mathcal{P}) MA^{+< $\kappa_{\mathfrak{refl}}$} (\mathcal{P}) holds.
- **Corollary 7.** Suppose that \mathcal{P} is stationary preserving and contains all σ -closed p.o.s. Then \mathcal{P} -LgLC for supercompact implies the Fodor-type Reflection Principle (FRP).
- **Proof.** By Theorem 6, it follows that $\mathcal{P}\text{-LgLC}$ implies MA⁺($\sigma\text{-closed}$). It is known that this principle implies FRP (See Section 2 of S.F., I.Juhász, L.Soukup, Z.Szentmiklóssy and T.Usuba, Fodor-type Reflection Principle and reflection of metrizability and meta-Lindelöfness). \square (Corollary 7)
- ▶ In contrast:
- **Proposition 8.** FRP is independent over \mathcal{P} -LgLC for supercompact (actually for any large cardinal property) for any class \mathcal{P} of ccc p.o.s as far as the axiom " \mathcal{P} -LgLC for supercompact" is consistent.

```
Theorem 6. (Theorem 5.7 in S.F., A. Ottenbreit Maschio Rodrigues, and H. Sakai [II]) (\mathcal{P}-LgLC for supercompact for stationary preserving \mathcal{P}) MA<sup>+<\kappa_{\text{teff}}</sup> (\mathcal{P}) holds.
```

Theorem 9. ([S.F.& Usuba], see Theorem 6.1 in [S.F.&Gappo&Parente]) (\mathcal{P} -LgLC for ultrahuge) The restricted version of Recurrence Axiom $(\mathcal{P},\mathcal{H}(\kappa_{\mathfrak{refl}}))_{\Gamma}$ -RcA⁺ holds for Γ = conjunctions of Σ_2 and Π_2 formulas. \square

Theorem 10. (Theorem 7.2 in [S.F.1]) (\mathcal{P} -LgLC for ultrahuge) The Unbounded Resurrection Axiom for \mathcal{P} of Tsaprounis [Tsaprounis] holds.

Theorem 11. (Theorem 4.10 in [S.F.& Usuba]) (Super- $C^{(\infty)}$ - \mathcal{P} -LgLC for ultrahuge) The Maximality Principle (Hamkins [Hamkins1]) MP(\mathcal{P} , $\mathcal{H}(\kappa_{\mathfrak{refl}})$) holds.

LgLCs provide an integrated picture of axioms and principles of set theory (2/2) DID (23/35)

- **Theorem 12.** (Theorems 5.2 and 5.3 in [S.F.& Usuba]) (\mathcal{P} -LgLC for hyperhuge (for any \mathcal{P})) The bedrock exists and $\kappa_{\mathfrak{refl}}$ is hyperhuge in the bedrock. Note that this implies $\neg \mathsf{GA}$.
- **Theorem 13.** (1) (Proposition 2.8 in [II]) Suppose that κ is \mathcal{P} -generically supercompact and all elements of \mathcal{P} are μ -cc for a cardinal μ . Then Singular Cardinal Hypothesis (SCH) above $\max\{2^{<\kappa},\mu\}$ holds.
- (2) (Corollary 5.2 in [S.F.& Usuba]) (\mathcal{P} -LgLC for hyperhuge (for an arbitrary \mathcal{P})) There are class many huge cardinals, and SCH holds above some cardinal.
- **Proof.** (1): A modification of the proof of Solovay's theorem on SCH above a supercompact cardinal will do.
 - (2): By Theorem 12.

(Theorem 13)

- ▶ A cardinal κ is tightly \mathcal{P} -Laver generically extendible if if, for any $\lambda > \kappa$, and for any $\mathbb{P} \in \mathcal{P}$, there is a \mathbb{P} -name \mathbb{Q} s.t. $\Vdash_{\mathbb{P}}$ " $\mathbb{Q} \in \mathcal{P}$ " and for any $(V, \mathbb{P} * \mathbb{Q})$ -generic \mathbb{H} , there are j, $M \subseteq V[\mathbb{H}]$ s.t. $j : V \xrightarrow{\prec}_{\kappa} M$, $j(\kappa) > \lambda$, $(1): V_{j(\lambda)}^{V[\mathbb{H}]} \in M$, and $(2): |RO(\mathbb{P} * \mathbb{Q})| \leq j(\kappa)$.
- The \mathcal{P} -Laver-generic large cardinal axiom for the notion of extendibility (\mathcal{P} -LgLC for extendible, for short) is the assertion that $\kappa_{\mathfrak{reff}}$ is tightly \mathcal{P} -Laver-generic extendible cardinal.
- A cardinal κ is tightly super- $C^{(\infty)}$ - \mathcal{P} -Laver generically extendible if, for any $n \in \mathbb{N}$, $\lambda_0 > \kappa$, and $\mathbb{P} \in \mathcal{P}$, there are $\lambda \geq \lambda_0$ and a \mathbb{P} -name \mathbb{Q} s.t. $V_{\lambda} \prec_{\Sigma_n} V$, $\Vdash_{\mathbb{P}} "\mathbb{Q} \in \mathcal{P}"$ and for any $(V, \mathbb{P} * \mathbb{Q})$ -generic \mathbb{H} , there are j, $M \subseteq V[\mathbb{H}]$ s.t. (3): $V_{j(\lambda)}^{V[\mathbb{H}]} \prec_{\Sigma_n} V[\mathbb{H}]$, $j : V \xrightarrow{\sim}_{\kappa} M$, $j(\kappa) > \lambda$, (1): $V_{j(\lambda)}^{V[\mathbb{H}]} \in M$, and (2): $|RO(\mathbb{P} * \mathbb{Q})| \leq j(\kappa)$.
- ightharpoonup The super- $C^{(\infty)}$ - \mathcal{P} -Laver-generic large cardinal axiom for the notion of extendibility (super- $C^{(\infty)}$ - \mathcal{P} -LgLC for extendible, for short) is the assertion that $\kappa_{\mathfrak{refl}}$ is tightly super $C^{(\infty)}$ - \mathcal{P} -Laver-generic extendible cardinal.

Note that, in general, " κ is tightly super- $C^{(\infty)}$ - \mathcal{P} -Laver generically extendible" is not formalizable in the language of ZF. In contrast, the axiom "super- $C^{(\infty)}$ - \mathcal{P} -LgLC for extendible" is formalizable in the language of ZF in infinitely many formulas. This is because the axiom refers to the definable cardinal $\kappa_{\rm teff}$.

$\mathcal{P} ext{-LgLC}$ for	The condition (4): $j''\lambda \in M$ is replaced by
hyperhuge	$j''j(\lambda) \in M$
ultrahuge	$j''j(\kappa) \in M \text{ and } V_{j(\lambda)}^{V[\mathbb{H}]} \in M$ $j''j(\kappa) \in M$
superhuge	$j''j(\kappa) \in M$
super-almost-huge	$j''j(\mu) \in M$ for all $\mu < j(\kappa)$
extendible	$V_{j(\lambda)}{}^{V[\mathbb{H}]} \in M$

- ▶ In Theorems 9 and 11, \mathcal{P} -LgLC for ultrahuge, and super- $C^{(\infty)}$ - \mathcal{P} -LgLC for ultrahuge can be replaced by \mathcal{P} -LgLC for extendible, and super- $C^{(\infty)}$ - \mathcal{P} -LgLC for extendible, respectively.
- ▶ In the proof of Theorem 10, it seems that $\mathcal{P}\text{-LgLC}$ for ultrahuge is used in its full strength. However we have

Theorem 14. (Theorem 7.1 in [S.F.1]) (\mathcal{P} -LgLC for extendible) The Boldface Resurrection Axiom for \mathcal{P} of Hamkins [Hamkins2] holds.

- ▶ P-LgLC for extendible has consistency strength below that of an extendible cardinal (see Theorem 15 below).
- ▶ Super- $C^{(\infty)}$ - \mathcal{P} -LgLC for extendible have consistency strength strictly less than that of an almost-huge cardinal (see Conjecture 16).

 $B \leftarrow A$: "the axiom A implies the axiom B" $B \leftarrow A$: "the axioms A and B are equi-consistent."

- ▶ The following theorem was suggested by Gabe Goldberg:
- **Theorem 15.** Suppose that κ is extendible. Then for many natural classes \mathcal{P} of p.o.s consisting of stationary preserving p.o.s (including the class of all ccc p.o.s, all σ -closed p.o.s, all proper p.o.s, all semi-proper p.o.s, etc.), there is a p.o. \mathbb{P}_{κ} s.t. $\Vdash_{\mathbb{P}_{\kappa}}$ " $\kappa = \kappa_{\mathfrak{refl}}$ and κ is tightly \mathcal{P} -Laver generic extendible". [2]

 $\Vdash_{\mathbb{P}_{\kappa}}$ " $\kappa = \kappa_{\mathfrak{refl}}$ and κ is tightly P-Laver generic extendible".

Lemma 15.0. If κ is extendible then there are class many measurable cardinals.

Proof. If κ is extendible then it is supercompact (Proposition 23.6 in [kanamori]). Hence, in particular κ is measurable. If $j_0: V_\gamma \stackrel{\prec}{\to}_{\kappa} V_\delta$ with $j_0(\kappa) > \gamma$ then $V_\delta \models$ "there is a normal ultrafilter over $j_0(\kappa)$ " by elementarity. Since the normal ultrafilter over $j_0(\kappa)$ in V_δ is really a normal ultrafilter, $j_0(\kappa)$ is measurable.

^[2] The corresponding theorem for the super $C^{(\infty)}$ - \mathcal{P} -Laver generic ultrahugeness can be formulated for all transfinitely iterable classes \mathcal{P} .

- ▶ We call a mapping $f: M \to N$ cofinal (in N) if for all $b \in N$ there is $a \in M$ s.t. $b \in f(a)$.
- **Lemma 15.1.** (A special case of Lemma 6 in [S.F. & Sakai]) For any cardinal θ and $j_0: \mathcal{H}(\theta) \stackrel{\prec}{\to} N$, letting $N_0 = \bigcup j_0 "\mathcal{H}(\theta)$, we have $j_0: \mathcal{H}(\theta) \stackrel{\prec}{\to} N_0$ and j_0 is cofinal in N_0 .
- **Lemma 15.2.** (A special case of Lemma 7 in [S.F. & Sakai]) For any regular cardinal θ and cofinal $j_0: \mathcal{H}(\theta) \xrightarrow{} N$, there are j, $M \subseteq V$ s.t. $j: V \xrightarrow{} M$, $N \subseteq M$, and $j_0 \subseteq j$.
- **Lemma 15.3.** For a cardinal κ , the following are equivalent: (a) κ is extendible. (b) For all $\lambda > \kappa$, there are j, M s.t. $j: V \xrightarrow{\prec}_{\kappa} M$ s.t. $j(\kappa) > \lambda$ and $V_{j(\lambda)} \in M$.
- **Proof.** (b) \Rightarrow (a) is trivial. The other direction follows from Lemma 15.0, Lemma 15.1, and Lemma 15.2. \Box (Lemma 15.3)

- **Lemma 15.4.** An extendible cardinal κ admits a Laver-function. I.e., there is a mapping $f: \kappa \to V_{\kappa}$ s.t. for any x, and $\lambda > \kappa$ there are j, M s.t. $j: V \xrightarrow{\prec}_{\kappa} M$ s.t. $j(\kappa) > \lambda$, $V_{j(\lambda)} \in M$ and $j(f)(\kappa) = x$. [3]
- **Proof.** A modification of the proof of Theorem 20.21 in [Millennium book] (Th. Jech, Set Theory, The Third Millennium Edition) will do.
- Assume, toward a contradiction, that there is no Laver function $f: \kappa \to V_{\kappa}$.
- \triangleright Let $\varphi(f)$ be the formula

$$\exists \underline{\alpha} \exists \underline{\delta} \exists \underline{x} (f : \underline{\alpha} \to V_{\underline{\alpha}} \land \underline{\alpha} < \underline{\delta} \land \underline{\delta} \text{ is inaccessible } \land \underline{x} \in V_{\underline{\delta}} \\ \land \forall \underline{\delta}' \forall \underline{j} (\underline{j} : V_{\underline{\delta}} \xrightarrow{} V_{\underline{\delta}'} \land j \text{ is cofinal in } V_{\underline{\delta}'} \to j(f)(\underline{\alpha}) \neq \underline{x}))$$

- \oplus By assumption, we have $\varphi(f)$ for all $f: \kappa \to V_{\kappa}$.
- ▶ Let ν be an inaccessible cardinal $\geq \max\{\delta_f, \mu_f : f : \alpha \to V_\alpha \text{ for inaccessible } \alpha \leq \kappa\}.$
- ightharpoonup Let $j^*: \mathsf{V} \overset{\prec}{\to}_{\kappa} M$ be s.t. $(1^{\dagger}): j^*(\kappa) > \nu$ and $(2^{\dagger}): V_{\nu} \in M$.
- $\vartriangleright \ \mathsf{Let} \ {\color{red} A} := \{\alpha < \kappa \, : \, \forall f \, (f : \alpha \to V_\alpha \ \to \ \varphi(f))\}.$
- ▶ By assumption, $V \models "\forall f (f : \kappa \to V_{\kappa} \to \varphi(f))"$. By (2^{\dagger}) , it follows that
- ho $M \models$ " $\forall f (f : \kappa \to V_{\kappa} \to \varphi(f))$ ". Thus we have $M \models j^*(A) \ni \kappa$.
- Let $f^*: \kappa \to V_{\kappa}$ be defined by $f^*(\alpha) := \begin{cases} x_{f^* \upharpoonright \alpha}, & \text{if } \alpha \in A; \\ \emptyset, & \text{otherwise.} \end{cases}$
- ▶ Let $x^* := j^*(f^*)(\kappa)$. \triangleright By definition of f^* , by \oplus , and since $j(f^*) \upharpoonright \kappa = f^*$, x^* together with δ_{f^*} and μ_{f^*} witnesses $\varphi(f^*)$. (x^* may be different from x_{f^*} but this does not matter.)
- ▶ In particular, $x^* \neq ((j^* \upharpoonright V_{\delta_{f^*}})(f^*)(\kappa) = j(f^*)(\kappa)$. This is a contradiction. \Box (Lemma 15.4)

[3] Lemma 15.4 is well-known. See e.g. [corraza]. I go through the details of the proof in the present setting so that I can reuse them in the future proof of Conjecture 16.

- **A** (sketch of a) proof of Theorem 15: \blacktriangleright We show the Theorem for the case that \mathcal{P} is the class of all proper p.o.s. \blacktriangleright Let f be a Laver function for extendible cardinal κ (f exists by Lemma 15.2).
- ▶ Let $\langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\beta} : \alpha \leq \kappa, \beta < \kappa \rangle$ be an CS-iteration of elements of \mathcal{P} s.t.

$$\mathbb{Q}_{\beta} := \begin{cases} f(\beta), & \text{if } f(\beta) \text{ is a } \mathbb{P}_{\beta}\text{-name} \\ & \text{and } \| -\mathbb{P}_{\beta} \text{ "} f(\beta) \in \mathcal{P} \text{ "}; \end{cases}$$

$$\mathbb{P}_{\beta}\text{-name of the trivial forcing,} \quad \text{otherwise.}$$

- ▶ We show that $\Vdash_{\mathbb{P}_{\kappa}}$ " \mathcal{P} -LgLC for extendible".
- ho First, note that $\Vdash_{\mathbb{P}_{\kappa}}$ " $\kappa = 2^{\aleph_0} = \kappa_{\mathfrak{refl}}$ " by definition of \mathbb{P}_{κ} .
- ightharpoonup Let \mathbb{G}_{κ} be a $(\mathsf{V},\mathbb{P}_{\kappa})$ -generic filter. In $\mathsf{V}[\mathbb{G}_{\kappa}]$, suppose that $\mathbb{P}\in\mathcal{P}$ and let \mathbb{P} be a \mathbb{P}_{κ} -name for \mathbb{P} .
- ightharpoonup Suppose that $\lambda > \kappa$. By Lemma 15.0, there is an inaccessible $\lambda^* > \lambda$. Let $j : V \xrightarrow{\prec}_{\kappa} M$ be s.t. $(1^*): j(\kappa) > \lambda^*, (2^*): V_{j^*(\lambda^*)} \in M$ and $(3^*): j(f)(\kappa) = \mathbb{P}$. (This is possible since f is a Laver function for extendible κ .)

- ▶ In M, there is a $\mathbb{P}_{\kappa} * \mathbb{P}$ -name \mathbb{Q} s.t. $\Vdash_{\mathbb{P}_{\kappa} * \mathbb{P}}$ " $\mathbb{Q} \in \mathcal{P}$ and \mathbb{Q} is the direct limit of CS-iteration of small p.o.s in \mathcal{P} of length $j(\kappa)$, and $\mathbb{P}_{\kappa} * \mathbb{P} * \mathbb{Q} \sim j(\mathbb{P}_{\kappa})$ ", \triangleright By (2^*) , the same situation holds in V.
- $ightharpoonup We have j(\mathbb{P}_{\kappa})/\mathbb{G}_{\kappa} \sim \mathbb{P} * \mathbb{Q}$. Here, we are identifying \mathbb{Q} with corresponding \mathbb{P} -name.
- ▶ Let \mathbb{H} be $(V, j(\mathbb{P}_{\kappa}))$ -generic filter with $\mathbb{G}_{\kappa} \subseteq \mathbb{H}$.
- ▶ The lifting $\tilde{j}: V[\mathbb{G}_{\kappa}] \xrightarrow{\sim}_{\kappa} M[\mathbb{H}]; \ \underline{\mathfrak{g}}[\mathbb{G}_{\kappa}] \mapsto \underline{j}(\underline{\mathfrak{g}})[\mathbb{H}]$ witnesses that $\kappa = (\kappa_{\mathfrak{refl}})^{V[\mathbb{G}_{\kappa}]}$ is tightly \mathcal{P} -Laver generic extendible. For this, it suffices to show:

Claim 15.5 $V_{\alpha}^{V[\mathbb{H}]} \in M[\mathbb{H}]$ for all $\alpha \leq j(\lambda)$.

 \vdash By induction on $\alpha \leq j(\lambda)$. The successor step from $\alpha < j(\lambda)$ to $\alpha + 1$ can be proved by showing that \mathbb{P}_{κ} -names of subsets of $V_{\alpha}^{V[\mathbb{H}]}$ can be chosen as elements of M. This is possible because of (2^*) .

(Theorem 15)

LgLCs

B ←··· A: "the consistency of A implies the consistency of B but not the other way around."
The followsing conjecture has been solved positively in the meantime.

Conjecture 16. A model of super- $C^{(\infty)}$ - \mathcal{P} -LgLC for extendible, for arbitrary transfinitely iterable \mathcal{P} can be obtained starting from a model with a super- $C^{(\infty)}$ extendible cardinal, and this cardinal has consistency strength below that of almost huge.

